1
|
Al-Nasser S, Abdulla MH, Alhassan N, Vaali-Mohammed MA, Al-Omar S, Hamdi N, Elnakady Y, Matou-Nasri S, Mansour L. A Benzimidazole-Based N-Heterocyclic Carbene Derivative Exhibits Potent Antiproliferative and Apoptotic Effects against Colorectal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1379. [PMID: 39336420 PMCID: PMC11433580 DOI: 10.3390/medicina60091379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Colorectal cancer (CRC) remains a major global health issue. Although chemotherapy is the first-line treatment, its effectiveness is limited due to drug resistance developed in CRC. To overcome resistance and improve the prognosis of CRC patients, investigating new therapeutic approaches is necessary. Materials and Methods: Using human colorectal adenocarcinoma (HT29) and metastatic CRC (SW620) cell lines, the potential anticancer properties of a newly synthesized compound 1-(Isobutyl)-3-(4-methylbenzyl) benzimidazolium chloride (IMBZC) were evaluated by performing MTT cytotoxicity, cell migration, and colony formation assays, as well as by monitoring apoptosis-related protein and gene expression using Western blot and reverse transcription-quantitative polymerase chain reaction technologies. Results: Tested at various concentrations, the half-maximal inhibitory concentrations (IC50) of IMBZC on HT29 and SW620 cell growth were determined to be 22.13 µM (6.97 μg/mL) and 15.53 µM (4.89 μg/mL), respectively. IMBZC did not alter the cell growth of normal HEK293 cell lines. In addition, IMBZC inhibited cell migration and significantly decreased colony formation, suggesting its promising role in suppressing cancer metastasis. Mechanistic analyses revealed that IMBZC treatment increased the expression of pro-apoptotic proteins p53 and Bax, while decreasing the expression of anti-apoptotic proteins Bcl-2 and Bcl-xL, thus indicating the induction of apoptosis in IMBZC-treated CRC cells, compared to untreated cells. Additionally, the addition of IMBZC to conventional chemotherapeutic drugs (i.e., 5-fluorouracil, irinotecan, and oxaliplatin) resulted in an increase in the cytotoxic potential of the drugs. Conclusions: This study suggests that IMBZC has substantial anticancer effects against CRC cells through its ability to induce apoptosis, inhibit cancer cell migration and colony formation, and enhance the cytotoxic effects of conventional chemotherapeutic drugs. These findings indicate that IMBZC could be a promising chemotherapeutic drug for the treatment of CRC. Further research should be conducted using in vivo models to confirm the anti-CRC activities of IMBZC.
Collapse
Affiliation(s)
- Sarah Al-Nasser
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Noura Alhassan
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Mansoor-Ali Vaali-Mohammed
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Suliman Al-Omar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif 2050, Tunisia
| | - Yasser Elnakady
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Žužek MC. Advances in Cholinesterase Inhibitor Research-An Overview of Preclinical Studies of Selected Organoruthenium(II) Complexes. Int J Mol Sci 2024; 25:9049. [PMID: 39201735 PMCID: PMC11354293 DOI: 10.3390/ijms25169049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Cholinesterase (ChE) inhibitors are crucial therapeutic agents for the symptomatic treatment of certain chronic neurodegenerative diseases linked to functional disorders of the cholinergic system. Significant research efforts have been made to develop novel derivatives of classical ChE inhibitors and ChE inhibitors with novel scaffolds. Over the past decade, ruthenium complexes have emerged as promising novel therapeutic alternatives for the treatment of neurodegenerative diseases. Our research group has investigated a number of newly synthesized organoruthenium(II) complexes for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Three complexes (C1a, C1-C, and C1) inhibit ChE in a pharmacologically relevant range. C1a reversibly inhibits AChE and BChE without undesirable peripheral effects, making it a promising candidate for the treatment of Alzheimer's disease. C1-Cl complex reversibly and competitively inhibits ChEs, particularly AChE. It inhibits nerve-evoked skeletal muscle twitch and tetanic contraction in a concentration-dependent manner with no effect on directly elicited twitch and tetanic contraction and is promising for further preclinical studies as a competitive neuromuscular blocking agent. C1 is a selective, competitive, and reversible inhibitor of BChE that inhibits horse serum BChE (hsBChE) without significant effect on the peripheral neuromuscular system and is a highly species-specific inhibitor of hsBChE that could serve as a species-specific drug target. This research contributes to the expanding knowledge of ChE inhibitors based on ruthenium complexes and highlights their potential as promising therapeutic candidates for chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Monika C Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Yang FF, Zhao TT, Milaneh S, Zhang C, Xiang DJ, Wang WL. Small molecule targeted therapies for endometrial cancer: progress, challenges, and opportunities. RSC Med Chem 2024; 15:1828-1848. [PMID: 38911148 PMCID: PMC11187550 DOI: 10.1039/d4md00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/10/2024] [Indexed: 06/25/2024] Open
