1
|
Zhang S, Liu C, Su M, Zhou D, Tao Z, Wu S, Xiao L, Li Y. Development of citric acid-based biomaterials for biomedical applications. J Mater Chem B 2024. [PMID: 39465414 DOI: 10.1039/d4tb01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The development of bioactive materials with controllable preparation is of great significance for biomedical engineering. Citric acid-based biomaterials are one of the few bioactive materials with many advantages such as simple synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, controllable biodegradability, and further functionalization. In this paper, we review the development of multifunctional citrate-based biomaterials for biomedical applications, and summarize their multifunctional properties in terms of physical, chemical, and biological aspects, and finally the applications of citrate-based biomaterials in biomedical engineering, including bone tissue engineering, skin tissue engineering, drug/cell delivery, vascular and neural tissue engineering, and bioimaging.
Collapse
Affiliation(s)
- Shihao Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cailin Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Meng Su
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Dong Zhou
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ziwei Tao
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyong Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, QLD 4222, Australia.
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| |
Collapse
|
2
|
Cao L, Lu Y, Chen H, Su Y, Cheng Y, Xu J, Sun H, Song K. A 3D bioprinted antibacterial hydrogel dressing of gelatin/sodium alginate loaded with ciprofloxacin hydrochloride. Biotechnol J 2024; 19:e2400209. [PMID: 39212214 DOI: 10.1002/biot.202400209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Skin plays a crucial role in human physiological functions, however, it was vulnerable to bacterial infection which delayed wound healing. Nowadays, designing an individual wound dressing with good biocompatibility and sustaining anti-infection capability for healing of chronic wounds are still challenging. In this study, various concentrations of the ciprofloxacin (CIP) were mixed with gelatine (Gel)/sodium alginate (SA) solution to prepare Gel/SA/CIP (GAC) bioinks, following the fabrication of GAC scaffold by an extrusion 3D bioprinting technology. The results showed that the GAC bioinks had good printability and the printed GAC scaffolds double-crosslinked by EDC/NHS and CaCl2 had rich porous structure with appropriate pore size, which were conducive to drug release and cell growth. It demonstrated that the CIP could be rapidly released by 70% in 5 min, which endowed the GAC composite scaffolds with an excellent antibacterial ability. Especially, the antibacterial activities of GAC7.5 against Escherichia coli and Staphylococcus aureus within 24 h were even close to 100%, and the inhibition zones were still maintained 14.78 ± 0.40 mm and 14.78 ± 0.40 mm, respectively, after 24 h. Meanwhile, GAC7.5 also demonstrated impressive biocompatibility which can promote the growth and migration of L929 and accelerate wound healing. Overall, the GAC7.5 3D bioprinting scaffold could be used as a potential skin dressing for susceptible wounds with excellent antibacterial activity and good biocompatibility to meet urgent clinical needs.
Collapse
Affiliation(s)
- Liuyuan Cao
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yueqi Lu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Hezhi Chen
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Ya Su
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - YuneYee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Huanwei Sun
- Department of Hand and Foot Microsurgery, Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
3
|
Kumar R, Singh B. Functional network copolymeric hydrogels derived from moringa gum: Physiochemical, drug delivery and biomedical properties. Int J Biol Macromol 2024; 275:133352. [PMID: 38945716 DOI: 10.1016/j.ijbiomac.2024.133352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
The article explores the synthesis of network hydrogels derived from moringa gum (MG) through a grafting reaction with poly (vinylsulfonic acid) and carbopol. These hydrogels are designed for use in drug delivery (DD) and wound hydrogels dressing (HYDR) applications. The copolymers were characterized by FESEM, EDX, AFM, FTIR, 13C NMR, XRD and DSC. Tetracycline release from hydrogel occurred gradually with a non-Fickian diffusion and was best described by the Hixson-Crowell kinetic model in artificial wound fluid. The HYDR demonstrated compatibility with blood, exhibited antioxidant properties and possessed tensile strength, in addition to their mucoadhesive characteristics. The copolymer dressings absorbed approximately 7 g of simulated fluid. The copolymers exhibited significant antioxidant activity, measuring at 84 % free radicals scavenging, during DPPH assay. These dressings demonstrated permeability to H2O and O2,. The hydrogel alone did not reveal antibacterial activities; however, when combined with antibiotic drug tetracycline, the dressings revealed notable antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The observed biomedical properties suggested that these hydrogels could serve as promising materials for drug delivery HYDR applications.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, Himachal Pradesh-171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla, Himachal Pradesh-171005, India.
| |
Collapse
|
4
|
Yang J, Duan A, Shen L, Liu Q, Wang F, Liu Y. Preparation and application of curcumin loaded with citric acid crosslinked chitosan-gelatin hydrogels. Int J Biol Macromol 2024; 264:130801. [PMID: 38548500 DOI: 10.1016/j.ijbiomac.2024.130801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
While oral administration offers safety benefits, its therapeutic efficacy is hindered by various physiological factors within the body. In this study, a novel approach was explored using a matrix consisting of 2 % chitosan and 2 % gelatin, with citric acid (CA) serving as a green cross-linking agent (ranging from 0.4 % to 1.0 %), and curcumin (Cur) as the model drug to formulate hydrogel carriers. The results showed that a 0.4 % CA concentration, the hydrogel (CGA0.4) reached swelling equilibrium in deionized water within 40 min, exhibiting a maximum swelling index was 539 g/g. The addition of Cur to the CGA hydrogel (CGACur) notably enhanced release efficiency, particularly in simulated intestinal fluid, where Cur release rates exceeded 40 % within 100 min compared to below 8 % in other solutions. Among these hydrogels, CGA0.4Cur exhibited the fastest degradation rate in the combined solution, reaching >90 % degradation after 7 days. Additionally, Cur and CA demonstrated positive effects on the tensile strength, antioxidant activity and antibacterial activity of hydrogels. Compare to the bioaccessibility of CGC (27 %), those of CGACur had increased to over 34 %. These findings offer provide theoretical support for CA-crosslinked chitosan/gelatin gels in delivering hydrophobic bioactive molecules and their application in intestinal drug delivery system.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China; Dezhou Industrial Technology Research Institute of North University of China, Dezhou, Shandong, 253034, China.
