1
|
Singal K, Dimitriyev MS, Gonzalez SE, Cachine AP, Quinn S, Matsumoto EA. Programming mechanics in knitted materials, stitch by stitch. Nat Commun 2024; 15:2622. [PMID: 38521784 PMCID: PMC10960873 DOI: 10.1038/s41467-024-46498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024] Open
Abstract
Knitting turns yarn, a 1D material, into a 2D fabric that is flexible, durable, and can be patterned to adopt a wide range of 3D geometries. Like other mechanical metamaterials, the elasticity of knitted fabrics is an emergent property of the local stitch topology and pattern that cannot solely be attributed to the yarn itself. Thus, knitting can be viewed as an additive manufacturing technique that allows for stitch-by-stitch programming of elastic properties and has applications in many fields ranging from soft robotics and wearable electronics to engineered tissue and architected materials. However, predicting these mechanical properties based on the stitch type remains elusive. Here we untangle the relationship between changes in stitch topology and emergent elasticity in several types of knitted fabrics. We combine experiment and simulation to construct a constitutive model for the nonlinear bulk response of these fabrics. This model serves as a basis for composite fabrics with bespoke mechanical properties, which crucially do not depend on the constituent yarn.
Collapse
Affiliation(s)
- Krishma Singal
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Sarah E Gonzalez
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - A Patrick Cachine
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sam Quinn
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Elisabetta A Matsumoto
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Higashihiroshima, 739-8526, Japan.
| |
Collapse
|
2
|
Zhao S, Fang M, Li Y, Wang F, Li H, Wang L. Fabrication and in vitro investigation of hyperbranched poly-lysine-grafted warp knitted polypropylene sling for potential treatment of stress urinary incontinence. Biomater Sci 2023; 11:6504-6523. [PMID: 37577866 DOI: 10.1039/d3bm00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Polypropylene (PP) sling implantation is the most commonly performed procedure for women with stress urinary incontinence (SUI). However, concerns have arisen regarding complications caused by slings, including the common issue of erosion, which can be attributed to various factors such as the body's response and bacterial contamination. To address these concerns, we have developed a rectangular mesh self-locking edge sling with a large pore size and lightweight design. Promising results have been obtained from preliminary in vivo mechanical reliability tests, including uniaxial tensile tests. In comparative in vitro fixed load tensile tests and simulated Tension-free Vaginal Tape (TVT) and Transobturator Vaginal Tape inside-out (TVT-O) technique tests using commercial slings, our sling demonstrated less transverse wrinkling. Both slings achieved an effective porosity of over 45% under the TVT technique. However, the commercial sling experienced a significant reduction in effective porosity during the TVT-O technique, whereas our sling maintained a stable effective porosity with minimal wrinkling. Furthermore, we successfully developed cationic hydration rejection-driven antibacterial-anti-fouling coatings on the surface of our sling by grafting hyperbranched poly-lysine (HBPL) mediated by polynorepinephrine. The HBPL coating imparts a positive charge and hydrophilicity to the sling, resulting in elevated bactericidal activity and reducing protein adhesion. An optimal grafting concentration of 20 mg mL-1 was selected, confirming the stability and biocompatibility of the sling coating. This coating is expected to reduce the likelihood of postoperative erosion. Overall, our research represents significant advancements in improving the safety and performance of PP slings for stress urinary incontinence, potentially leading to a reduction in complications following surgery.
Collapse
Affiliation(s)
- Shuying Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China
| | - Meiqi Fang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China
| | - Yan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China
| | - Hao Li
- Shanghai Hongyu Medical Technology Co., Ltd, Shanghai, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, China
| |
Collapse
|
3
|
Jalalah M, Ahmad A, Saleem A, Qadir MB, Khaliq Z, Khan MQ, Nazir A, Faisal M, Alsaiari M, Irfan M, Alsareii SA, Harraz FA. Electrospun Nanofiber/Textile Supported Composite Membranes with Improved Mechanical Performance for Biomedical Applications. MEMBRANES 2022; 12:membranes12111158. [PMID: 36422150 PMCID: PMC9693054 DOI: 10.3390/membranes12111158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 05/27/2023]
Abstract
Textile-supported nanocomposite as a scaffold has been extensively used in the medical field, mainly to give support to weak or harmed tissues. However, there are some challenges in fabricating the nanofiber/textile composite, i.e., suitable porous structure with defined pore size, less skin contact area, biocompatibility, and availability of degradable materials. Herein, polyamide-6 (PA) nanofibers were synthesized using needleless electrospinning with the toothed wheel as a spinneret. The electrospinning process was optimized using different process and solution parameters. In the next phase, optimized PA nanofiber membranes of optimum fiber diameter with uniform distribution and thickness were used in making nanofiber membrane-textile composite. Different textile fabrics (woven, non-woven, knitted) were developed. The optimized nanofiber membranes were combined with non-woven, woven, and knitted fabrics to make fabric-supported nanocomposite. The nanofiber/fabric composites were compared with available market woven and knitted meshes for mechanical properties, morphology, structure, and chemical interaction analysis. It was found that the tear strength of the nanofiber/woven composite was three times higher than market woven mesh, and the nanofiber/knitted composite was 2.5 times higher than market knitted mesh. The developed composite structures with woven and knitted fabric exhibited improved bursting strength (613.1 and 751.1 Kpa), tensile strength (195.76 and 227.85 N), and puncture resistance (68.76 and 57.47 N), respectively, than market available meshes. All these properties showed that PA nanofibers/textile structures could be utilized as a composite with multifunctional properties.
Collapse
Affiliation(s)
- Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Electrical Engineering, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Adnan Ahmad
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Asad Saleem
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Bilal Qadir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Zubair Khaliq
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Qamar Khan
- Department of Textile & Clothing, Karachi Campus, National Textile University, Karachi 74900, Pakistan
| | - Ahsan Nazir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - M. Faisal
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
| | - Muhammad Irfan
- Department of Electrical Engineering, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - S. A. Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Surgery, College of Medicine, Najran University, Najran 11001, Saudi Arabia
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
4
|
Wang S, Lin S, Xue B, Wang C, Yan N, Guan Y, Hu Y, Wen X. Bruch's-Mimetic Nanofibrous Membranes Functionalized with the Integrin-Binding Peptides as a Promising Approach for Human Retinal Pigment Epithelium Cell Transplantation. Molecules 2022; 27:1429. [PMID: 35209218 PMCID: PMC8874486 DOI: 10.3390/molecules27041429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/02/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study aimed to develop an ultrathin nanofibrous membrane able to, firstly, mimic the natural fibrous architecture of human Bruch's membrane (BM) and, secondly, promote survival of retinal pigment epithelial (RPE) cells after surface functionalization of fibrous membranes. METHODS Integrin-binding peptides (IBPs) that specifically interact with appropriate adhesion receptors on RPEs were immobilized on Bruch's-mimetic membranes to promote coverage of RPEs. Surface morphologies, Fourier-transform infrared spectroscopy spectra, contact angle analysis, Alamar Blue assay, live/dead assay, immunofluorescence staining, and scanning electron microscopy were used to evaluate the outcome. RESULTS Results showed that coated membranes maintained the original morphology of nanofibers. After coating with IBPs, the water contact angle of the membrane surfaces varied from 92.38 ± 0.67 degrees to 20.16 ± 0.81 degrees. RPE cells seeded on IBP-coated membranes showed the highest viability at all time points (Day 1, p < 0.05; Day 3, p < 0.01; Days 7 and 14, p < 0.001). The proliferation rate of RPE cells on uncoated poly(ε-caprolactone) (PCL) membranes was significantly lower than that of IBP-coated membranes (p < 0.001). SEM images showed a well-organized hexa/polygonal monolayer of RPE cells on IBP-coated membranes. RPE cells proliferated rapidly, contacted, and became confluent. RPE cells formed a tight adhesion with nanofibers under high-magnification SEM. Our findings confirmed that the IBP-coated PCL membrane improved the attachment, proliferation, and viability of RPE cells. In addition, in this study, we used serum-free culture for RPE cells and short IBPs without immunogenicity to prevent graft rejection and immunogenicity during transplantation. CONCLUSIONS These results indicated that the biomimic BM-IBP-RPE nanofibrous graft might be a new, practicable approach to increase the success rate of RPE cell transplantation.
