1
|
Li B, Liu XJ, Zhu HW, Guan HP, Guo RT. A Review on Bi 2WO 6-Based Materials for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406074. [PMID: 39370667 DOI: 10.1002/smll.202406074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Photocatalytic reduction of CO2 (PCR) technology offers the capacity to transmute solar energy into chemical energy through an eco-friendly and efficacious process, concurrently facilitating energy storage and carbon diminution, this innovation harbors significant potential for mitigating energy shortages and ameliorating environmental degradation. Bismuth tungstate (Bi2WO6) is distinguished by its robust visible light absorption and distinctive perovskite-type crystal architecture, rendering it highly efficiency in PCR. In recent years, numerous systematic strategies have been investigated for the synthesis and modification of Bi2WO6 to enhance its photocatalytic performance, aiming to achieve superior applications. This review provides a comprehensive review of the latest research progress on Bi2WO6 based materials in the field of photocatalysis. Firstly, outlining the fundamental principles, associated reaction mechanisms and reduction pathways of PCR. Then, the synthesis strategy of Bi2WO6-based materials is introduced for the regulation of its photocatalytic properties. Furthermore, accentuating the extant applications in CO2 reduction, including metal-Bi2WO6, semiconductor-Bi2WO6 and carbon-based Bi2WO6 composites etc. while concludes with an examination of the future landscape and challenges faced. This review hopes to serve as an effective reference for the continuous improvement and implementation of Bi2WO6-based photocatalysts in PCR.
Collapse
Affiliation(s)
- Bo Li
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Xiao-Jing Liu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Hao-Wen Zhu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Hua-Peng Guan
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| |
Collapse
|
2
|
Anjaneyulu B, Chauhan V, Chinmay, Afshari M. Enhancing photocatalytic wastewater treatment: investigating the promising applications of nickel ferrite and its novel nanocomposites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43453-43475. [PMID: 38684612 DOI: 10.1007/s11356-024-33502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Water contamination ranks highest among the challenges posed by the rapidly increasing environmental contamination, which is thought to be the most pressing issue globally. The development of innovative techniques for the successful removal of diverse types of undesirable pollutants from wastewater would therefore yield a huge return on investment. Nowadays, the removal of many organic and synthetic pollutants from the environmental matrix is anticipated to be possible by photocatalytic degradation, owing to its low energy consumption, high catalytic activity, and low overall cost. In this context, magnetic nanoparticles received greater attention as photocatalytic materials from the scientific community in wastewater treatment for the removal of different kinds of pollutants due to their specific properties. The present study provides an overview of the recent advances in water treatment using nickel ferrite nanoparticles and their nanocomposites as photocatalysts. Furthermore, a proposed mechanism for these photocatalysts to generate active free radicals under visible and ultraviolet light has been described. The review concludes that photocatalysts based on NiFe2O4 have potential applications in water purification technologies. However, more research is still needed to determine their practical application in water treatment facilities.
Collapse
Affiliation(s)
- Bendi Anjaneyulu
- Department of Chemistry, Presidency University, Rajanukunte, Itgalpura, Bangalore, 560064, India
| | - Vishaka Chauhan
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, 122505, India
| | - Chinmay
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, 122505, India
| | - Mozhgan Afshari
- Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran.
| |
Collapse
|
3
|
Fischer K, Abdul Latif A, Griebel J, Prager A, Shayestehpour O, Zahn S, Schulze A. Immobilization of Bi 2WO 6 on Polymer Membranes for Photocatalytic Removal of Micropollutants from Water - A Stable and Visible Light Active Alternative. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300198. [PMID: 38486926 PMCID: PMC10935888 DOI: 10.1002/gch2.202300198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/26/2024] [Indexed: 03/17/2024]
Abstract
In this work, bismuth tungstate Bi2WO6 is immobilized on polymer membranes to photocatalytically remove micropollutants from water as an alternative to titanium dioxide TiO2. A synthesis method for Bi2WO6 preparation and its immobilization on a polymer membrane is developed. Bi2WO6 is characterized using X-ray diffraction and UV-vis reflectance spectroscopy, while the membrane undergoes analysis through scanning electron microscopy, X-ray photoelectron spectroscopy, and degradation experiments. The density of states calculations for TiO2 and Bi2WO6, along with PVDF reactions with potential reactive species, are investigated by density functional theory. The generation of hydroxyl radicals OH• is investigated via the reaction of coumarin to umbelliferone via fluorescence probe detection and electron paramagnetic resonance. Increasing reactant concentration enhances Bi2WO6 crystallinity. Under UV light at pH 7 and 11, the Bi2WO6 membrane completely degrades propranolol in 3 and 1 h, respectively, remaining stable and reusable for over 10 cycles (30 h). Active under visible light with a bandgap of 2.91 eV, the Bi2WO6 membrane demonstrates superior stability compared to a TiO2 membrane during a 7-day exposure to UV light as Bi2WO6 does not generate OH• radicals. The Bi2WO6 membrane is an alternative for water pollutant degradation due to its visible light activity and long-term stability.