| | - Anbang Duan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Liping Shen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Qingye Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Fei Wang
- The hospitial of North University of China,Taiyuan, Shanxi 030051, China
| | - Yongping Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| |
Collapse
|
5
|
Shaw ZL, Awad MN, Gharehgozlo S, Greaves TL, Haidari H, Kopecki Z, Bryant G, Spicer PT, Walia S, Elbourne A, Bryant SJ. Deep Eutectic Solvent Eutectogels for Delivery of Broad-Spectrum Antimicrobials. ACS APPLIED BIO MATERIALS 2024; 7:1429-1434. [PMID: 38445589 DOI: 10.1021/acsabm.3c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Gel-based wound dressings have gained popularity within the healthcare industry for the prevention and treatment of bacterial and fungal infections. Gels based on deep eutectic solvents (DESs), known as eutectogels, provide a promising alternative to hydrogels as they are non-volatile and highly tunable and can solubilize therapeutic agents, including those insoluble in hydrogels. A choline chloride:glycerol-cellulose eutectogel was loaded with numerous antimicrobial agents including silver nanoparticles, black phosphorus nanoflakes, and commercially available pharmaceuticals (octenidine dihydrochloride, tetracycline hydrochloride, and fluconazole). The eutectogels caused >97% growth reduction in Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacteria and the fungal species Candida albicans.
Collapse
Affiliation(s)
- Z L Shaw
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Miyah N Awad
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | | | - Tamar L Greaves
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Hanif Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Patrick T Spicer
- School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Saffron J Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
6
|
Zhou X, Guo X, Chai Y, Li X, Chen L, Feng X. Superabsorbent whey protein isolates/chitosan-based antibacterial aerogels: Preparation, characterization and application in chicken meat preservation. Int J Biol Macromol 2024; 259:128961. [PMID: 38154705 DOI: 10.1016/j.ijbiomac.2023.128961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/23/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Traditional absorbent pads are composed of hard-to-degrade polyethylene film and non-woven bottom layer, which have the characteristic of low absorption rate, without antibacterial effect. The objective of this study is to fabricate a novel superabsorbent and antibacterial aerogel, which consists of whey protein isolate (WPI) and chitosan (CS). The citric acid (CA) and ε-polylysine hydrochloride (ε-PLH) are incorporated into WPI/CS-based aerogel as cross-linking and antibacterial agent, respectively. The application in meat preservation as an absorbent pad is investigated. Results of water absorption, water vapor absorption and stress-strain show that aerogel comprised of 6 % WPI, 1.2 % CS, 2.0 % CA, and 2.0 % ε-PLH have the best water absorption capacity and stress. The density of WPI/CS/CA/ε-PLH aerogel is 82.7 ± 6.4 mg/cm3, and has a uniform and polyporous microstructure, resulting in superabsorbent capacity. Antibacterial rate of WPI/CS/CA/ε-PLH aerogel against Staphylococcus aureus, Escherichia coli, Salmonella and Listeria monocytogenes reach around 80 %. The WPI/CS/CA/ε-PLH aerogel significantly reduces increased velocity of b⁎, pH, total volatile base nitrogen, and total viable counts and decreased velocity of L⁎ and b⁎ of chicken meat (P < 0.05). Results indicate WPI/CS/CA/ε-PLH aerogel effectively extends shelf-life of chicken meat to 7 days, and could be used as an absorbent pad in meat preservation.
Collapse
Affiliation(s)
- Xi Zhou
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xiao Guo
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yuwei Chai
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xiang Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Stan D, Ruta LL, Bocancia-Mateescu LA, Mirica AC, Stan D, Micutz M, Brincoveanu O, Enciu AM, Codrici E, Popescu ID, Popa ML, Rotaru F, Tanase C. Formulation and Comprehensive Evaluation of Biohybrid Hydrogel Membranes Containing Doxycycline or Silver Nanoparticles. Pharmaceutics 2023; 15:2696. [PMID: 38140037 PMCID: PMC10747233 DOI: 10.3390/pharmaceutics15122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Complicated wounds often require specialized medical treatments, and hydrogels have emerged as a popular choice for wound dressings in such cases due to their unique properties and the ability to incorporate and release therapeutic agents. Our focus was to develop and characterize a new optimized formula for biohybrid hydrogel membranes, which combine natural and synthetic polymers, bioactive natural compounds, like collagen and hyaluronic acid, and pharmacologically active substances (doxycycline or npAg). Dynamic (oscillatory) rheometry confirmed the strong gel-like properties of the obtained hydrogel membranes. Samples containing low-dose DOXY showed a swelling index of 285.68 ± 6.99%, a degradation rate of 71.6 ± 0.91% at 20 h, and achieved a cumulative drug release of approximately 90% at pH 7.4 and 80% at pH 8.3 within 12 h. The addition of npAg influenced the physical properties of the hydrogel membranes. Furthermore, the samples containing DOXY demonstrated exceptional antimicrobial efficacy against seven selected bacterial strains commonly associated with wound infections and complications. Biocompatibility assessments revealed that the samples exhibited over 80% cell viability. However, the addition of smaller-sized nanoparticles led to decreased cellular viability. The obtained biohybrid hydrogel membranes show favorable properties that render them suitable for application as wound dressings.
Collapse
Affiliation(s)
- Diana Stan
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
- Doctoral School of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Lavinia Liliana Ruta
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
- Department of Inorganic, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., 050663 Bucharest, Romania
| | | | - Andreea-Cristina Mirica
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
| | - Dana Stan
- DDS Diagnostic, Segovia 1 Str., 031427 Bucharest, Romania; (L.L.R.); (L.-A.B.-M.); (A.-C.M.); (D.S.)
| | - Marin Micutz
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania;
| | - Oana Brincoveanu
- National Institute for R&D in Microtechnology, 077190 Bucharest, Romania;
- Research Institute, The University of Bucharest, 060102 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
| | - Maria Linda Popa
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Flaviana Rotaru
- Polytechnic University of Bucharest, Splaiul Independenței 54, 030167 Bucharest, Romania;
- Rohealth—Health and Bioeconomy Cluster, Calea Griviţei 6-8, 010731 Bucharest, Romania
- Frontier Management Consulting, Calea Griviţei6-8, 010731 Bucharest, Romania
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.-M.E.); (E.C.); (I.D.P.); (C.T.)
- Department of Cell Biology and Clinical Biochemistry, Titu Maiorescu University, 031593 Bucharest, Romania
| |
Collapse
|
8
|
Radzikowska-Büchner E, Łopuszyńska I, Flieger W, Tobiasz M, Maciejewski R, Flieger J. An Overview of Recent Developments in the Management of Burn Injuries. Int J Mol Sci 2023; 24:16357. [PMID: 38003548 PMCID: PMC10671630 DOI: 10.3390/ijms242216357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
According to the World Health Organization (WHO), around 11 million people suffer from burns every year, and 180,000 die from them. A burn is a condition in which heat, chemical substances, an electrical current or other factors cause tissue damage. Burns mainly affect the skin, but can also affect deeper tissues such as bones or muscles. When burned, the skin loses its main functions, such as protection from the external environment, pathogens, evaporation and heat loss. Depending on the stage of the burn, the patient's condition and the cause of the burn, we need to choose the most appropriate treatment. Personalization and multidisciplinary collaboration are key to the successful management of burn patients. In this comprehensive review, we have collected and discussed the available treatment options, focusing on recent advances in topical treatments, wound cleansing, dressings, skin grafting, nutrition, pain and scar tissue management.
Collapse
Affiliation(s)
- Elżbieta Radzikowska-Büchner
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Inga Łopuszyńska
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Wojciech Flieger
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4 Street, 20-090 Lublin, Poland;
| | - Michał Tobiasz
- Department of Plastic Surgery, Reconstructive Surgery and Burn Treatment, Medical University of Lublin, Krasnystawska 52 Street, 21-010 Łęczna, Poland;
| | - Ryszard Maciejewski
- Faculty of Medicine, University of Warsaw, Żwirki i Wigury 101 Street, 02-089 Warszawa, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A Street, 20-093 Lublin, Poland
| |
Collapse
|
9
|
Khan MR, Liao S, Farooq A, Naeem MA, Wasim M, Wei Q. Regeneration and modification of cellulose acetate from cigarette waste: Biomedical potential by encapsulation of tetracycline hydrochloride. Int J Biol Macromol 2023; 250:126266. [PMID: 37567524 DOI: 10.1016/j.ijbiomac.2023.126266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Cigarette waste are pervasive litter on Earth, posing a major threat to organisms and ecosystems. However, these waste contain cellulose acetate (CA) and can be recycled, transforming into raw materials for new products. Polymers like CA can be used in biomedical applications as drug carriers and scaffolds for drug release. In this study, cigarette filters waste was collected, recycled and used for fabricating the nanofibrous membrane of cellulose acetate nanofibers (CFCA) through electrospinning technique. Tetracycline hydrochloride (TC) was encapsulated in the nanofibers to prevent bacterial infections. Various analyses were conducted: Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction Analysis (XRD) and Thermogravimetric analysis (TGA). CA and CFCA exhibited high water uptake properties and exhibited similar breaking stress and strain values. Both CA and CFCA effectively acted as stable drug carriers, with sustained in vitro drug release. Antibacterial activity was demonstrated by the drug-loaded CA and CFCA nanofibers against, Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. Based on their cytotoxicity evaluations on mouse fibroblast cells (L929), CA and CFCA fibrous mats demonstrated no cytotoxicity and similar cell viability results. Consequently, the TC-loaded nanofibers made from CA and CFCA exhibited suitable properties for wound healing applications.
