1
|
González-Rodríguez J, González-Granda S, Kumar H, Alvizo O, Escot L, Hailes HC, Gotor-Fernández V, Lavandera I. BioLindlar Catalyst: Ene-Reductase-Promoted Selective Bioreduction of Cyanoalkynes to Give (Z)-Cyanoalkenes. Angew Chem Int Ed Engl 2024; 63:e202410283. [PMID: 38943496 DOI: 10.1002/anie.202410283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024]
Abstract
The direct synthesis of alkenes from alkynes usually requires the use of transition-metal catalysts. Unfortunately, efficient biocatalytic alternatives for this transformation have yet to be discovered. Herein, the selective bioreduction of electron-deficient alkynes to alkenes catalysed by ene-reductases (EREDs) is described. Alkynes bearing ketone, aldehyde, ester, and nitrile moieties have been effectively reduced with excellent conversions and stereoselectivities, observing clear trends for the E/Z ratios depending on the nature of the electron-withdrawing group. In the case of cyanoalkynes, (Z)-alkenes were obtained as the major product, and the reaction scope was expanded to a wide variety of aromatic substrates (up to >99 % conversion, and Z/E stereoselectivities of up to >99/1). Other alkynes containing aldehyde, ketone, or ester functionalities also proved to be excellent substrates, and interestingly gave the corresponding (E)-alkenes. Preparative biotransformations were performed on a 0.4 mmol scale, producing the desired (Z)-cyanoalkenes with good to excellent isolated yields (63-97 %). This novel reactivity has been rationalised through molecular docking by predicting the binding poses of key molecules in the ERED-pu-0006 active site.
Collapse
Affiliation(s)
- Jorge González-Rodríguez
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
- Current address: Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060, Wien, Austria
| | - Sergio González-Granda
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
- Current address: Department of Chemistry, University of Michigan, 930N University Ave, Ann Arbor, MI 48109, USA
| | - Hirdesh Kumar
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Oscar Alvizo
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Lorena Escot
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
2
|
Hogg BN, Schnepel C, Finnigan JD, Charnock SJ, Hayes MA, Turner NJ. The Impact of Metagenomics on Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202402316. [PMID: 38494442 PMCID: PMC11497237 DOI: 10.1002/anie.202402316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
In the ever-growing demand for sustainable ways to produce high-value small molecules, biocatalysis has come to the forefront of greener routes to these chemicals. As such, the need to constantly find and optimise suitable biocatalysts for specific transformations has never been greater. Metagenome mining has been shown to rapidly expand the toolkit of promiscuous enzymes needed for new transformations, without requiring protein engineering steps. If protein engineering is needed, the metagenomic candidate can often provide a better starting point for engineering than a previously discovered enzyme on the open database or from literature, for instance. In this review, we highlight where metagenomics has made substantial impact on the area of biocatalysis in recent years. We review the discovery of enzymes in previously unexplored or 'hidden' sequence space, leading to the characterisation of enzymes with enhanced properties that originate from natural selection pressures in native environments.
Collapse
Affiliation(s)
- Bethany N. Hogg
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUK
| | - Christian Schnepel
- School of Engineering Sciences in Chemistry, Biotechnology and HealthDepartment of Industrial BiotechnologyKTH Royal Institute of TechnologyAlbaNova University Center11421StockholmSE
| | | | | | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&D AstraZenecaMölndal 431 50GothenburgSE
| | - Nicholas J. Turner
- Department of ChemistryUniversity of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
3
|
Cárdenas‐Fernández M, Roddan R, Carter EM, Hailes HC, Ward JM. The Discovery of Imine Reductases and their Utilisation for the Synthesis of Tetrahydroisoquinolines. ChemCatChem 2023; 15:e202201126. [PMID: 37081856 PMCID: PMC10107726 DOI: 10.1002/cctc.202201126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Imine reductases (IREDs) are NADPH-dependent enzymes with significant biocatalytic potential for the synthesis of primary, secondary, and tertiary chiral amines. Their applications include the reduction of cyclic imines and the reductive amination of prochiral ketones. In this study, twenty-nine novel IREDs were revealed through genome mining. Imine reductase activities were screened at pH 7 and 9 and in presence of either NADPH or NADH; some IREDs showed good activities at both pHs and were able to accept both cofactors. IREDs with Asn and Glu at the key 187 residue showed preference for NADH. IREDs were also screened against a series of dihydroisoquinolines to synthesise tetrahydroisoquinolines (THIQs), bioactive alkaloids with a wide range of therapeutic properties. Selected IREDs showed high stereoselectivity, as well high THIQ yields (>90 %) when coupled to a glucose-6-phosphate dehydrogenase for NADPH cofactor recycling.