Abstract
Endometrial cancer (EC) is a common malignancy among women worldwide, and its recurrence makes it a common cause of cancer-related death. Surgery and external radiation, chemotherapy, or a combination of strategies are the cornerstone of therapy for EC patients. However, adjuvant treatment strategies face certain drawbacks, such as resistance to chemotherapeutic drugs; therefore, it is imperative to explore innovative therapeutic strategies to improve the prognosis of EC. With the development of pathology and pathophysiology, several biological targets associated with EC have been identified, including PI3K/Akt/mTOR, PARP, GSK-3β, STAT-3, and VEGF. In this review, we summarize the progress of small molecule targeted therapies in terms of both basic research and clinical trials and provide cases of small molecules combined with fluorescence properties in the clinical applications of integrated diagnosis and treatment. We hope that this review will facilitate the further understanding of the regulatory mechanism governing the dysregulation of oncogenic signaling in EC and provide insights into the possible future directions of targeted therapeutic regimens for EC treatment by developing new agents with fluorescence properties for the clinical applications of integrated diagnosis and treatment.
Collapse
Affiliation(s)
- Fei-Fei Yang
- Yixing People's Hospital Yixing Jiangsu 214200 China
| | - Tian-Tian Zhao
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Slieman Milaneh
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
- Department of Pharmaceutical and Chemical Industries, Higher Institute of Applied Science and Technology Damascus Syria
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Da-Jun Xiang
- Xishan People's Hospital of Wuxi City Wuxi Jiangsu 214105 China
| | - Wen-Long Wang
- Yixing People's Hospital Yixing Jiangsu 214200 China
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| |
Collapse
|
4
|
Bensalah D, Mansour L, Sauthier M, Gurbuz N, Özdemir I, Beji L, Gatri R, Hamdi N. Plausible PEPPSI catalysts for direct C-H functionalization of five-membered heterocyclic bioactive motifs: synthesis, spectral, X-ray crystallographic characterizations and catalytic activity. RSC Adv 2023; 13:31386-31410. [PMID: 37941793 PMCID: PMC10628855 DOI: 10.1039/d3ra06334h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/08/2023] [Indexed: 11/10/2023] Open
Abstract
In this study, a series of benzimidazolium salts were synthesized as asymmetric N-heterocyclic carbene (NHC) precursors. Nine novel palladium complexes with the general formula [PdX2(NHC)(pyridine)] were synthesized using benzimidazolium salts in the PEPPSI (Pyridine Enhanced Precatalyst Preparation, Stabilization and Initiation) theme. All synthesized Pd(ii) complexes are stable. The synthesized compounds were thoroughly characterized by respective spectroscopic techniques, such as 1HNMR, 13C NMR, FTIR spectroscopy, X-ray crystallography and elemental analysis. The geometric structure of the palladium N-heterocyclic carbene has been optimized in the framework of density functional theory (DFT) using the B3LYP-D3 dispersion functional with LANL2DZ as a basis set. The on/off mechanism of pyridine assisted Pd-NHC complexes made them the best C-H functionalized catalysts for regioselective C-5 arylated products. Five membered heterocyclic compounds such as 2-acetyl furan, furfuryl acetate 2-acetylthiophene and N-methylpyrrole-2-carboxaldehyde were treated with numerous aryl bromides and arylchlorides under optimal catalytic reaction conditions. Interestingly, all the prepared catalysts possessed essential structural features that facilitated the formation of desired coupling products in quantitative yield with excellent selectivity. The arylation reaction of bromoacetophenone was highly catalytically active with only 1 mol% catalyst loading at 150 °C for 2 hours. To check the efficiency of the synthesized complexes, three different five member heterocyclic substrates (2-acetylfuran, 2-acetylthiophen, 2-propylthaizole) were tested with a number of aryl bromides bearing both electron-donating and electron-withdrawing groups on para position. The data in Tables 2-4. Indicated that electron-donating groups on the para position of aryl halide decreased the catalytic conversion while electron-withdrawing groups increased the catalytic conversion this was due to the high nucleophilicity of the electron-donating substituents.
Collapse
Affiliation(s)
- Donia Bensalah
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage Hammam-Lif Tunisia +96 6556394839
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mathieu Sauthier
- Ecole Nationale Superieure de Chimie de Lille, Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, USTL BP 90108, Villeneuve d'Ascq 59652 France
| | - Nevin Gurbuz
- Department of Chemistry, Faculty of Science and Art, İnönü University Malatya 44280 Turkey
- İnönü University, Catalysis Research and Application Center Malatya 44280 Turkey
| | - Ismail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University Malatya 44280 Turkey
- İnönü University, Catalysis Research and Application Center Malatya 44280 Turkey
| | - Lotfi Beji
- Department of Physics, College of Sciences and Arts at Arras, Qassim University Saudi Arabia
| | - Rafik Gatri
- Laboratoire de Synthèse Organique Sélective et Hétérocyclique Évaluation Biologique LR17ES01 Faculté des Sciences de Tunis Campus Universitaire, Université de Tunis El Manar 1092 Tunis Tunisia
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage Hammam-Lif Tunisia +96 6556394839
| |
Collapse
|
5
|
Lenis Rojas OA, Cordeiro S, Baptista PV, Fernandes AR. Half-sandwich Ru(II) N-heterocyclic carbene complexes in anticancer drug design. J Inorg Biochem 2023; 245:112255. [PMID: 37196411 DOI: 10.1016/j.jinorgbio.2023.112255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
The ruthenium arene fragment is a rich source for the design of anticancer drugs; in this design, the co-ligand is a critical factor for obtaining effective anticancer complexes. In comparison with other types of ligands, N-heterocyclic carbenes (NHCs) have been less explored, despite the versatility in structural modifications and the marked stabilization of metal ions, being these characteristics important for the design of metal drugs. However, notable advances have been made in the development of NHC Ruthenium arene as anticancer agents. These advances include high antitumor activities, proven both in in vitro and in in vivo models and, in some cases, with marked selectivity against tumorigenic cells. The versatility of the structure has played a fundamental role, since they have allowed a selective interaction with their molecular targets through, for example, bio-conjugation with known anticancer molecules. For this reason, the structure-activity relationship of the imidazole, benzimidazole, and abnormal NHC ruthenium (II) η6-arene complexes have been studied. Taking into account this study, several synthetic aspects are provided to contribute to the next generations of this kind of complexes. Moreover, in recent years nanotechnology has provided innovative nanomedicines, where half-sandwich Ruthenium(II) complexes are paving their way. In this review, the recent developments in nanomaterials functionalized with Ruthenium complexes for targeted drug delivery to tumors will also be highlighted.
Collapse
Affiliation(s)
- Oscar A Lenis Rojas
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB, Av. da República, EAN, 2780-157 Oeiras, Portugal.
| | - Sandra Cordeiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Pedro V Baptista
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Alexandra R Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
| |
Collapse
|
6
|
Catalano A, Mariconda A, Sinicropi MS, Ceramella J, Iacopetta D, Saturnino C, Longo P. Biological Activities of Ruthenium NHC Complexes: An Update. Antibiotics (Basel) 2023; 12:365. [PMID: 36830276 PMCID: PMC9952499 DOI: 10.3390/antibiotics12020365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Ruthenium N-heterocyclic carbene (NHC) complexes have unique physico-chemical properties as catalysts and a huge potential in medicinal chemistry and pharmacology, exhibiting a variety of notable biological activities. In this review, the most recent studies on ruthenium NHC complexes are summarized, focusing specifically on antimicrobial and antiproliferative activities. Ruthenium NHC complexes are generally active against Gram-positive bacteria, such as Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Listeria monocytogenes and are seldom active against Gram-negative bacteria, including Salmonella typhimurium, Pseudomonas aeruginosa and Escherichia coli and fungal strains of Candida albicans. The antiproliferative activity was tested against cancer cell lines of human colon, breast, cervix, epidermis, liver and rat glioblastoma cell lines. Ruthenium NHC complexes generally demonstrated cytotoxicity higher than standard anticancer drugs. Further studies are needed to explore the mechanism of action of these interesting compounds.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | | | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
7
|
Hamdi N, Mansour L, Al-Tamimi J, Al-Hazmy SM, Gurbuz N, Özdemir I. Synthesis and Investigation of Antimicrobial, Antioxidant, Enzymatic Inhibitory, and Antiproliferative Activities of Ruthenium (II) Complexes Bearing Benzimidazole-Based N-Heterocyclic Carbene (NHC) Ligands. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2150659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Naceur Hamdi
- Department of Chemistry, College of Science and Arts at ArRass, Qassim University, ArRass, Saudi Arabia
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jameel Al-Tamimi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sadeq M. Al-Hazmy
- Chemistry Department, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Nevin Gurbuz
- Faculty of Science and Art, Department of Chemistry, İnönü University, Malatya, Turkey
- İnönü University, Catalysis Research and Application Center, Malatya, Turkey
| | - Ismail Özdemir
- Faculty of Science and Art, Department of Chemistry, İnönü University, Malatya, Turkey
- İnönü University, Catalysis Research and Application Center, Malatya, Turkey
| |
Collapse
|
8
|
Ekinci O, Akkoç M, Khan S, Yasar S, Gürses C, Noma S, Balcıoğlu S, Sen B, Aygün M, Yılmaz İ. Synthesis and biological evaluation of Au‐NHC complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Orhan Ekinci
- Faculty of Arts and Science, Department of Chemistry İnönü University Malatya Turkey
| | - Mitat Akkoç
- Hekimhan Vocational College, Department of Property Protection and Security, Hekimhan Malatya Turgut Özal University Malatya Turkey
| | - Siraj Khan
- Quaid‐i‐Azam University, Faculty of Biological Sciences, Department of Pharmacy Islamabad Pakistan
| | - Sedat Yasar
- Faculty of Arts and Science, Department of Chemistry İnönü University Malatya Turkey
| | - Canbolat Gürses
- Faculty of Arts and Science, Department of Molecular Biology and Genetics İnönü University Malatya Turkey
| | - Samir Noma
- Faculty of Arts and Science, Department of Chemistry İnönü University Malatya Turkey
- Faculty of Arts and Science, Department of Chemistry Bursa Uludağ University Bursa Turkey
| | - Sevgi Balcıoğlu
- Faculty of Arts and Science, Department of Chemistry İnönü University Malatya Turkey
- Vocational School of Health Services at Akyazı, Department of Medical Laboratory Techniques Sakarya University of Applied Sciences Sakarya Turkey
| | - Betül Sen
- Faculty of Science, Department of Physics Dokuz Eylül University İzmir Turkey
| | - Muhittin Aygün
- Faculty of Science, Department of Physics Dokuz Eylül University İzmir Turkey
| | - İsmet Yılmaz
- Faculty of Arts and Science, Department of Chemistry İnönü University Malatya Turkey
| |
Collapse
|
9
|
Malchau C, Fries DV, Mees Y, Jakobs MF, Sun Y, Becker S, Niedner-Schatteburg G, Thiel WR. Transition metal complexes of NHC ligands functionalized with the cationic (η5‐cyclopentadienyl)(η6‐phenyl)iron(II) motif. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christian Malchau
- TU Kaiserslautern: Technische Universitat Kaiserslautern Fachbereich Chemie GERMANY
| | - Daniela V. Fries
- TU Kaiserslautern: Technische Universitat Kaiserslautern Fachbereich Chemie GERMANY
| | - Yannik Mees
- TU Kaiserslautern: Technische Universitat Kaiserslautern Fachbereich Chemie GERMANY
| | - Marisa F. Jakobs
- TU Kaiserslautern: Technische Universitat Kaiserslautern Fachbereich Chemie GERMANY
| | - Yu Sun
- TU Kaiserslautern: Technische Universitat Kaiserslautern Fachbereich Chemie GERMANY
| | - Sabine Becker
- TU Kaiserslautern: Technische Universitat Kaiserslautern Fachbereich Chemie GERMANY
| | | | - Werner R. Thiel
- TU Kaiserslautern FB Chemie Erwin-Schrödinger-Str. 54 67663 Kaiserslautern GERMANY
| |
Collapse
|
10
|
Boubakri L, Chakchouk-Mtiba A, Naouali O, Mellouli L, Mansour L, Özdemir I, Yaser S, Sauthier M, Hamdi N. Ruthenium(II) complexes bearing benzimidazole-based N-heterocyclic carbene (NHC) ligands as potential antimicrobial, antioxidant, enzyme inhibition, and antiproliferative agents. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2060745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Lamia Boubakri
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunisia
| | - Ahlem Chakchouk-Mtiba
- Laboratory of Microorganisms and Enzymatic Biotechnology and Biomolecules, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Olfa Naouali
- Laboratory of Applied Chemistry and Natural Substances Resources and Environment, Faculty of Sciences, University of Carthage, Zarzouna, Bizerta, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microorganisms and Enzymatic Biotechnology and Biomolecules, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Saudi Arabia, Riyadh, Saudi Arabia
| | - Ismail Özdemir