Collapse
Affiliation(s)
- Kristina Fischer
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Amira Abdul Latif
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Jan Griebel
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Andrea Prager
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Omid Shayestehpour
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| |
Collapse
|
4
|
Fiaz M, Sohail M, Nafady A, Will G, Wahab MA. A facile two-step hydrothermal preparation of 2D/2D heterostructure of Bi 2WO 6/WS 2 for the efficient photodegradation of methylene blue under sunlight. ENVIRONMENTAL RESEARCH 2023; 234:116550. [PMID: 37437862 DOI: 10.1016/j.envres.2023.116550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
A facile two-step hydrothermal method was successfully used to prepare a photocatalyst Bi2WO6/WS2 heterojunction for methyl blue (MB) photodegradation. Fabricated photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray analysis (EDX), and X-ray photoelectron spectroscopy (XPS). Band gap measurements were carried out by diffuse reflectance spectroscopy (DRS). Results indicated that the prepared heterostructure photocatalyst has increased visible light absorption. Photocatalytic performance was evaluated under sunlight irradiation for methylene blue (MB) degradation as a model dye. Variations in pH (4-10), amount of catalyst (0.025-0.1 g/L), and initial MB concentrations (5-20 ppm) were carried out, whereas all prepared catalysts were used to conduct the tests with a visible spectrophotometer. Degradation activity improved with the pH increase; the optimum pH was approximately 8. Catalyst concentration is directly related to degradation efficiency and reached 93.56% with 0.075 g of the catalyst. Among tested catalysts, 0.01 Bi2WO6/WS2 has exhibited the highest activity and a degradation efficiency of 99.0% in 40 min (min) for MB. MB photodegradation follows pseudo-first-order kinetics, and obtained values of kapp were 0.0482 min-1, 0.0337 min-1, 0.0205 min-1, and 0.0087 min-1 for initial concentrations of 5 ppm, 10 ppm, 15 ppm, and 20 ppm, respectively. The catalyst was reused for six cycles with a negligible decrease in the degradation activity. Heterostructure 0.01 Bi2WO6/WS2 has exhibited a photocurrent density of 16 μA cm-2, significantly higher than 2.0 and 4.5 μA cm-2 for the pristine WS2 and Bi2WO6, respectively. The findings from these investigations may serve as a crucial stepping stone towards the remediation of polluted water facilitated by implementing such highly efficient photocatalysts.
Collapse
Affiliation(s)
- Muhammad Fiaz
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Geoffrey Will
- Energy and Process Engineering Laboratory, School of Mechanical, Medical and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Md A Wahab
- Energy and Process Engineering Laboratory, School of Mechanical, Medical and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.
| |
Collapse
|
5
|
Oladipo AA, Mustafa FS. Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:291-321. [PMID: 36895441 PMCID: PMC9989679 DOI: 10.3762/bjnano.14.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A serious threat to human health and the environment worldwide, in addition to the global energy crisis, is the increasing water pollution caused by micropollutants such as antibiotics and persistent organic dyes. Nanostructured semiconductors in advanced oxidation processes using photocatalysis have recently attracted a lot of interest as a promising green and sustainable wastewater treatment method for a cleaner environment. Due to their narrow bandgaps, distinctive layered structures, plasmonic, piezoelectric and ferroelectric properties, and desirable physicochemical features, bismuth-based nanostructure photocatalysts have emerged as one of the most prominent study topics compared to the commonly used semiconductors (TiO2 and ZnO). In this review, the most recent developments in the use of photocatalysts based on bismuth (e.g., BiFeO3, Bi2MoO6, BiVO4, Bi2WO6, Bi2S3) to remove dyes and antibiotics from wastewater are thoroughly covered. The creation of Z-schemes, Schottky junctions, and heterojunctions, as well as morphological modifications, doping, and other processes are highlighted regarding the fabrication of bismuth-based photocatalysts with improved photocatalytic capabilities. A discussion of general photocatalytic mechanisms is included, along with potential antibiotic and dye degradation pathways in wastewater. Finally, areas that require additional study and attention regarding the usage of photocatalysts based on bismuth for removing pharmaceuticals and textile dyes from wastewater, particularly for real-world applications, are addressed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Turkey
| | - Faisal Suleiman Mustafa
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Turkey
| |
Collapse
|
6
|
Pattnaik A, Sahu J, Poonia AK, Ghosh P. Current perspective of nano-engineered metal oxide based photocatalysts in advanced oxidation processes for degradation of organic pollutants in wastewater. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Sukidpaneenid S, Chawengkijwanich C, Pokhum C, Isobe T, Opaprakasit P, Sreearunothai P. Multi-function adsorbent-photocatalyst MXene-TiO 2 composites for removal of enrofloxacin antibiotic from water. J Environ Sci (China) 2023; 124:414-428. [PMID: 36182149 DOI: 10.1016/j.jes.2021.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 06/16/2023]
Abstract
MXenes, a new family of two-dimensional transition metal carbides or nitrides, have attracted tremendous attention for various applications due to their unique properties such as good electrical conductivity, hydrophilicity, and ion intercalability. In this work, Ti3C2 MXene, or MX, is converted to MX-TiO2 composites using a simple and rapid microwave hydrothermal treatment in HCl/NaCl mixture solution that induces formation of fine TiO2 particles on the MX parent structure and imparts photocatalytic activity to the resulting MX-TiO2 composites. The composites were used for enrofloxacin (ENR), a frequently found contaminating antibiotic, removal from water. The relative amount of the MX and TiO2 can be controlled by controlling the hydrothermal temperature resulting in composites with tunable adsorption/photocatalytic properties. NaCl addition was found to play important role as composites synthesized without NaCl could not adsorb enrofloxacin well. Adding NaCl into the hydrothermal treatment causes sodium ions to be simultaneously intercalated into the composite structure, improving ENR adsorption greatly from 1 to 6 mg ENR/g composite. It also slows down the MX to TiO2 conversion leading to a smaller and more uniform distribution of TiO2 particles on the structure. MX-TiO2/NaCl composites, which have sodium intercalated in their structures, showed both higher ENR adsorption and photocatalytic activity than composites without NaCl despite the latter having higher TiO2 content. Adsorbed ENR on the composites can be efficiently degraded by free radicals generated from the photoexcited TiO2 particles, leading to high photocatalytic degradation efficiency. This demonstrates the synergetic effect between adsorption and photocatalytic degradation of the synthesized compounds.
Collapse
Affiliation(s)
- Siwanat Sukidpaneenid
- TAIST-Tokyo Tech Program, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Chamorn Chawengkijwanich
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chonlada Pokhum
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Toshihiro Isobe
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Pakorn Opaprakasit
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Paiboon Sreearunothai
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, Thailand.
| |
Collapse
|
8
|
Prabhakar Vattikuti SV, Zeng J, Ramaraghavulu R, Shim J, Mauger A, Julien CM. High-Throughput Strategies for the Design, Discovery, and Analysis of Bismuth-Based Photocatalysts. Int J Mol Sci 2022; 24:663. [PMID: 36614112 PMCID: PMC9820977 DOI: 10.3390/ijms24010663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Bismuth-based nanostructures (BBNs) have attracted extensive research attention due to their tremendous development in the fields of photocatalysis and electro-catalysis. BBNs are considered potential photocatalysts because of their easily tuned electronic properties by changing their chemical composition, surface morphology, crystal structure, and band energies. However, their photocatalytic performance is not satisfactory yet, which limits their use in practical applications. To date, the charge carrier behavior of surface-engineered bismuth-based nanostructured photocatalysts has been under study to harness abundant solar energy for pollutant degradation and water splitting. Therefore, in this review, photocatalytic concepts and surface engineering for improving charge transport and the separation of available photocatalysts are first introduced. Afterward, the different strategies mainly implemented for the improvement of the photocatalytic activity are considered, including different synthetic approaches, the engineering of nanostructures, the influence of phase structure, and the active species produced from heterojunctions. Photocatalytic enhancement via the surface plasmon resonance effect is also examined and the photocatalytic performance of the bismuth-based photocatalytic mechanism is elucidated and discussed in detail, considering the different semiconductor junctions. Based on recent reports, current challenges and future directions for designing and developing bismuth-based nanostructured photocatalysts for enhanced photoactivity and stability are summarized.
Collapse
Affiliation(s)
| | - Jie Zeng
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Alain Mauger
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS-UMR 7590, 4 Place Jussieu, 75252 Paris, France
| | - Christian M. Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS-UMR 7590, 4 Place Jussieu, 75252 Paris, France
| |
Collapse
|
9
|
Din STU, Xie WF, Yang W. Synthesis of Co 3O 4 Nanoparticles-Decorated Bi 12O 17Cl 2 Hierarchical Microspheres for Enhanced Photocatalytic Degradation of RhB and BPA. Int J Mol Sci 2022; 23:ijms232315028. [PMID: 36499352 PMCID: PMC9736037 DOI: 10.3390/ijms232315028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Three-dimensional (3D) hierarchical microspheres of Bi12O17Cl2 (BOC) were prepared via a facile solvothermal method using a binary solvent for the photocatalytic degradation of Rhodamine-B (RhB) and Bisphenol-A (BPA). Co3O4 nanoparticles (NPs)-decorated BOC (Co3O4/BOC) heterostructures were synthesized to further enhance their photocatalytic performance. The microstructural, morphological, and compositional characterization showed that the BOC microspheres are composed of thin (~20 nm thick) nanosheets with a 3D hierarchical morphology and a high surface area. Compared to the pure BOC photocatalyst, the 20-Co3O4/BOC heterostructure showed enhanced degradation efficiency of RhB (97.4%) and BPA (88.4%). The radical trapping experiments confirmed that superoxide (•O2-) radicals played a primary role in the photocatalytic degradation of RhB and BPA. The enhanced photocatalytic performances of the hierarchical Co3O4/BOC heterostructure are attributable to the synergetic effects of the highly specific surface area, the extension of light absorption to the more visible light region, and the suppression of photoexcited electron-hole recombination. Our developed nanocomposites are beneficial for the construction of other bismuth-based compounds and their heterostructure for use in high-performance photocatalytic applications.
Collapse
Affiliation(s)
- Syed Taj Ud Din
- Department of Physics, Dongguk University, Seoul 04620, Republic of Korea
| | - Wan-Feng Xie
- Department of Physics, Dongguk University, Seoul 04620, Republic of Korea
- School of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Woochul Yang
- Department of Physics, Dongguk University, Seoul 04620, Republic of Korea
- Correspondence: ; Tel.: +82-02-2260-3444
| |
Collapse
|
10
|
Bisht K, Kumar G, Dutta RK. Amine-Functionalized Crystalline Carbon Nanodots Decorated on Bi 2WO 6 Nanoplates as Solar Photocatalysts for Efficient Degradation of Tetracycline and Ciprofloxacin. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Krishanan Bisht
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee247667, India
| | - Gandharve Kumar
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee247667, India
| | - Raj Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee247667, India
| |
Collapse
|
11
|
Mohamed HEA, Hilal‐Alnaqbi A, Dagher S, Akhozheya B, Maaza M. Green synthesis of CdWO
4
Nanorods with Enhanced Photocatalytic Activity Utilizing Hyphaene Thebaica Fruit. ChemistrySelect 2022. [DOI: 10.1002/slct.202201442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hamza Elsayed Ahmed Mohamed
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology College of Graduate Studies University of South Africa Pretoria South Africa
- Nanosciences African Network (NANOAFNET) iThemba LABS-National Research Foundation of South Africa, SomersetWest Western Cape 7129 South Africa
| | | | - Sawsan Dagher
- Department of Electromechanical Engineering Abu Dhabi Polytechnic Abu Dhabi, UAE
| | - Boshra Akhozheya
- Department of Building & Architectural Engineering Polytechnic University of Milan Milan Italy
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology College of Graduate Studies University of South Africa Pretoria South Africa
- Nanosciences African Network (NANOAFNET) iThemba LABS-National Research Foundation of South Africa, SomersetWest Western Cape 7129 South Africa
| |
Collapse
|
12
|
Li Z, Chen S, Li Z, Sun J, Yang J, Wei J, Wang S, Song H, Hou Y. Visible light driven antibiotics degradation using S-scheme Bi 2WO 6/CoIn 2S 4 heterojunction: Mechanism, degradation pathways and toxicity assessment. CHEMOSPHERE 2022; 303:135113. [PMID: 35623437 DOI: 10.1016/j.chemosphere.2022.135113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
S-scheme heterojunction photocatalysts with strong redox ability and excellent photocatalytic activity are highly desired for photocatalytic degradation of pollutants. Herein, S-scheme Bi2WO6/CoIn2S4 heterojunctions were synthesized using hydrothermal method. The photo-induced carriers transfer mechanism of the S-scheme Bi2WO6/CoIn2S4 heterojunction was clarified by band structure analysis, ultraviolet photoelectron spectrometer (UPS), electron spin resonance (ESR) and radical trapping experiments. Significant enhance of light absortion, and more efficient carriers separation were observed from the Bi2WO6/CoIn2S4 with CoIn2S4 nanoclusters growing on the surface of petal-like Bi2WO6 nanosheets. TC degradation efficiency of 90% was achieved by Bi2WO6/CoIn2S4 (15:1) within 3 h of irradiation, and ·O2-and ·OH radicals were dominated contributors. Possible decomposition pathways of TC were proposed, and ECOSAR analysis showed that most of the intermediates exhibited lower ecotoxicity than TC. This work provides reference on the constructing ternary-metal-sulfides-based S-scheme heterojunctions for improving photocatalytic performance.
Collapse
Affiliation(s)
- Zuji Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shuo Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhihong Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jiangli Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jinhang Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jingwen Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China; Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning, 530007, China
| | - Hainong Song
- Guangxi Bossco Environmental Protection Technology Co., Ltd, 12 Kexin Road, Nanning, 530007, China
| | - Yanping Hou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Nanning, 530004, China.
| |
Collapse
|
13
|
Sin JC, Lam SM, Zeng H, Lin H, Li H, Huang L, Tham KO, Mohamed AR, Lim JW. Enhanced synchronous photocatalytic 4-chlorophenol degradation and Cr(VI) reduction by novel magnetic separable visible-light-driven Z-scheme CoFe 2O 4/P-doped BiOBr heterojunction nanocomposites. ENVIRONMENTAL RESEARCH 2022; 212:113394. [PMID: 35537501 DOI: 10.1016/j.envres.2022.113394] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The co-existence of organic contaminants and heavy metals including 4-chlorophenol (4-CP) and Cr(VI) in aquatic system have become a challenging task in the wastewater treatment. Herein, the synchronous photocatalytic decomposition of 4-CP and Cr(VI) over new Z-scheme CoFe2O4/P-BiOBr heterojunction nanocomposites were revealed. In this work, the nanocomposites were successfully developed via a surfactant-free hydrothermal method. The heterojunction interface was created by decorating magnetic CoFe2O4 nanoparticles onto P-BiOBr nanosheets. The as-fabricated CoFe2O4/P-BiOBr nanocomposites substantially improved the synchronous decomposition of 4-CP and Cr(VI) compared to the single-phase component samples under visible light irradiation. Particularly, the 30-CoFe2O4/P-BiOBr nanocomposite displayed the best photocatalytic performance, which decomposed 95.6% 4-CP and 100% Cr(VI) within 75 min. The photocatalytic improvement was assigned to the Z-scheme heterojunction assisted charge migration between CoFe2O4 and P-BiOBr, and the acceleration of charge carrier separation was validated by the findings of charge dynamics measurements. The harmful 4-CP was photodegraded into smaller organics whereas the Cr(VI) was photoreduced into Cr(III) after 30-CoFe2O4/P-BiOBr photocatalysis, and the good recyclability of fabricated nanocomposite in photocatalytic reaction also showed promising potential for practical applications in environmental remediation. Finally, the radical quenching tests confirmed that there existed the Z-scheme path of charge migration in CoFe2O4/P-BiOBr nanocomposite, which was the mechanism responsible for its high photoactivity.
Collapse
Affiliation(s)
- Jin-Chung Sin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.
| | - Sze-Mun Lam
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Kai-Onn Tham
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Abdul Rahman Mohamed
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Jun-Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
14
|
Cai H, Ma Y, Li J, Jin Y, Zhu P, Chen M. Norfloxacin Degradation by Persulfate Activated with Cu 2O@WO 3 Composites: Efficiency, Stability, Mechanism, and Degradation Pathway. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haitao Cai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Yujing Ma
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Jun Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Yang Jin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Pan Zhu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Ming Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| |
Collapse
|
15
|
Wang H, Zhang L, Chen R, Liu Super vision Q, Liu J, Yu J, Liu P, Duan J, Wang J. Surface Morphology Properties and Antifouling Activity of Bi2WO6/Boron-grafted Polyurethane Composite Coatings Realized via Multiple Synergy. J Colloid Interface Sci 2022; 626:815-823. [DOI: 10.1016/j.jcis.2022.06.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 10/31/2022]
|
16
|
Liu W, Wang Y, Qi K, Wen F, Wang J. Broad Spectral Response Z-Scheme Three-Dimensional Ordered Macroporous Carbon Quantum Dots/TiO 2/g-C 3N 4 Composite for Boosting Photocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4839-4847. [PMID: 35420818 DOI: 10.1021/acs.langmuir.1c03483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocatalytic degradation technology is one of the effective protocols to solve environmental problems. TiO2 has always been favored for its photostability and low cost. However, the insufficient photocatalytic activity of TiO2 limits its application due to the severe recombination of photogenerated electrons and holes and a narrow light response range. Therefore, 3DTCN, a TiO2/g-C3N4 composite with a three-dimensional ordered macroporous structure was prepared by a colloidal crystal template technique to form a heterojunction for inhibiting the photogenerated electron-hole recombination. On 3DTCN, carbon quantum dots (CQDs) were loaded by impregnation to obtain x % CQDs/3DTCN with a broad spectral response to light. The physical and chemical properties of samples were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution-TEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis, photoluminescence spectroscopy, and ultraviolet-visible diffuse reflectance spectroscopy. The photocatalytic activity was evaluated via degrading the rhodamine B (RhB) dye, and the degradation efficiency of 1% CQDs/3DTCN (98%) was found to be much higher than that of 3DTCN (42%) in 80 min under simulated sunlight irradiation. Furthermore, it also possessed excellent durability. Meanwhile, the sample also showed an outstanding photoelectric property. Finally, the proposed mechanism of the composites had been mainly analyzed by density functional theory calculations. This work thus provides an idea to form a 3D structure heterojunction and further improve the photocatalytic activity.
Collapse
Affiliation(s)
- Wenliang Liu
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yan Wang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Kai Qi
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fushan Wen
- College of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiqian Wang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
17
|
Irshad M, Ain QT, Zaman M, Aslam MZ, Kousar N, Asim M, Rafique M, Siraj K, Tabish AN, Usman M, Hassan Farooq MU, Assiri MA, Imran M. Photocatalysis and perovskite oxide-based materials: a remedy for a clean and sustainable future. RSC Adv 2022; 12:7009-7039. [PMID: 35424711 PMCID: PMC8982362 DOI: 10.1039/d1ra08185c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
The massive use of non-renewable energy resources by humankind to fulfill their energy demands is causing severe environmental issues. Photocatalysis is considered one of the potential solutions for a clean and sustainable future because of its cleanliness, inexhaustibility, efficiency, and cost-effectiveness. Significant efforts have been made to design highly proficient photocatalyst materials for various applications such as water pollutant degradation, water splitting, CO2 reduction, and nitrogen fixation. Perovskite photocatalyst materials are gained special attention due to their exceptional properties because of their flexibility in chemical composition, structure, bandgap, oxidation states, and valence states. The current review is focused on perovskite materials and their applications in photocatalysis. Special attention has been given to the structural, stoichiometric, and compositional flexibility of perovskite photocatalyst materials. The photocatalytic activity of perovskite materials in different photocatalysis applications is also discussed. Various mechanisms involved in photocatalysis application from wastewater treatment to hydrogen production are also provided. The key objective of this review is to encapsulate the role of perovskite materials in photocatalysis along with their fundamental properties to provide valuable insight for addressing future environmental challenges.
Collapse
Affiliation(s)
- Muneeb Irshad
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Quar Tul Ain
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Muhammad Zaman
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | | | - Naila Kousar
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Muhammad Asim
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | | | - Khurram Siraj
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Asif Nadeem Tabish
- Department of Chemical Engineering, University of Engineering and Technology, New Campus Lahore Pakistan
| | - Muhammad Usman
- Department of Mechanical Engineering, University of Engineering and Technology Lahore 54890 Pakistan
| | - Masood Ul Hassan Farooq
- Department of Basic Sciences, University of Engineering and Technology, New Campus Lahore Pakistan
| | - Mohammed Ali Assiri
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University P. O. Box 9004 Abha 61413 Saudia Arabia
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University P. O. Box 9004 Abha 61413 Saudia Arabia
| |
Collapse
|
18
|
Wang H, Wang M, Chi H, Zhang S, Wang Y, Wu D, Wei Q. Sandwich-type photoelectrochemical immunosensor for procalcitonin detection based on Mn 2+ doped CdS sensitized Bi 2WO 6 and signal amplification of NaYF 4:Yb, Tm upconversion nanomaterial. Anal Chim Acta 2021; 1188:339190. [PMID: 34794572 DOI: 10.1016/j.aca.2021.339190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/01/2022]
Abstract
In this paper, we constructed a sandwich-type photoelectrochemical (PEC) immunosensor for the quantitative detection of procalcitonin (PCT) based on the sensitization of Mn2+ doped CdS (CdS:Mn) nanocomposites to Bi2WO6 and the signal amplification effect of an upconversion material NaYF4:Yb,Tm. Bi2WO6 was synthesized with a three-dimensional flowered structure. CdS:Mn reduced the recombination of photogenerated carriers, and significantly improved photocurrent response. Lanthanide-doped upconversion nanomaterials were used as the label of secondary antibody. NaYF4:Yb,Tm have two functions, not only connected with the secondary antibody, but also can further amplify the photocurrent response. The proposed immunosensor for detecting PCT provided a desired linear range of 0.5 pg mL-1-100 ng mL-1 and a detection limit of 0.13 pg mL-1 under optimal experimental conditions. Besides, the PEC immunosensor demonstrated good reproducibility, specificity and stability. The results of determination of PCT in real human serum samples were satisfactory. Thus, the immunosensor may be applied in the clinical diagnosis of PCT and other biomarkers.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Meng Wang
- Hand and Foot Surgery Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Huitong Chi
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shitao Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
19
|
Abdel Maksoud M, Sami N, Hassan H, Awed A. Sorption characteristics of bismuth tungstate nanostructure for removal of some radionuclides from aqueous solutions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Leandro MKDNS, Moura JVB, Freire PDTC, Vega ML, Lima CDL, Hidalgo ÁA, de Araújo ACJ, Freitas PR, Paulo CLR, de Sousa AK, Rocha JE, Leandro LMG, da Silva ROM, Cruz-Martins N, Coutinho HDM. Characterization and Evaluation of Layered Bi 2WO 6 Nanosheets as a New Antibacterial Agent. Antibiotics (Basel) 2021; 10:1068. [PMID: 34572651 PMCID: PMC8468918 DOI: 10.3390/antibiotics10091068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Pathogenic microorganisms are causing increasing cases of mortality and morbidity, along with alarming rates of ineffectiveness as a result of acquired antimicrobial resistance. Bi2WO6 showed good potential to be used as an antibacterial substance when exposed to visible light. This study demonstrates for the first time the dimension-dependent antibacterial activity of layered Bi2WO6 nanosheets. Materials and methods: The synthesized layered Bi2WO6 nanosheets were prepared by the hydrothermal method and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman and Fourier transform infrared spectroscopy (FTIR). Antibacterial and antibiotic-modulation activities were performed in triplicate by the microdilution method associated with visible light irradiation (LEDs). Results: Bi2WO6 nanosheets were effective against all types of bacteria tested, with MIC values of 256 μg/mL against Escherichia coli standard and resistant strains, and 256 μg/mL and 32 μg/mL against Staphylococcus aureus standard and resistant strains, respectively. Two-dimensional (2D) Bi2WO6 nanosheets showed antibacterial efficiency against both strains studied without the presence of light. Conclusions: Layered Bi2WO6 nanosheets revealed dimension-dependent antibacterial activity of the Bi2WO6 system.
Collapse
Affiliation(s)
- Maria Karollyna do Nascimento Silva Leandro
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (M.K.d.N.S.L.); (A.C.J.d.A.); (P.R.F.); (C.L.R.P.); (A.K.d.S.); (J.E.R.)
- Department of Biomedicine, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-005, Brazil; (L.M.G.L.); (R.O.M.d.S.)
| | - João Victor Barbosa Moura
- Department of Physics, Science and Technology Center, Federal University of Maranhão, São Luís 65085-580, Brazil;
| | | | - Maria Leticia Vega
- Department of Physics, Campus Ministro Petrônio Portella, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.); (C.d.L.L.); (Á.A.H.)
| | - Cleânio da Luz Lima
- Department of Physics, Campus Ministro Petrônio Portella, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.); (C.d.L.L.); (Á.A.H.)
| | - Ángel Alberto Hidalgo
- Department of Physics, Campus Ministro Petrônio Portella, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.); (C.d.L.L.); (Á.A.H.)
| | - Ana Carolina Justino de Araújo
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (M.K.d.N.S.L.); (A.C.J.d.A.); (P.R.F.); (C.L.R.P.); (A.K.d.S.); (J.E.R.)
| | - Priscilla Ramos Freitas
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (M.K.d.N.S.L.); (A.C.J.d.A.); (P.R.F.); (C.L.R.P.); (A.K.d.S.); (J.E.R.)
| | - Cicera Laura Roque Paulo
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (M.K.d.N.S.L.); (A.C.J.d.A.); (P.R.F.); (C.L.R.P.); (A.K.d.S.); (J.E.R.)
| | - Amanda Karine de Sousa
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (M.K.d.N.S.L.); (A.C.J.d.A.); (P.R.F.); (C.L.R.P.); (A.K.d.S.); (J.E.R.)
- Department of Biomedicine, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-005, Brazil; (L.M.G.L.); (R.O.M.d.S.)
| | - Janaina Esmeraldo Rocha
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (M.K.d.N.S.L.); (A.C.J.d.A.); (P.R.F.); (C.L.R.P.); (A.K.d.S.); (J.E.R.)
| | - Lívia Maria Garcia Leandro
- Department of Biomedicine, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-005, Brazil; (L.M.G.L.); (R.O.M.d.S.)
| | - Rakel Olinda Macedo da Silva
- Department of Biomedicine, University Center Dr. Leão Sampaio, Juazeiro do Norte 63040-005, Brazil; (L.M.G.L.); (R.O.M.d.S.)
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal
- Institute for research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen, 4200-319 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (M.K.d.N.S.L.); (A.C.J.d.A.); (P.R.F.); (C.L.R.P.); (A.K.d.S.); (J.E.R.)
| |
Collapse
|
21
|
Bunluesak T, Phuruangrat A, Thongtem S, Thongtem T. Pd nanoparticle-modified Bi2WO6 nanoplates used for visible-light-driven photocatalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04511-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Bunluesak T, Phuruangrat A, Thongtem S, Thongtem T. Visible-light-driven heterostructure Ag/Bi2WO6 nanocomposites synthesized by photodeposition method and used for photodegradation of rhodamine B dye. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04456-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Bunluesak T, Phuruangrat A, Thongtem S, Thongtem T. Photodeposition of AgPd nanoparticles on Bi2WO6 nanoplates for the enhanced photodegradation of rhodamine B. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Rattan Paul D, Nehra SP. Graphitic carbon nitride: a sustainable photocatalyst for organic pollutant degradation and antibacterial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3888-3896. [PMID: 32519096 DOI: 10.1007/s11356-020-09432-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Recently, graphitic carbon nitride (GCN) has been found to be of great interest in various sustainable applications. In this study, a simple preparation method using urea was utilized to synthesize GCN. In order to understand various morphological, structural, and optical aspects of the as-prepared sample, GCN was characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, Brunauere-Emmette-Teller (BET), scanning electron microscopy (SEM), and diffused reflectance spectra (DRS) analysis. The visible-light-driven photocatalytic activity of prepared GCN was analyzed for various cationic dyes (Crystal violet, rose bengal, rhodamine B, auramine O, methylene blue) and anionic dyes (phenol red, xylenol orange, cresol red, methyl orange). The calculated efficiencies of degradation and values of apparent rate constant for all dye samples suggested that cationic dyes are more actively degraded using GCN than anionic dyes. In addition, GCN was further analyzed for its splendid antibacterial activity against pathogenic bacteria (Klebsiella pneumonia and Escherichia coli). The synthesized photocatalyst holds a bright scope for the efficient remediation of organic pollutants and bacterial disinfection in wastewater. Graphical abstract.
Collapse
Affiliation(s)
- Devina Rattan Paul
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| | - Satya Pal Nehra
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| |
Collapse
|
25
|
Sin JC, Lam SM, Zeng H, Lin H, Li H, Kugan Kumaresan A, Mohamed AR, Lim JW. Z-scheme heterojunction nanocomposite fabricated by decorating magnetic MnFe2O4 nanoparticles on BiOBr nanosheets for enhanced visible light photocatalytic degradation of 2,4-dichlorophenoxyacetic acid and Rhodamine B. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117186] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Enhanced visible-light-driven Pd/Bi2WO6 heterojunctions used for photodegradation of rhodamine B. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02095-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Layered double hydroxides as heterostructure LDH@Bi2WO6 oriented toward visible-light-driven applications: synthesis, characterization, and its photocatalytic properties. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01830-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
Zhu F, Lv Y, Li J, Ding J, Xia X, Wei L, Jiang J, Zhang G, Zhao Q. Enhanced visible light photocatalytic performance with metal-doped Bi 2WO 6 for typical fluoroquinolones degradation: Efficiencies, pathways and mechanisms. CHEMOSPHERE 2020; 252:126577. [PMID: 32229358 DOI: 10.1016/j.chemosphere.2020.126577] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
To clarify the photocatalytic mechanisms of metal-doped Bi2WO6 for fluoroquinolones (FQs) degradation, the effects of the chemical characteristics of four metals, molar ratios of the doped metals, morphology of the catalysts, and electrostatic interactions on the degradation of norfloxacin (NOR) and ciprofloxacin (CIP) were evaluated under visible light irradiation. Experimental results implied that the doping of Mg2+, Fe3+, Zn2+ and Cu2+ dramatically improved the photodegradation of Bi2WO6 for NOR and CIP removal, in which 1% Mg/Bi2WO6 exhibited the highest degradation rate of 89.44% for NOR and 99.11% for CIP. Photodegradation of NOR fitted to the pseudo-first-order model (k1 value of 0.02576 min-1), whereas that of CIP be better described by pseudo-second-order model. Moreover, the two FQs photodegradation pathways and the possible intermediates were summarized. The mechanisms of the metal dopants for the enhancement of photocatalytic activity were attributed to its enhanced specific surface area, electrostatic absorption, as well as the significant photogeneration of ·O2- and h+. Also, the photocatalyst exhibited a high stability with 78.5% photocatalytic performance after four cycles of repeated usage.
Collapse
Affiliation(s)
- Fengyi Zhu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yunzhe Lv
- Xiongan Planning & Design Institute, Xiongan, 071000, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
29
|
Koutavarapu R, Babu B, Reddy CV, Reddy IN, Reddy KR, Rao MC, Aminabhavi TM, Cho M, Kim D, Shim J. ZnO nanosheets-decorated Bi 2WO 6 nanolayers as efficient photocatalysts for the removal of toxic environmental pollutants and photoelectrochemical solar water oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110504. [PMID: 32275239 DOI: 10.1016/j.jenvman.2020.110504] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Herein we report the fabrication of novel Bi2WO6/ZnO heterostructured hybrids for organic contaminant degradation from wastewater and photoelectrochemical (PEC) water splitting upon solar illumination. The Bi2WO6/ZnO photocatalysts were synthesized using a simple and eco-friendly hydrothermal process without the support of any surfactants. From the photocatalytic experiments, heterostructured Bi2WO6/ZnO nanohybrid catalysts exhibited considerably better photocatalytic performance for rhodamine B (RhB) degradation under solar illumination. The BWZ-20 nanocomposite demonstrated superior photodegradation of RhB dye up to 99% in about 50 min. Furthermore, BWZ-20 photoelectrode showeda lower charge-transfer resistance than other samples prepared, suggesting its suitability for PEC water splitting. The photocurrent densities of Bi2WO6/ZnO photoelectrodes were evaluated under the solar irradiation. The BWZ-20 photoelectrode exhibited a significant photocurrent density (0.45 × 10-3A/cm2) at +0.3 V vs. Ag/AgCl, which was~1036-times higher than that of pure Bi2WO6, and ~4.8-times greater than the pure ZnO. Such improved photocatalytic and PEC activities are mainly attributed to the formation of an interface between ZnO and Bi2WO6, superior light absorption ability, low charge-transfer resistance, remarkable production of charge carriers, easy migration of charges, and suppression of the recombination of photogenerated charge carriers.
Collapse
Affiliation(s)
| | - Bathula Babu
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Ch Venkata Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | - I Neelakanta Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - M C Rao
- Department of Physics, Andhra Loyola College, Vijayawada, 520 008, Andhra Pradesh, India
| | - Tejraj M Aminabhavi
- Department of Pharmaceutics, SETs' College of Pharmacy, Dharwad, 580 007, Karnataka, India.
| | - Migyung Cho
- School of Information Engineering, Tongmyong University, Busan, 608-711, Republic of Korea
| | - Dongseob Kim
- Aircraft System Technology Group, Korea Institute of Industrial Technology, Gyeongbuk-do, 38822, Republic of Korea
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|