Collapse
Affiliation(s)
- Muhammad Rafique Khan
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Amjad Farooq
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Muhammad Awais Naeem
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China; Department of Textile and Apparel Science, School of Design and Textiles University of Management and technology, C-II, Johar town, Lahore 54000, Pakistan
| | - Muhammad Wasim
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China; Key Laboratory of New Materials and Modification of Liaoning Province, School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China; Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China.
| |
Collapse
|
10
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
11
|
Ye R, Liu S, Zhu W, Li Y, Huang L, Zhang G, Zhang Y. Synthesis, Characterization, Properties, and Biomedical Application of Chitosan-Based Hydrogels. Polymers (Basel) 2023; 15:2482. [PMID: 37299281 PMCID: PMC10255636 DOI: 10.3390/polym15112482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The prospective applications of chitosan-based hydrogels (CBHs), a category of biocompatible and biodegradable materials, in biomedical disciplines such as tissue engineering, wound healing, drug delivery, and biosensing have garnered great interest. The synthesis and characterization processes used to create CBHs play a significant role in determining their characteristics and effectiveness. The qualities of CBHs might be greatly influenced by tailoring the manufacturing method to get certain traits, including porosity, swelling, mechanical strength, and bioactivity. Additionally, characterization methods aid in gaining access to the microstructures and properties of CBHs. Herein, this review provides a comprehensive assessment of the state-of-the-art with a focus on the affiliation between particular properties and domains in biomedicine. Moreover, this review highlights the beneficial properties and wide application of stimuli-responsive CBHs. The main obstacles and prospects for the future of CBH development for biomedical applications are also covered in this review.
Collapse
Affiliation(s)
- Ruixi Ye
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Siyu Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Wenkai Zhu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Yurong Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Long Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, 299 Bayi Road, Wuhan 430072, China;
| | - Guozheng Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeshun Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
- Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang 212121, China
| |
Collapse
|
12
|
Chen S, Li H, Bai Y, Zhang J, Ikoma T, Huang D, Li X, Chen W. Hierarchical and urchin-like chitosan/hydroxyapatite microspheres as drug-laden cell carriers. Int J Biol Macromol 2023; 238:124039. [PMID: 36921830 DOI: 10.1016/j.ijbiomac.2023.124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Biopolymer/hydroxyapatite (HAp) composites are one type of the most promising materials for a variety of biomedical applications. In this study, hierarchical and urchin-like chitosan/HAp nanowire (HU-CS/HAp NW) microspheres were for the first time synthesized by in situ hydrothermal treatment of chitosan/HAp (CS/HAp) microspheres in the acetic acid solution. The results indicate that HU-CS/HAp NW microspheres were spherical in morphology with a diameter of 100-300 μm. Their surface was mainly constructed by numerous HAp NWs with the diameter of 80-120 nm and showed a hierarchical and urchin-like nanofibrous architecture. It was found that the acidic hydrothermal treatment caused an in situ conversion of HAp NPs to HAp NWs. In vitro biocompatible evaluation indicates that HU-CS/HAp NW microspheres showed an enhanced cell attachment and proliferation due to the presence of hierarchical and urchin-like architecture. Furthermore, HU-CS/HAp NW microspheres showed a good adsorption capacity for tetracycline hydrochloride (model drug, one of the most representative antibiotics) with a higher adsorption capacity than CS/HAp microspheres and well maintained their antibacterial efficacy to inhibit the growth of bacteria: Escherichia coli and Staphylococcus aureus. Thus, the present HU-CS/HAp NW microspheres would be applicable as novel drug-laden cell carriers.
Collapse
Affiliation(s)
- Song Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Hao Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yajia Bai
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jianan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Toshiyuki Ikoma
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Di Huang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xiaona Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
13
|
An Overview on Wound Dressings and Sutures Fabricated by Electrospinning. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-021-0364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
14
|
Shao M, Shi Z, Zhang X, Zhai B, Sun J. Synthesis and Properties of Biodegradable Hydrogel Based on Polysaccharide Wound Dressing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1358. [PMID: 36836988 PMCID: PMC9967607 DOI: 10.3390/ma16041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The metabolic disorder of the wound microenvironment can lead to a series of serious symptoms, especially chronic wounds, which result in significant pain in patients. At present, there is no effective and widely used wound dressing. Therefore, it is important to develop new multifunctional wound dressings. Hydrogel is an ideal wound dressing for medical nursing because of its abilities to absorb exudate and maintain wound wetting, its excellent biocompatibility, and its ability to provide a moist environment for wound repair. Because of these features, hydrogel overcomes the shortcomings of traditional dressings. Therefore, hydrogel has high medical value and is widely studied. In this study, a biodegradable hydrogel based on polysaccharide was synthesized and used as a wound dressing. The swelling degree and degradability of hydrogel were characterized as the characteristics of the wound dressing. The results showed that the prepared hydrogel was degraded with trypsin and in the soil environment. Furthermore, the wound dressing can effectively inhibit the bacterial environment, promote the deposition of the collagen structure of the wound tissue, and accelerate the healing of the wound. The proposed hydrogel has value in practical medical nursing application.
Collapse
|
15
|
Novel Green Crosslinked Salecan Hydrogels and Preliminary Investigation of Their Use in 3D Printing. Pharmaceutics 2023; 15:pharmaceutics15020373. [PMID: 36839693 PMCID: PMC9963019 DOI: 10.3390/pharmaceutics15020373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Salecan, a kind of polysaccharide, is produced by the Agrobacterium ZX09 salt tolerant strain. In this study, green crosslinked citric acid-salecan hydrogels are explored as novel materials with a high potential for use in regenerative medicine. The impact of salecan and citric acid on the final crosslinked hydrogels was intensively studied and estimated in terms of the whole physicochemical properties and antimicrobial activity. FTIR spectra demonstrated the successful green crosslinking of salecan through its esterification with citric acid where the formation of strong covalent bonds collaboratively helped to stabilize the entire hydrogel systems in a wet state. Hydrogels presented a microporous morphology, good swelling capacity, pH responsiveness, great mechanical stability under stress conditions and good antibacterial activity, all related to the concentration of the biopolymers used in the synthesis step. Additionally, salecan hydrogels were preliminary investigated as printing inks. Thanks to their excellent rheological behavior, we optimized the citrate-salecan hydrogel inks and printing parameters to render 3D constructs with great printing fidelity and integrity. The novel synthesized salecan green crosslinked hydrogels enriches the family of salecan-derived hydrogels. Moreover, this work not only expands the application of salecan hydrogels in various fields, but also provides a new potential option of designing salecan-based 3D printed scaffolds for customized regenerative medicine.
Collapse
|
16
|
Jin S, Sun F, Hu Z, Li Y, Zhao Z, Du G, Shi G, Chen J. Online quantitative substrate, product, and cell concentration in citric acid fermentation using near-infrared spectroscopy combined with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121842. [PMID: 36126619 DOI: 10.1016/j.saa.2022.121842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
As a mature platform compound, citric acid (CA) is mainly produced by Aspergillus niger (A. niger) through submerged fermentation. However, the CA fermentation process is still regulated based on experience and limited offline data, so real-time monitoring and intelligent precise control of the fermentation process cannot be carried out. In this study, near-infrared (NIR) spectroscopy combined with different chemometrics methods was used to quantify the substrate, product, and cell concentration of CA fermentation online. The predictive performance of total sugar (TS), CA, and dry cell weight (DCW) concentrations were compared between traditional partial least squares (PLS) and intelligent stacked auto-encoder (SAE) modeling methods. Theresults showed that both PLS and SAE models had good performance in predicting TS and CA. The performance, accuracy, and precision of the PLS models are slightly better than those of the SAE models in predicting TS and CA. SAE model was superior to the PLS model in predicting DCW concentration. The SAE modeling method has advantages in predicting the concentration of complex components. In this study, the multi-parameter online prediction was realized in the complex system of CA fermentation, which provided the basis for real-time intelligent control of the fermentation process.
Collapse
Affiliation(s)
- Sai Jin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China; Jiangsu Guoxin Union Energy Co., Ltd., Wuxi, Jiangsu Province 214203, People's Republic of China
| | - Fuxin Sun
- Jiangsu Guoxin Union Energy Co., Ltd., Wuxi, Jiangsu Province 214203, People's Republic of China
| | - Zhijie Hu
- Jiangsu Guoxin Union Energy Co., Ltd., Wuxi, Jiangsu Province 214203, People's Republic of China
| | - Youran Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Zhonggai Zhao
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Guiyang Shi
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China.
| | - Jian Chen
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China.
| |
Collapse
|
17
|
Chen Y, Fan X, Lu J, Liu X, Chen J, Chen Y. Mussel-Inspired Adhesive, Antibacterial, and Stretchable Composite Hydrogel for Wound Dressing. Macromol Biosci 2023; 23:e2200370. [PMID: 36254853 DOI: 10.1002/mabi.202200370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/10/2022] [Indexed: 01/19/2023]
Abstract
Hydrogels have attracted extensive attention in the field of biomedicine because of their similar structure to extracellular matrix (ECM) and good biocompatibility. However, the adhesiveness, mechanical properties, and antibacterial properties of conventional hydrogels are not satisfactory. In this study, multifunctional chitosan/polydopamine/polyacrylamide (CS/PDA/PAM) hydrogels are prepared through a nature-inspired strategy. The catechol group of polydopamine (PDA) component endows CS/PDA/PAM hydrogels with tissue adhesion and self-healing properties. The introduction of chitosan (CS) not only greatly improves antibacterial ability, but also enhances the mechanical properties of CS/PDA/PAM hydrogels. Skin wound healing experiments show that CS/PDA/PAM hydrogels could accelerate skin tissue regeneration and promote wound healing. Therefore, CS/PDA/PAM hydrogels have great potential in the application of new wound dressings.
Collapse
Affiliation(s)
- Ying Chen
- College of Civil Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China.,National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, Hunan, 412007, China.,School of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China.,Foshan (Southern China) Institute for New Materials, Foshan, Guangdong, 528247, China
| | - Xiaokun Fan
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, Hunan, 412007, China.,School of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| | - Jiawei Lu
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, Hunan, 412007, China.,School of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| | - Xin Liu
- College of Civil Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| | - Jin Chen
- Institute for Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Hainan, 570216, China
| | - Yi Chen
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou, Hunan, 412007, China.,School of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| |
Collapse
|
18
|
Ding X, Zhao L, Khan IM, Yue L, Zhang Y, Wang Z. Emerging chitosan grafted essential oil components: A review on synthesis, characterization, and potential application. Carbohydr Polym 2022; 297:120011. [DOI: 10.1016/j.carbpol.2022.120011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 01/19/2023]
|
19
|
Wei B, Zou J, Pu Q, Shi K, Xu B, Ma Y. One-step preparation of hydrogel based on different molecular weights of chitosan with citric acid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3826-3834. [PMID: 34927252 DOI: 10.1002/jsfa.11732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/18/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chitosan-based hydrogels have been prepared previously by a two-step protocol in which chitosan was first dissolved in dilute acetic acid and then crosslinked by glutaraldehyde or genipin. This was a time-consuming method, which had the disadvantages of high costs and biological safety problems. RESULTS Scanning electron microscopy (SEM) results verified the successful preparation of hydrogels based on high, medium, and low molecular-weight chitosan (HCS, MCS, and LCS), respectively. The hydrogels prepared with HCS, MCS, and LCS were formed through the accumulation of different-sized crystals. The framework density of the hydrogel was enhanced by an increase in the chitosan molecular weight and exhibited a crack pore pattern composed of flake particles. Medium molecular-weight chitosan-based hydrogel exhibited the highest specific surface area and total pore volume, with values of 3.81 m2 g-1 and 0.0109 cm3 g-1 , respectively. The water absorption rate of the chitosan based hydrogels was influenced by its molecular weights at the sequence of LCS > HCS > MCS, while the maximum compression stress was affected at the sequence of HCS > MCS > LCS. The network structure was enhanced with an increase in the chitosan molecular weight and reached maximum stress levels of 4.50, 1.50 and 0.75 MPa for HCS-, MCS-, and LCS-based hydrogels, respectively. CONCLUSION Citric acid was shown to be an effective dissolving and crosslinking agent in the preparation of MCS- and HCS-based hydrogels. The physiochemical properties of the hydrogels were enhanced as the molecular weight of the chitosan increased. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Benxi Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qianqian Pu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ke Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Bezerra MC, Duarte GA, Talabi SI, Lucas AA. Microstructure and properties of thermomechanically processed chitosan citrate-based materials. Carbohydr Polym 2022; 278:118984. [PMID: 34973791 DOI: 10.1016/j.carbpol.2021.118984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/19/2022]
Abstract
The traditional solvent casting method for preparing chitosan-based materials has limited productivity relative to the productivity of thermomechanical processing. Consequently, the thermomechanical processing technique was evaluated as a way to increase chitosan production. The role of citric acid (CA) as a destructuring and crosslinking agent during such processing was examined. SEM images revealed robust fibers that were associated with a superior mechanical strength (145%), which were produced after thermomechanical processing of chitosan in the presence of CA. Based on articles reviewed, this is the first time that this structure has been closely observed in the microstructure of chitosan-based materials. FTIR and XRD characterization showed the occurrence of chemical crosslinking and the successful destructuring of chitosan powder by CA during processing. Compared to acetic acid, the use of CA led to the development of materials with a homogeneous morphology and good physicochemical and mechanical properties that are suitable for biomedical applications.
Collapse
Affiliation(s)
- Maria C Bezerra
- Federal University of Sao Carlos, Graduate Program in Materials Science and Engineering, Rodovia Washington Luiz, Km 235 SP-310, 13565-905 São Carlos, SP, Brazil; Federal University of Paraiba, Department of Chemical Engineering, 58059-900 João Pessoa, PB, Brazil.
| | - Gustavo A Duarte
- Federal University of Sao Carlos, Graduate Program in Materials Science and Engineering, Rodovia Washington Luiz, Km 235 SP-310, 13565-905 São Carlos, SP, Brazil
| | - Segun I Talabi
- University of Ilorin, Materials and Metallurgical Engineering Department (MME), PMB 1515 Ilorin, Nigeria
| | - Alessandra A Lucas
- Federal University of Sao Carlos, Graduate Program in Materials Science and Engineering, Rodovia Washington Luiz, Km 235 SP-310, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
21
|
Cojocaru E, Ghitman J, Pircalabioru GG, Stavarache C, Serafim A, Vasile E, Iovu H. Electrospun Nanofibrous Membranes Based on Citric Acid-Functionalized Chitosan Containing rGO-TEPA with Potential Application in Wound Dressings. Polymers (Basel) 2022; 14:294. [PMID: 35054703 PMCID: PMC8778993 DOI: 10.3390/polym14020294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 01/08/2023] Open
Abstract
The present research work is focused on the design and investigation of electrospun composite membranes based on citric acid-functionalized chitosan (CsA) containing reduced graphene oxide-tetraethylene pentamine (CsA/rGO-TEPA) as materials with opportune bio-properties for applications in wound dressings. The covalent functionalization of chitosan (CS) with citric acid (CA) was achieved through the EDC/NHS coupling system and was checked by 1H-NMR spectroscopy and FTIR spectrometry. The mixtures to be electrospun were formulated by adding three concentrations of rGO-TEPA into the 1/1 (w/w) CsA/poly (ethylene oxide) (PEO) solution. The effect of rGO-TEPA concentration on the morphology, wettability, thermal stability, cytocompatibility, cytotoxicity, and anti-biofilm activity of the nanofibrous membranes was extensively investigated. FTIR and Raman results confirmed the covalent and non-covalent interactions that appeared between the system's compounds, and the exfoliation of rGO-TEPA sheets within the CsA in the presence of PEO (CsA/P) polymer matrix, respectively. SEM analysis emphasized the nanofibrous architecture of membranes and the presence of rGO-TEPA sheets entrapped into the CsA nanofiber structure. The MTT cellular viability assay showed a good cytocompatibility with the highest level of cell development and proliferation registered for the CsA/P composite nanofibrous membrane with 0.250 wt.% rGO-TEPA. The designed nanofibrous membranes could have potential applications in wound dressings, given that they showed a good anti-biofilm activity against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacterial strains.
Collapse
Affiliation(s)
- Elena Cojocaru
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.C.); (J.G.); (C.S.); (A.S.)
| | - Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.C.); (J.G.); (C.S.); (A.S.)
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Cristina Stavarache
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.C.); (J.G.); (C.S.); (A.S.)
- “C. D. Nenitescu” Institute of Organic Chemistry, 202-B Splaiul Independentei, 060023 Bucharest, Romania
| | - Andrada Serafim
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.C.); (J.G.); (C.S.); (A.S.)
| | - Eugeniu Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.C.); (J.G.); (C.S.); (A.S.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
22
|
Feng S, Liu F, Guo Y, Ye M, He J, Zhou H, Liu L, Cai L, Zhang Y, Li R. Exploring the role of chitosan in affecting the adhesive, rheological and antimicrobial properties of carboxymethyl cellulose composite hydrogels. Int J Biol Macromol 2021; 190:554-563. [PMID: 34492250 DOI: 10.1016/j.ijbiomac.2021.08.217] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022]
Abstract
Natural polysaccharide-based hydrogels are promising in food and pharmaceutical applications. In this study, the potential of composite hydrogels prepared by carboxymethyl cellulose (CMC) and chitosan as glue for cigar wrapping applications was firstly studied. The impacts of degree of carboxymethyl substitution (DS) and the ratio of CMC:chitosan on the adhesive performance and rheological behaviors of composite hydrogels have been investigated. And the results indicated that relatively low DS of CMC and relatively low ratio of chitosan might be favorable for the adhesive properties of composite hydrogels. But a higher ratio of chitosan may significantly improve the rheological properties of composite hydrogels and alter their thermal-sensitivity. The impacts of chitosan on the wet ability with tobacco leaf, the morphology and the XRD patterns of composite hydrogels were also observed. The CMC-chitosan composite hydrogel could significantly decrease the total molds on tobacco leaf brought by CMC, and therefore may show great potential to improve the quality of cigar during long-term storage. All the information in this study is new, which could be useful for exploring the application of CMC-chitosan composite hydrogel in food, pharmaceutical, even other fields.
Collapse
Affiliation(s)
- Sirui Feng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Feng Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yunsi Guo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Mingqiao Ye
- China Tobacco Hubei Industrial Co., Ltd., Wuhan 430040, PR China
| | - Jiewang He
- China Tobacco Hubei Industrial Co., Ltd., Wuhan 430040, PR China
| | - Hongshen Zhou
- China Tobacco Hubei Industrial Co., Ltd., Wuhan 430040, PR China
| | - Liping Liu
- China Tobacco Hubei Industrial Co., Ltd., Wuhan 430040, PR China
| | - Lei Cai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Ran Li
- China Tobacco Hubei Industrial Co., Ltd., Wuhan 430040, PR China.
| |
Collapse
|
23
|
Pooresmaeil M, Javanbakht S, Namazi H, Shaabani A. Application or function of citric acid in drug delivery platforms. Med Res Rev 2021; 42:800-849. [PMID: 34693555 DOI: 10.1002/med.21864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Nontoxic materials with natural origin are promising materials in the designing and preparation of the new drug delivery systems (DDSs). Today's, citric acid (CA) has attracted a great deal of attention because of its special features; green nature, biocompatibility, low price, biodegradability, and commercially available property. So, CA has been employed in the preparation of the various platforms to induce a suitable property on their structure. Recently, several research groups investigated the CA-based platforms in different forms like tablets, dendrimers, hyperbranched polymers, (co)polymer, hydrogels, and nanoparticles as efficient DDSs. By considering an increasing amount of published articles in this field, for the first time, in this review, an overview of the published works regarding CA applications in the design of various DDSs is presented with a detailed and insightful discussion.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
24
|
Jin S, Sun F, Hu Z, Liu L, Li J, Du G, Li Y, Shi G, Chen J. Improving Aspergillus niger seed preparation and citric acid production by morphology controlling-based semicontinuous cultivation. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Wu Y, Wang J, Li L, Fei X, Xu L, Wang Y, Tian J, Li Y. A novel hydrogel with self-healing property and bactericidal activity. J Colloid Interface Sci 2021; 584:484-494. [PMID: 33129158 DOI: 10.1016/j.jcis.2020.09.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/20/2020] [Accepted: 09/26/2020] [Indexed: 12/20/2022]
Abstract
In this study, we have designed and synthesized a novel poly (4 - vinyl benzene boronic acid - co - N - vinyl pyrrolidone - co - 1 - vinyl - 3 - butylimidazolium bromide) hydrogel (VNV hydrogel) dressing with good self-healing properties and bactericidal activity. The gelation and self-healing of this hydrogel are mainly achieved by the formation of a dynamic B-O-B bond between the polymer chains, which is fractured by external forces and subsequently reformed. This self-healing mechanism is studied in detail through the molecular design of the hydrogel. The introduction of hydrophilic chemical groups can effectively improve the porous structures, water absorption and molecular migration. These properties have a positive effect on improving self-healing properties of dynamic crosslinked hydrogels. Furthermore, this VNV hydrogel dressing displays good antibacterial activity against E. coli, S. aureus, and C. albicans. The application of VNV hydrogel dressing on rat wound surface can effectively accelerate wound healing. These results indicate that this novel VNV hydrogel dressing with good self-healing properties and bactericidal activity has potential applications in wound dressings.
Collapse
Affiliation(s)
- Yuxuan Wu
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jihui Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; School of Chemical Engineering & Energy Technology, Dongguan University of Technology, Dongguan 528808, China
| | - Lin Li
- School of Chemical Engineering & Energy Technology, Dongguan University of Technology, Dongguan 528808, China
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China.
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
26
|
Rashki S, Asgarpour K, Tarrahimofrad H, Hashemipour M, Ebrahimi MS, Fathizadeh H, Khorshidi A, Khan H, Marzhoseyni Z, Salavati-Niasari M, Mirzaei H. Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym 2021; 251:117108. [DOI: 10.1016/j.carbpol.2020.117108] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/23/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022]
|
27
|
Alven S, Aderibigbe BA. Chitosan and Cellulose-Based Hydrogels for Wound Management. Int J Mol Sci 2020; 21:E9656. [PMID: 33352826 PMCID: PMC7767230 DOI: 10.3390/ijms21249656] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Wound management remains a challenge worldwide, although there are several developed wound dressing materials for the management of acute and chronic wounds. The wound dressings that are currently used include hydrogels, films, wafers, nanofibers, foams, topical formulations, transdermal patches, sponges, and bandages. Hydrogels exhibit unique features which make them suitable wound dressings such as providing a moist environment for wound healing, exhibiting high moisture content, or creating a barrier against bacterial infections, and are suitable for the management of exuding and granulating wounds. Biopolymers have been utilized for their development due to their non-toxic, biodegradable, and biocompatible properties. Hydrogels have been prepared from biopolymers such as cellulose and chitosan by crosslinking with selected synthetic polymers resulting in improved mechanical, biological, and physicochemical properties. They were useful by accelerating wound re-epithelialization and also mimic skin structure, inducing skin regeneration. Loading antibacterial agents into them prevented bacterial invasion of wounds. This review article is focused on hydrogels formulated from two biopolymers-chitosan and cellulose-for improved wound management.
Collapse
Affiliation(s)
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa;
| |
Collapse
|
28
|
Ding H, Li B, Liu Z, Liu G, Pu S, Feng Y, Jia D, Zhou Y. Nonswelling injectable chitosan hydrogel via UV crosslinking induced hydrophobic effect for minimally invasive tissue engineering. Carbohydr Polym 2020; 252:117143. [PMID: 33183602 DOI: 10.1016/j.carbpol.2020.117143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/04/2020] [Accepted: 09/22/2020] [Indexed: 01/06/2023]
Abstract
Injectable chitosan hydrogels exhibit excellent biological properties for application in biomedical engineering, however most of these hydrogels have limited applicability because "Swelling" can induce volume expansion of conventional hydrogels implanted in the body damages the surrounding tissues. Here, we report a new "Nonswelling" pentenyl chitosan (PTL-CS) hydrogel via N‒acylation reaction to graft an UV crosslinkable short hydrophobic alkyl chain (n‒pentenyl groups). The incorporated pentenyl groups can be crosslinked by UV irradiation to form hydrophobic chains via combination termination, which generate strong hydrophobic effect to extrude the excess water in hydrogel, resulting in a "Nonswelling" state at biological temperature. Furthermore, the PTL-CS solution showed no cytotoxicity in vitro and minimally invasive treatment in vivo demonstrated the PTL-CS hydrogel no adverse effects in a rat model. The nonswelling injectable and UV crosslinkable chitosan hydrogel hold potential applications in smart biomaterials and biological engineering as well as providing a new natural hydrogel in minimally invasive tissue engineering..
Collapse
Affiliation(s)
- Haichang Ding
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Zonglin Liu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China.
| | - Yujie Feng
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Dechang Jia
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Yu Zhou
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| |
Collapse
|
29
|
Op 't Veld RC, Walboomers XF, Jansen JA, Wagener FADTG. Design Considerations for Hydrogel Wound Dressings: Strategic and Molecular Advances. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:230-248. [PMID: 31928151 DOI: 10.1089/ten.teb.2019.0281] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wound dressings are traditionally used to protect a wound and to facilitate healing. Currently, their function is expanding. There is an urgent need for new smart products that not only act as a protective barrier but also actively support the wound healing process. Hydrogel dressings are an example of such innovative products and typically facilitate wound healing by providing a hospitable and moist environment in which cells can thrive, while the wound can still breathe and exudate can be drained. These dressings also tend to be less painful or have a soothing effect and allow for additional drug delivery. In this review, various strategic and molecular design considerations are discussed that are relevant for developing a hydrogel into a wound dressing product. These considerations vary from material choice to ease of use and determine the dressing's final properties, application potential, and benefits for the patient. The focus of this review lies on identifying and explaining key aspects of hydrogel wound dressings and their relevance in the different phases of wound repair. Molecular targets of wound healing are discussed that are relevant when tailoring hydrogels toward specific wound healing scenarios. In addition, the potential of hydrogels is reviewed as medicine advances from a repair-based wound healing approach toward a regenerative-based one. Hydrogels can play a key role in the transition toward personal wound care and facilitating regenerative medicine strategies by acting as a scaffold for (stem) cells and carrier/source of bioactive molecules and/or drugs. Impact statement Improved wound healing will lead to a better quality of life around the globe. It can be expected that this coincides with a reduction in health care spending, as the duration of treatment decreases. To achieve this, new and modern wound care products are desired that both facilitate healing and improve comfort and outcome for the patient. It is proposed that hydrogel wound dressings can play a pivotal role in improving wound care, and to that end, this review aims to summarize the various design considerations that can be made to optimize hydrogels for the purpose of a wound dressing.
Collapse
Affiliation(s)
- Roel C Op 't Veld
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - X Frank Walboomers
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - John A Jansen
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| |
Collapse
|