- Faculty of Science and Art, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Sedat Yaser
- Faculty of Science and Art, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Mathieu Sauthier
- Ecole Nationale Superieure de Chimie de Lille, Unité de Catalyse et Chimie du Solide, Villeneuve d’Ascq, France
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunisia
| |
Collapse
|
11
|
Ereshanaik, Prabhakara M, Bhojya Naik H, Kirthan B, Kumaraswamy H, Jain RSK. DNA interaction studies of Cu(II), Co(II), and Ni(II) chelates derived from schiff base ligand. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Mukherjee A, Koley TS, Chakraborty A, Purkait K, Mukherjee A. Synthesis, Structure and Cytotoxicity of N,N and N,O-Coordinated Ru II Complexes of 3-Aminobenzoate Schiff Bases against Triple-negative Breast Cancer. Chem Asian J 2021; 16:3729-3742. [PMID: 34549886 DOI: 10.1002/asia.202100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Indexed: 11/07/2022]
Abstract
Half-sandwich RuII complexes, [(YZ)RuII (η6 -arene)(X)]+, (YZ=chelating bidentate ligand, X=halide), with N,N and N,O coordination (1-9) show significant antiproliferative activity against the metastatic triple-negative breast carcinoma (MDA-MB-231). 3-aminobenzoic acid or its methyl ester is used in all the ligands while varying the aldehyde for N,N and N,O coordination. In the N,N coordinated complex the coordinated halide(X) is varied for enhancing stability in solution (X=Cl, I). Rapid aquation and halide exchange of the pyridine analogues, 2 and 3, in solution are a major bane towards their antiproliferative activity. Presence of free -COOH group (1 and 4) make complexes hydrophilic and reduces toxicity. The imidazolyl 3-aminobenzoate based N,N coordinated 5 and 6 display better solution stability and efficient antiproliferative activity (IC50 ca. 2.3-2.5 μM) compared to the pyridine based 2 and 3 (IC50 >100 μM) or the N,O coordinated complexes (7-9) (IC50 ca. 7-10 μM). The iodido coordinated, 6, is resistant towards aquation and halide exchange. The N,O coordinated 7-9 underwent instantaneous aquation at pH 7.4 generating monoaquated complexes stable for at least 6 h. Complexes 5 and 6, bind to 9-ethylguanine (9-EtG) showing propensity to interact with DNA bases. The complexes may kill via apoptosis as displayed from the study of 8. The change in coordination mode and the aldehyde affected the solution stability, antiproliferative activity and mechanistic pathways. The N,N coordinated (5 and 6) exhibit arrest in the G2/M phase while the N,O coordinated 8 showed arrest in the G0/G1 phase.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Tuhin Subhra Koley
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Ayan Chakraborty
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Kallol Purkait
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Arindam Mukherjee
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
13
|
Ramashetty KB, Channabasappa PM, Seetyanaik BH, Ereshanaik, Ranganaik V, Nayak ANPNH, Shivakumar R, Rajashekarappa KK. Fabrication, depiction, DNA interaction, anti-bacterial, DFT and molecular docking studies of Co(II) and Cu(II) complexes of 3-methyl-1-phenyl-4-[( E)-(pyridin-2-yl)diazenyl]-1 H-pyrazol-5-ol ligand. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 41:1-22. [PMID: 34676802 DOI: 10.1080/15257770.2021.1991373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Cobalt(II) and copper(II) complexes of the (3-methyl-1-phenyl-4-[E-(1iazinyl-2-yl)1iazinyl]-1H-pyrazole-5-ol) ligand were obtained by the diazotization reaction of 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one with 2-amino pyridine. The synthesized compounds were confirmed by analytical, and spectroscopic analyses (like, UV-Visible, FT-IR, NMR, and mass spectroscopy). Calf thymus DNA interaction with metal complexes is inspected by UV-Visible spectra, viscosity measurements, and thermal denaturation techniques. The intrinsic binding constant (Kb) was found to be 1.17 × 106 M-1, and 0.98 × 106 M-1 for Co(II) and Cu(II) complexes respectively. The Cleavage of pUC-19 DNA was monitored by gel electrophoresis. The computerized in silico molecular dockage studies of the composites with the target receptor Glu-6p and results showed that the compounds are potent drugs for the target enzyme. Further, the optimized structure of the azo dye ligand was obtained by the density functional theory (DFT) by Gaussian09 program by the RB3LYP at 6-311 G (++, g, d, p) basis set. Furthermore, screened for the bacterial action in contradiction of pathogenic organism's gram-negative Klebsiella pneumonia, gram-positive Bacillus subtills by a diffusion method.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.1991373 .
Collapse
Affiliation(s)
- Kirthan Bhadravathi Ramashetty
- Department of P.G. Studies and Research in Industrial Chemistry, Sir M.V. Government Science College, Bhadravathi, Karnataka, India
| | - Prabhakara Mustur Channabasappa
- Department of P.G. Studies and Research in Industrial Chemistry, Sir M.V. Government Science College, Bhadravathi, Karnataka, India
| | - Bhojyanaik Halehatti Seetyanaik
- Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaragatta, Karnataka, India
| | - Ereshanaik
- Department of P.G. Studies and Research in Industrial Chemistry, Sir M.V. Government Science College, Bhadravathi, Karnataka, India
| | - Viswanath Ranganaik
- Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaragatta, Karnataka, India
| | | | - Ravikumar Shivakumar
- Department of PG Studies and Research in Biotechnology, School of Biosciences, Kuvempu University, Shankaraghatta, Karnataka, India
| | | |
Collapse
|
14
|
Hamdi N, Slimani I, Mansour L, Alresheedi F, Özdemir I, Gürbüz N. Rhodium(I) complexes with N-heterocyclic carbene ligands: synthesis, biological properties and catalytic activity in the hydrosilylation of aromatic ketones. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1992400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Naceur Hamdi
- Department of Chemistry, College of Sciences and Arts at Ar Rass, Qassim University, Ar Rass, Saudi Arabia
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Amilcar, Tunisia
| | - Ichraf Slimani
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Amilcar, Tunisia
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Faisal Alresheedi
- Department of Physics, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Ismail Özdemir
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
- Faculty of Science and Art, Department of Chemistry, İnönü University, Malatya, Turkey
| | - Nevin Gürbüz
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
- Faculty of Science and Art, Department of Chemistry, İnönü University, Malatya, Turkey
| |
Collapse
|
15
|
Burmeister H, Dietze P, Preu L, Bandow JE, Ott I. Evaluation of Ruthenium(II) N-Heterocyclic Carbene Complexes as Antibacterial Agents and Inhibitors of Bacterial Thioredoxin Reductase. Molecules 2021; 26:4282. [PMID: 34299558 PMCID: PMC8303947 DOI: 10.3390/molecules26144282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022] Open
Abstract
A series of ruthenium(II) complexes with N-heterocyclic carbene (NHC) ligands of the general type (arene)(NHC)Ru(II)X2 (where X = halide) was prepared, characterized, and evaluated as antibacterial agents in comparison to the respective metal free benzimidazolium cations. The ruthenium(II) NHC complexes generally triggered stronger bacterial growth inhibition than the metal free benzimidazolium cations. The effects were much stronger against Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) than against Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa), and all complexes were inactive against the fungus Candida albicans. Moderate inhibition of bacterial thioredoxin reductase was confirmed for selected complexes, indicating that inhibition of this enzyme might be a contributing factor to the antibacterial effects.
Collapse
Affiliation(s)
- Hilke Burmeister
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany; (H.B.); (L.P.)
| | - Pascal Dietze
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (P.D.); (J.E.B.)
| | - Lutz Preu
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany; (H.B.); (L.P.)
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (P.D.); (J.E.B.)
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany; (H.B.); (L.P.)
| |
Collapse
|
16
|
Rodríguez-Prieto T, Michlewska S, Hołota M, Ionov M, de la Mata FJ, Cano J, Bryszewska M, Gómez R. Organometallic dendrimers based on Ruthenium(II) N-heterocyclic carbenes and their implication as delivery systems of anticancer small interfering RNA. J Inorg Biochem 2021; 223:111540. [PMID: 34273717 DOI: 10.1016/j.jinorgbio.2021.111540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
With the purpose of obtaining a new dendritic system against cancer, this paper is focused on the synthesis of spherical carbosilane metallodendrimers of different generations holding Ru(II) N-heterocyclic carbene (NHC) on the periphery from the imidazolium precursors. Both imidazolium salt dendrimers and their metallodendrimers counterparts showed promising anticancer activity, similar to cisplatin, mainly at high generations. In addition, both families of second and third generations were able to form dendriplexes with anticancer small interfering RNA (siRNA), protecting the cargo against RNAse and being able to internalize it in HEPG2 (human liver cancer) tumour cells. The characterization and effectiveness of the dendriplexes were evaluated by various analytical techniques such as zeta potential, electrophoresis and circular dichroism, the stability of the system and the protective nature of the dendrimer estimated using RNAse and the internalization of dendriplexes by confocal microscopy. The major advantage observed with the ruthenium metallodendrimers with respect to the imidazolium salts precursors was in cellular uptake, where the internalization of Mcl-1-FITC siRNA (myeloid cell leukaemia-1 fluorescein labelled siRNA) proceeded more efficiently. Therefore, we propose here that both imidazolium and Ru metallodendrimers are interesting candidates in cancer due to their double action, as anticancer per se and as carrier for anticancer siRNA, providing in this way a combined action.
Collapse
Affiliation(s)
- Tamara Rodríguez-Prieto
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging & Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Marcin Hołota
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - F Javier de la Mata
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
17
|
A new PEPPSI type N-heterocyclic carbene palladium(II) complexes and its efficiency as a catalyst for Mizoroki-Heck cross-coupling reactions in water : Synthesis, Characterization and their antimicrobial and Cytotoxic activities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Touj N, Nasr ISA, Koko WS, Khan TA, Özdemir I, Yasar S, Mansour L, Alresheedi F, Hamdi N. Anticancer, antimicrobial and antiparasitical activities of copper(I) complexes based on N-heterocyclic carbene (NHC) ligands bearing aryl substituents. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1836359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nedra Touj
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunisia
| | - Ibrahim S. Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah, Saudi Arabia
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| | - Waleed S. Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| | - Tariq A. Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass, Saudi Arabia
| | - Ismail Özdemir
- Faculty of Science and Art, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Sedat Yasar
- Faculty of Science and Art, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Saudi Arabia
| | - Faisal Alresheedi
- Department of Physics, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Naceur Hamdi
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| |
Collapse
|
19
|
Mohamed Haziz UF, Haque RA, Al-Ashraf Abdullah A, Razali MR. Mononuclear silver(I)- N-heterocyclic carbene complexes with benzimidazole-2-ylidene ligands: synthesis, crystal structure analyses and comparative antibacterial studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1830381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Rosenani A. Haque
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Amirul Al-Ashraf Abdullah
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohd R. Razali
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
20
|
Slimani I, Chakchouk-Mtibaa A, Mansour L, Mellouli L, Özdemir I, Gürbüzd N, Hamdi N. Synthesis, characterization, biological determination and catalytic evaluation of ruthenium(ii) complexes bearing benzimidazole-based NHC ligands in transfer hydrogenation catalysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj00311e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of ruthenium (ii) N-heterocyclic carbene complexes has been synthesized via transmetalation. The obtained complexes were applied to transfer hydrogenation of ketone derivatives.
Collapse
Affiliation(s)
- Ichraf Slimani
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09)
- Higher Institute of Environmental Sciences and Technology
- University of Carthage
- Hammam-Lif
- Tunisia
| | - A. Chakchouk-Mtibaa
- Laboratory of Microorganisms and Biomolecules
- Center of Biotechnolgy of Sfax
- Sfax
- Tunisia
| | - L. Mansour
- Zoology Department
- College of Science
- King Saud University
- Saudi Arabia
- Saudi Arabia
| | - L. Mellouli
- Laboratory of Microorganisms and Biomolecules
- Center of Biotechnolgy of Sfax
- Sfax
- Tunisia
| | - I. Özdemir
- İnönü University
- Faculty of Science and Art
- Department of Chemistry
- Malatya
- Turkey
| | - Nevin Gürbüzd
- İnönü University
- Faculty of Science and Art
- Department of Chemistry
- Malatya
- Turkey
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09)
- Higher Institute of Environmental Sciences and Technology
- University of Carthage
- Hammam-Lif
- Tunisia
| |
Collapse
|