Collapse
Affiliation(s)
- Shaocheng Wang
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Siyong Lin
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Bo Xue
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Chenyu Wang
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Nana Yan
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Yueyan Guan
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Yuntao Hu
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- International Institute for Biomedical Biomaterials (IBM), Zhengzhou 450018, China
| |
Collapse
|
5
|
Bogdanova AS, Sokolova AI, Pavlova ER, Klinov DV, Bagrov DV. Investigation of cellular morphology and proliferation on patterned electrospun PLA-gelatin mats. J Biol Phys 2021; 47:205-214. [PMID: 34032971 PMCID: PMC8185091 DOI: 10.1007/s10867-021-09574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022] Open
Abstract
The morphology and proliferation of eukaryotic cells depend on their microenvironment. When electrospun mats are used as tissue engineering scaffolds, the local alignment of the fibers has a pronounced influence on cells. Here we analyzed the morphology of the patterned mats produced by electrospinning of PLA-gelatin blend onto a conductive grid. We investigated the cellular morphology and proliferation of two cell lines (keratinocytes HaCaT and fibroblasts NIH 3T3) on the patterned mats. The non-patterned mats of the same chemical composition were used as control ones. The HaCaT cells predominantly grew on convex areas of the patterned mats along with increasing their nucleus area and decreasing cell area. The 3T3 cells had a lower proliferative rate when grown on the patterned mats. The results can be valuable for further development of the procedures, which allow the patterned electrospun mats development as well as for the investigation of cell-substrate interactions.
Collapse
Affiliation(s)
- Alexandra Sergeevna Bogdanova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| | - Anastasiia Ivanovna Sokolova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Institute for Medical Physics and Biophysics, Münster, Germany
| | - Elizaveta Robertovna Pavlova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Dmitry Vladimirovich Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Dmitry Vladimirovich Bagrov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Afewerki S, Bassous N, Harb SV, Corat MAF, Maharjan S, Ruiz-Esparza GU, de Paula MMM, Webster TJ, Tim CR, Viana BC, Wang D, Wang X, Marciano FR, Lobo AO. Engineering multifunctional bactericidal nanofibers for abdominal hernia repair. Commun Biol 2021; 4:233. [PMID: 33608611 PMCID: PMC7896057 DOI: 10.1038/s42003-021-01758-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
The engineering of multifunctional surgical bactericidal nanofibers with inherent suitable mechanical and biological properties, through facile and cheap fabrication technology, is a great challenge. Moreover, hernia, which is when organ is pushed through an opening in the muscle or adjacent tissue due to damage of tissue structure or function, is a dire clinical challenge that currently needs surgery for recovery. Nevertheless, post-surgical hernia complications, like infection, fibrosis, tissue adhesions, scaffold rejection, inflammation, and recurrence still remain important clinical problems. Herein, through an integrated electrospinning, plasma treatment and direct surface modification strategy, multifunctional bactericidal nanofibers were engineered showing optimal properties for hernia repair. The nanofibers displayed good bactericidal activity, low inflammatory response, good biodegradation, as well as optimal collagen-, stress fiber- and blood vessel formation and associated tissue ingrowth in vivo. The disclosed engineering strategy serves as a prominent platform for the design of other multifunctional materials for various biomedical challenges.
Collapse
Affiliation(s)
- Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Nicole Bassous
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Samarah Vargas Harb
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marcus Alexandre F Corat
- Multidisciplinary Center for Biological Research, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mirian M M de Paula
- Multidisciplinary Center for Biological Research, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thomas J Webster
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Bartolomeu Cruz Viana
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, Piaui, Brazil
- Department of Physics, Federal University of Piaui, Teresina, Piaui, Brazil
| | - Danquan Wang
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Xichi Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fernanda Roberta Marciano
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Physics, Federal University of Piaui, Teresina, Piaui, Brazil
| | - Anderson Oliveira Lobo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Health Sciences and Technology, Harvard University ‒ Massachusetts Institute of Technology, Cambridge, MA, USA.
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, Piaui, Brazil.
- Department of Chemistry, Massachusetts Institute of Technology, MIT, Cambridge, MA, USA.
| |
Collapse
|
7
|
Giuntoli G, Muzio G, Actis C, Ganora A, Calzone S, Bruno M, Ciardelli G, Carmagnola I, Tonda-Turo C. In-vitro Characterization of a Hernia Mesh Featuring a Nanostructured Coating. Front Bioeng Biotechnol 2021; 8:589223. [PMID: 33553112 PMCID: PMC7856147 DOI: 10.3389/fbioe.2020.589223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/16/2020] [Indexed: 11/15/2022] Open
Abstract
Abdominal hernia repair is a frequently performed surgical procedure worldwide. Currently, the use of polypropylene (PP) surgical meshes for the repair of abdominal hernias constitutes the primary surgical approach, being widely accepted as superior to primary suture repair. Surgical meshes act as a reinforcement for the weakened or damaged tissues and support tissue restoration. However, implanted meshes could suffer from poor integration with the surrounding tissues. In this context, the present study describes the preliminary evaluation of a PCL-Gel-based nanofibrous coating as an element to develop a multicomponent hernia mesh device (meshPCL-Gel) that could overcome this limitation thanks to the presence of a nanostructured biomimetic substrate for enhanced cell attachment and new tissue formation. Through the electrospinning technique, a commercial PP hernia mesh was coated with a nanofibrous membrane from a polycaprolactone (PCL) and gelatin (Gel) blend (PCL-Gel). Resulting PCL-Gel nanofibers were homogeneous and defect-free, with an average diameter of 0.15 ± 0.04 μm. The presence of Gel decreased PCL hydrophobicity, so that membranes average water contact angle dropped from 138.9 ± 1.1° (PCL) to 99.9 ± 21.6°, while it slightly influenced mechanical properties, which remained comparable to those of PCL (E = 15.7 ± 2.7 MPa, σ R = 7.7 ± 0.6 ε R = 118.8 ± 13.2%). Hydrolytic and enzymatic degradation was conducted on PCL-Gel up to 28 days, with maximum weight losses around 20 and 40%, respectively. The meshPCL-Gel device was obtained with few simple steps, with no influences on the original mechanical properties of the bare mesh, and good stability under physiological conditions. The biocompatibility of meshPCL-Gel was assessed by culturing BJ human fibroblasts on the device, up to 7 days. After 24 h, cells adhered to the nanofibrous substrate, and after 72 h their metabolic activity was about 70% with respect to control cells. The absence of detectable lactate dehydrogenase in the culture medium indicated that no necrosis induction occurred. Hence, the developed nanostructured coating provided the meshPCL-Gel device with chemical and topographical cues similar to the native extracellular matrix ones, that could be exploited for enhancing the biological response and, consequently, mesh integration, in abdominal wall hernia repair.
Collapse
Affiliation(s)
- Giulia Giuntoli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Chiara Actis
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | | | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
- Department for Materials and Devices of the National Research Council, Institute for the Chemical and Physical Processes (CNR-IPCF UOS), Pisa, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| |
Collapse
|
8
|
Shokrollahi M, Bahrami SH, Nazarpak MH, Solouk A. Biomimetic double-sided polypropylene mesh modified by DOPA and ofloxacin loaded carboxyethyl chitosan/polyvinyl alcohol-polycaprolactone nanofibers for potential hernia repair applications. Int J Biol Macromol 2020; 165:902-917. [PMID: 33011256 DOI: 10.1016/j.ijbiomac.2020.09.229] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Polypropylene (PP) meshes are the most widely used as hernioplasty prostheses. As far as hernia repair is concerned, bacterial contamination and tissue adhesion would be the clinical issues. Moreover, an optimal mesh should assist the healing process of hernia defect and avoid undesired prosthesis displacements. In this present study, the commercial hernia mesh was modified to solve the mentioned problems. Accordingly, a new bi-functional PP mesh with anti-adhesion and antibacterial properties on the front and adhesion properties (reduce undesired displacements) on the backside was prepared. The backside of PP mesh was coated with polycaprolactone (PCL) nanofibers modified by mussel-inspired L-3,4-dihydroxyphenylalanine (L-DOPA) bioadhesive. The front side was composed of two different nanofibrous mats, including hybrid and two-layered mats with different antibacterial properties, drug release, and biodegradation behavior, which were based on PCL nanofibers and biomacromolecule carboxyethyl-chitosan (CECS)/polyvinyl alcohol (PVA) nanofibers containing different ofloxacin amounts. The anti-adhesion, antibacterial, and biocompatibility studies were done through in-vitro experiments. The results revealed that DOPA coated PCL/PP/hybrid meshes containing ofloxacin below 20 wt% possessed proper cell viability, AdMSCs adhesion prevention, and excellent antibacterial efficiency. Moreover, DOPA modifications not only enhanced the surface properties of the PP mesh but also improved cell adhesion, spreading, and proliferation.
Collapse
Affiliation(s)
- Mahvash Shokrollahi
- Nanotechnology Institute, Amirkabir University of Technology, Tehran 15875-4413, Iran; School of Materials and Advanced Processing, Textile Engineering Department, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - S Hajir Bahrami
- School of Materials and Advanced Processing, Textile Engineering Department, Amirkabir University of Technology, Tehran 15875-4413, Iran.
| | - Masoumeh Haghbin Nazarpak
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran 15875-4413, Iran.
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|