Collapse
Affiliation(s)
- Max Cárdenas‐Fernández
- Department of Biochemical EngineeringUniversity College LondonGower Street, Bernard Katz BuildingLondonWC1E 6BTUK
- School of BiosciencesUniversity of Kent KentCT2 7NJUK
| | - Rebecca Roddan
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Eve M. Carter
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical EngineeringUniversity College LondonGower Street, Bernard Katz BuildingLondonWC1E 6BTUK
| |
Collapse
|
4
|
Zhang B, Sun J, Zheng Y, Mao X, Lin J, Wei D. Identification of a novel ene reductase from Pichia angusta with potential application in ( R)-levodione production. RSC Adv 2022; 12:13924-13931. [PMID: 35558851 PMCID: PMC9088392 DOI: 10.1039/d2ra01716d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
Asymmetric reduction of electronically activated alkenes by ene reductases (ERs) is an attractive approach for the production of enantiopure chiral products. Herein, a novel FMN-binding ene reductase (PaER) from Pichia angusta was heterologously expressed in Escherichia coli BL21(DE3), and the recombinant enzyme was characterized for its biocatalytic properties. PaER displayed optimal activity at 40 °C and pH 7.5, respectively. The purified enzyme was quite stable below 30 °C over a broad pH range of 5.0–10.0. PaER was identified to have a good ability to reduce the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond of various α,β-unsaturated compounds in the presence of NADPH. In addition, PaER exhibited a high reduction rate (kcat = 3.57 s−1) and an excellent stereoselectivity (>99%) for ketoisophorone. Engineered E. coli cells harboring PaER and glucose dehydrogenase (for cofactor regeneration) were employed as biocatalysts for the asymmetric reduction of ketoisophorone. As a result, up to 1000 mM ketoisophorone was completely and enantioselectively converted to (R)-levodione with a >99% ee value in a space–time yield of 460.7 g L−1 d−1. This study provides a great potential biocatalyst for practical synthesis of (R)-levodione. Asymmetric reduction of electronically activated alkenes by ene reductases (ERs) is an attractive approach for the production of enantiopure chiral products.![]()
Collapse
Affiliation(s)
- Baoqi Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Jiale Sun
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Yanqiu Zheng
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Xinlei Mao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology Shanghai 200237 People's Republic of China
| |
Collapse
|
5
|
Kumar Roy T, Sreedharan R, Ghosh P, Gandhi T, Maiti D. Ene-Reductase: A Multifaceted Biocatalyst in Organic Synthesis. Chemistry 2022; 28:e202103949. [PMID: 35133702 DOI: 10.1002/chem.202103949] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Biocatalysis integrate microbiologists, enzymologists, and organic chemists to access the repertoire of pharmaceutical and agrochemicals with high chemoselectivity, regioselectivity, and enantioselectivity. The saturation of carbon-carbon double bonds by biocatalysts challenges the conventional chemical methodology as it bypasses the use of precious metals (in combination with chiral ligands and molecular hydrogen) or organocatalysts. In this line, Ene-reductases (ERs) from the Old Yellow Enzymes (OYEs) family are found to be a prominent asymmetric biocatalyst that is increasingly used in academia and industries towards unparalleled stereoselective trans-hydrogenations of activated C=C bonds. ERs gained prominence as they were used as individual catalysts, multi-enzyme cascades, and in conjugation with chemical reagents (chemoenzymatic approach). Besides, ERs' participation in the photoelectrochemical and radical-mediated process helps to unlock many scopes outside traditional biocatalysis. These up-and-coming methodologies entice the enzymologists and chemists to explore, expand and harness the chemistries displayed by ERs for industrial settings. Herein, we reviewed the last five year's exploration of organic transformations using ERs.
Collapse
Affiliation(s)
- Triptesh Kumar Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Debabrata Maiti
- Chemistry Department and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|
6
|
Robescu MS, Loprete G, Gasparotto M, Vascon F, Filippini F, Cendron L, Bergantino E. The Family Keeps on Growing: Four Novel Fungal OYEs Characterized. Int J Mol Sci 2022; 23:3050. [PMID: 35328465 PMCID: PMC8954901 DOI: 10.3390/ijms23063050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Aiming at expanding the portfolio of Old Yellow Enzymes (OYEs), which have been systematically studied to be employed in the chemical and pharmaceutical industries as useful biocatalysts, we decided to explore the immense reservoir of filamentous fungi. We drew from the genome of the two Ascomycetes Aspergillus niger and Botryotinia fuckeliana four new members of the OYE superfamily belonging to the classical and thermophilic-like subfamilies. The two BfOYEs show wider substrate spectra than the AnOYE homologues, which appear as more specialized biocatalysts. According to their mesophilic origins, the new enzymes neither show high thermostability nor extreme pH optimums. The crystal structures of BfOYE4 and AnOYE8 have been determined, revealing the conserved features of the thermophilic-like subclass as well as unique properties, such as a peculiar N-terminal loop involved in dimer surface interactions. For the classical representatives BfOYE1 and AnOYE2, model structures were built and analyzed, showing surprisingly wide open access to the active site cavities due to a shorter β6-loop and a disordered capping subdomain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elisabetta Bergantino
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (M.S.R.); (G.L.); (M.G.); (F.V.); (F.F.); (L.C.)
| |
Collapse
|
7
|
Parmeggiani F, Brenna E, Colombo D, Gatti FG, Tentori F, Tessaro D. "A Study in Yellow": Investigations in the Stereoselectivity of Ene-Reductases. Chembiochem 2021; 23:e202100445. [PMID: 34586700 PMCID: PMC9292831 DOI: 10.1002/cbic.202100445] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Ene‐reductases from the Old Yellow Enzyme (OYE) superfamily are a well‐known and efficient biocatalytic alternative for the asymmetric reduction of C=C bonds. Considering the broad variety of substituents that can be tolerated, and the excellent stereoselectivities achieved, it is apparent why these enzymes are so appealing for preparative and industrial applications. Different classes of C=C bonds activated by at least one electron‐withdrawing group have been shown to be accepted by these versatile biocatalysts in the last decades, affording a vast range of chiral intermediates employed in the synthesis of pharmaceuticals, agrochemicals, flavours, fragrances and fine chemicals. In order to access both enantiomers of reduced products, stereodivergent pairs of OYEs are desirable, but their natural occurrence is limited. The detailed knowledge of the stereochemical course of the reaction can uncover alternative strategies to orient the selectivity via mutagenesis, evolution, and substrate engineering. An overview of the ongoing studies on OYE‐mediated bioreductions will be provided, with particular focus on stereochemical investigations by deuterium labelling.
Collapse
Affiliation(s)
- Fabio Parmeggiani
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Danilo Colombo
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Francesco G Gatti
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Francesca Tentori
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Davide Tessaro
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
8
|
Newgas SA, Jeffries JWE, Moody TS, Ward JM, Hailes HC. Discovery of New Carbonyl Reductases Using Functional Metagenomics and Applications in Biocatalysis. Adv Synth Catal 2021; 363:3044-3052. [PMID: 34413714 PMCID: PMC8360200 DOI: 10.1002/adsc.202100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/22/2021] [Indexed: 12/20/2022]
Abstract
Enzyme discovery for use in the manufacture of chemicals, requiring high stereoselectivities, continues to be an important avenue of research. Here, a sequence directed metagenomics approach is described to identify short chain carbonyl reductases. PCR from a metagenomic template generated 37 enzymes, with an average 25% sequence identity, twelve of which showed interesting activities in initial screens. Six of the most productive enzymes were then tested against a panel of 21 substrates, including bulkier substrates that have been noted as challenging in biocatalytic reductions. Two enzymes were selected for further studies with the Wieland Miescher ketone. Notably, enzyme SDR-17, when co-expressed with a co-factor recycling system produced the anti-(4aR,5S) isomer in excellent isolated yields of 89% and 99% e.e. These results demonstrate the viability of a sequence directed metagenomics approach for the identification of multiple homologous sequences with low similarity, that can yield highly stereoselective enzymes with applicability in industrial biocatalysis.
Collapse
Affiliation(s)
- Sophie A. Newgas
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJU.K.
| | - Jack W. E. Jeffries
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1E 6BTU.K.
| | - Thomas S. Moody
- Almac SciencesDepartment of Biocatalysis and Isotope ChemistryAlmac House, 20 Seagoe Industrial EstateCraigavonBT63 5QDNorthern IrelandU.K.
- Arran Chemical CompanyUnit1 Monksland Industrial EstateAthloneN37 DN24Co. RoscommonIreland.
| | - John M. Ward
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1E 6BTU.K.
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJU.K.
| |
Collapse
|
9
|
Zhao J, Méndez-Sánchez D, Roddan R, Ward JM, Hailes HC. Norcoclaurine Synthase-Mediated Stereoselective Synthesis of 1,1’-Disubstituted, Spiro- and Bis-Tetrahydroisoquinoline Alkaloids. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jianxiong Zhao
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Daniel Méndez-Sánchez
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Rebecca Roddan
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 8HX, United Kingdom
| | - John M. Ward
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Helen C. Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
10
|
Velikogne S, Breukelaar WB, Hamm F, Glabonjat RA, Kroutil W. C=C-Ene-Reductases Reduce the C=N Bond of Oximes. ACS Catal 2020; 10:13377-13382. [PMID: 33251037 PMCID: PMC7685226 DOI: 10.1021/acscatal.0c03755] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Indexed: 12/26/2022]
Abstract
Although enzymes have been found for many reactions, there are still transformations for which no enzyme is known. For instance, not a single defined enzyme has been described for the reduction of the C=N bond of an oxime, only whole organisms. Such an enzymatic reduction of an oxime may give access to (chiral) amines. By serendipity, we found that the oxime moiety adjacent to a ketone as well as an ester group can be reduced by ene-reductases (ERs) to an intermediate amino group. ERs are well-known enzymes for the reduction of activated alkenes, as of α,β-unsaturated ketones. For the specific substrate used here, the amine intermediate spontaneously reacts further to tetrasubstituted pyrazines. This reduction reaction represents an unexpected promiscuous activity of ERs expanding the toolkit of transformations using enzymes.
Collapse
Affiliation(s)
- Stefan Velikogne
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Willem B. Breukelaar
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Florian Hamm
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Ronald A. Glabonjat
- Institute
of Chemistry, University of Graz, NAWI Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed
Graz, 8010 Graz, Austria
| |
Collapse
|
11
|
Abstract
Here we present a modification of the widely used pET29 expression vector for use in rapid and straightforward parallel cloning via a gene replacement and Golden Gate strategy. The modification can be applied to other expression vectors for Gram-negative bacteria. We have used the modified vectors to clone large numbers of bacterial natural enzyme variants from genomic and metagenomic sources for applications in biocatalysis.
Collapse
|
12
|
Venturi S, Brenna E, Colombo D, Fraaije MW, Gatti FG, Macchi P, Monti D, Trajkovic M, Zamboni E. Multienzymatic Stereoselective Reduction of Tetrasubstituted Cyclic Enones to Halohydrins with Three Contiguous Stereogenic Centers. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Silvia Venturi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica ”G. Natta”, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milano 20133, Italy
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica ”G. Natta”, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milano 20133, Italy
| | - Danilo Colombo
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica ”G. Natta”, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milano 20133, Italy
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Francesco G. Gatti
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica ”G. Natta”, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milano 20133, Italy
| | - Piero Macchi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica ”G. Natta”, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milano 20133, Italy
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), C.N.R., Via Mario Bianco, 9, Milano 20131, Italy
| | - Milos Trajkovic
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Emilio Zamboni
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica ”G. Natta”, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milano 20133, Italy
| |
Collapse
|
13
|
Staniland S, Angelini T, