1
|
Yakamercan E, Aygün A, Simsek H. Antibiotic ciprofloxacin removal from aqueous solutions by electrochemically activated persulfate process: Optimization, degradation pathways, and toxicology assessment. J Environ Sci (China) 2024; 143:85-98. [PMID: 38644026 DOI: 10.1016/j.jes.2023.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 04/23/2024]
Abstract
Ciprofloxacin (CIP) is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections. When CIP is discharged into the sewage system, it cannot be removed by a conventional wastewater treatment plant because of its recalcitrant characteristics. In this study, boron-doped diamond anode and persulfate were used to degrade CIP in an aquatic solution by creating an electrochemically activated persulfate (EAP) process. Iron was added to the system as a coactivator and the process was called EAP+Fe. The effects of independent variables, including pH, Fe2+, persulfate concentration, and electrolysis time on the system were optimized using the response surface methodology. The results showed that the EAP+Fe process removed 94% of CIP under the following optimum conditions: A pH of 3, persulfate/Fe2+ concentration of 0.4 mmol/L, initial CIP concentration 30 mg/L, and electrolysis time of 12.64 min. CIP removal efficiency was increased from 65.10% to 94.35% by adding Fe2+ as a transition metal. CIP degradation products, 7 pathways, and 78 intermediates of CIP were studied, and three of those intermediates (m/z 298, 498, and 505) were reported. The toxicological analysis based on toxicity estimation software results indicated that some degradation products of CIP were toxic to targeted animals, including fathead minnow, Daphnia magna, Tetrahymena pyriformis, and rats. The optimum operation costs were similar in EAP and EAP+Fe processes, approximately 0.54 €/m3.
Collapse
Affiliation(s)
- Elif Yakamercan
- Environmental Engineering Department, Bursa Technical University, Bursa, Turkey
| | - Ahmet Aygün
- Environmental Engineering Department, Bursa Technical University, Bursa, Turkey.
| | - Halis Simsek
- Agricultural and Biological Engineering Department, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Peralta-Reyes E, Regalado-Méndez A, Chimeo-Sánchez AA, Robles-Gómez EE, Natividad R. Electrochemical degradation of ciprofloxacin through a DoE-driven optimization in a filter-press type reactor under batch recirculation mode. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1294-1316. [PMID: 37771228 PMCID: wst_2023_279 DOI: 10.2166/wst.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
In this work, the electrochemical degradation of ciprofloxacin (CIP) was studied in a filter-press-type reactor without division in a batch recirculation manner. For this purpose, two boron-doped diamond (BDD) electrodes (as cathode and anode) were employed. Also, the optimal operating conditions were found by response surface methodology (RSM) following a central composite face-centered design with three factors, namely current intensity (i), initial pH (pH0), and initial concentration ([C]0) with two responses, namely remotion efficiency (η) and operating cost. Optimal operating conditions were i = 3 A, pH0 = 8.49, and [C]0 = 33.26 mg L-1 within an electrolysis time of 5 h, leading to a maximum removal efficiency of 93.49% with a minimum operating cost of $0.013 USD L-1. Also, a TOC analysis shows an 80% of mineralization extent with an energy consumption of 5.11 kWh g-1 TOC. Furthermore, the CIP degradation progress was followed by mass spectrometry (LC/MS) and a degradation pathway is proposed.
Collapse
Affiliation(s)
- Ever Peralta-Reyes
- Investigation Laboratories, Universidad del Mar, Puerto Ángel, Oaxaca 70902, México E-mail:
| | | | | | - Edson E Robles-Gómez
- Investigation Laboratories, Universidad del Mar, Puerto Ángel, Oaxaca 70902, México
| | - Reyna Natividad
- Chemical Engineering Laboratory, Centro Conjunto de Investigación en Química Sustentable, UAEMex-UNAM, Universidad Autónoma del Estado de México, Estado de México, Toluca 50200, México
| |
Collapse
|
3
|
Kumar A, Barbhuiya NH, Nair AM, Jashrapuria K, Dixit N, Singh SP. In-situ fabrication of titanium suboxide-laser induced graphene composites: Removal of organic pollutants and MS2 Bacteriophage. CHEMOSPHERE 2023:138988. [PMID: 37247678 DOI: 10.1016/j.chemosphere.2023.138988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/28/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Titanium suboxides (TSO) are identified as a series of compounds showing excellent electro- and photochemical properties. TSO composites with carbon-based materials such as graphene have further improved water splitting and pollutant removal performance. However, their expensive and multi-step synthesis limits their wide-scale use. Furthermore, recently discovered laser-induced graphene (LIG) is a single-step and low-cost fabrication of graphene-based composites. Moreover, LIG's highly electrically conductive surface aids in tremendous environmental applications, including bacterial inactivation, anti-biofouling, and pollutant sensing. Here, we demonstrate the single-step in-situ fabrication of TSO-LIG composite by directly scribing the TiO2 mixed poly(ether) sulfone sheets using a CO2 infrared laser. In contrast, earlier composites were derived from either commercial-grade TSO or synthesized TSO with graphene. The characteristic Ti3+ peaks in XPS confirmed the conversion of TiO2 into its sub-stoichiometric form, enhancing the electro-catalytical properties of the LIG-TiOx composite surface. Electrochemical characterization, including impedance spectroscopy, validated the surface's enhanced electrochemical activity and electrode stability. Furthermore, the LIG-TiOx composite surfaces were tested for anti-biofouling action and electrochemical application as electrodes and filters. The composite electrodes exhibit enhanced degradation performance for removing emerging pollutant antibiotics ciprofloxacin and methylene blue due to the in-situ hydroxyl radical generation. Additionally, the LIG-TiOx conductive filters showed the complete 6-log killing of mixed bacterial culture and MS2 phage virus in flow-through filtration mode at 2.5 V, which is ∼2.5-log more killing compared to non-composited LIG filers at 500 Lm-2h-1. Nevertheless, these cost-effective LIG-TiOx composites have excellent electrical properties and can be effectively utilized for energy and environmental applications.
Collapse
Affiliation(s)
- Ashish Kumar
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Najmul H Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Akhila M Nair
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Kritika Jashrapuria
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Nandini Dixit
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India; Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
4
|
Fu X, Han Y, Xu H, Su Z, Liu L. Electrochemical study of a novel high-efficiency PbO 2 anode based on a cerium-graphene oxide co-doping strategy: Electrodeposition mechanism, parameter optimization, and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126890. [PMID: 34418839 DOI: 10.1016/j.jhazmat.2021.126890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
A novel and efficient Ti/SnO2-Sb/PbO2-GO-Ce electrode was successfully fabricated based on the co-deposition of Ce ions and graphene oxide (GO) into β-PbO2 crystals and used as an anode for electrocatalytic oxidation of phenol. The electrodeposition mechanism, parameter optimization, mechanism analysis, and potential degradation pathways were discussed in depth. The co-doping of GO and Ce resulted in the high directional specificity of β(301), orderly and dense grain arrangement of PbO2 crystals. At the same time, the oxygen evolution potential, •OH generation capacity and lifetime were also improved. The effects of experimental parameters on phenol removal efficiency were evaluated, including the applied current density, electrode gap, supporting electrolyte, initial NaCl concentration, initial pH, and initial phenol concentration. Under the optimal conditions, the removal efficiency of phenol can reach 375.6 g m-2 h-1 for 20 min electrolysis, which is about 1.2 times that of the pure PbO2 electrode. The active oxygen species (•OH, ClO- and HClO) were important attributes to the degradation of phenol. Additionally, a potential degradation pathway for phenol was proposed. After 10 successive recycles, there was no significant difference of the electro-generated •OH, cell voltage and phenol removal rate, which confirms the stability and admirable reusability of Ti/SnO2-Sb/PbO2-GO-Ce electrode.
Collapse
Affiliation(s)
- Xiaolu Fu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yanhe Han
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Han Xu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zhimin Su
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Lina Liu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
5
|
Zhang J, Zhou Y, Yao B, Yang J, Zhi D. Current progress in electrochemical anodic-oxidation of pharmaceuticals: Mechanisms, influencing factors, and new technique. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126313. [PMID: 34329033 DOI: 10.1016/j.jhazmat.2021.126313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Various pharmaceuticals have been detected in natural water and wastewater bodies, causing threats to water ecosystem and human health. Although electrochemical anodic-oxidation (EAO) has been shown to be efficient for pharmaceuticals degradation from aqueous solution, it still has a distinct need to apply EAO technology for pharmaceuticals removal rationally. This review provides the most recent progress on the mechanisms, influencing factors, and new technique of EAO for pharmaceuticals degradation. The mechanism and superiority of EAO were analyzed. Major influencing factors (e.g., electrode materials, electrochemical reactor, applied current density, anode-cathode distance, electrolyte type and concentration, initial solution pH value, and initial pharmaceuticals concentration) were discussed on the removal of pharmaceuticals. The latest development of reactive electrochemical membranes (REM) was regarded as an emerging EAO technique, and it was also highlighted. This work revealed that the EAO of pharmaceuticals has extraordinary application prospects in the field of water and wastewater treatment.
Collapse
Affiliation(s)
- Jia Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Dan Zhi
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
6
|
Yang H, Zhou Y, Chen K, Yu X, Sun F, Wang M, Cheng Z, Zhang J, Niu Q. Effects of PbO2/Pb3O4 ratio alteration for enhanced electrochemical advanced oxidation performance. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Recent Trends in Pharmaceuticals Removal from Water Using Electrochemical Oxidation Processes. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, the research on the environmental applications of electrochemistry to remove recalcitrant and priority pollutants and, in particular, drugs from the aqueous phase has increased dramatically. This literature review summarizes the applications of electrochemical oxidation in recent years to decompose pharmaceuticals that are often detected in environmental samples such as carbamazapine, sulfamethoxazole, tetracycline, diclofenac, ibuprofen, ceftazidime, ciprofloxacin, etc. Similar to most physicochemical processes, efficiency depends on many operating parameters, while the combination with either biological or other physicochemical methods seems particularly attractive. In addition, various strategies such as using three-dimensional electrodes or the electrosynthesis of hydrogen peroxide have been proposed to overcome the disadvantages of electrochemical oxidation. Finally, some guidelines are proposed for future research into the applications of environmental electrochemistry for the degradation of xenobiotic compounds and micropollutants from environmental matrices. The main goal of the present review paper is to facilitate future researchers to design their experiments concerning the electrochemical oxidation processes for the degradation of micropollutants/emerging contaminants, especially, some specific drugs considering, also, the existing limitations of each process.
Collapse
|
8
|
Gu H, Xie W, Du A, Pan D, Guo Z. Overview of electrocatalytic treatment of antibiotic pollutants in wastewater. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1960009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hongbo Gu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Wenhao Xie
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Ai Du
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Duo Pan
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
- Integrated Composites Lab (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Zhanhu Guo
- Integrated Composites Lab (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
9
|
Wang Y, He L, Dang G, Li H, Li X. Preparation of Fe-MIL(100)-encapsulated magnetic g-C 3N 4 for adsorption of PPCPs from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39769-39786. [PMID: 33761079 DOI: 10.1007/s11356-021-13550-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
In the present work, the Fe-MIL(100) was encapsulated on the outer surface of magnetic g-C3N4 through a simple method to synthesize a novel adsorbent. The as-prepared g-C3N4/MnFe2O4/Fe-MIL(100) was characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), BET specific surface area (BET), vibrating sample magnetometry (VSM), and plasma emission spectrometry (PES). The g-C3N4/MnFe2O4/Fe-MIL(100) possessed rough surface, large surface area (303.68 m2/g), mesoporous structure and magnetic properties, which exhibited excellent adsorption performance for ciprofloxacin (CIP), oxytetracycline (OTC) and indomethacin (IDM) with the maximum adsorption capacities reaching up to 45.51, 64.34 and 103.91 mg/g, respectively. The adsorption processes of all three PPCPs could be described by different kinds of isotherms and kinetic models. Additionally, the adsorption capacity of the resulting adsorbent could maintain 73.43% of the first adsorption capacity even after ten cycles. Finally, the possible adsorption mechanisms of g-C3N4/MnFe2O4/Fe-MIL(100) for CIP/OTC/IDM were proposed. Thus, g-C3N4/MnFe2O4/Fe-MIL(100) possessed excellent features of high adsorption capacity, fast removal rate, easy synthesis, salt resistance and magnetic separation, which showed great potential application to be used as an effective adsorbent for adsorptive removal of PPCPs in wastewater.
Collapse
Affiliation(s)
- Yuting Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Liyan He
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Guoyan Dang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Xiaoli Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
10
|
Jiang Y, Zhao H, Liang J, Yue L, Li T, Luo Y, Liu Q, Lu S, Asiri AM, Gong Z, Sun X. Anodic oxidation for the degradation of organic pollutants: Anode materials, operating conditions and mechanisms. A mini review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106912] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|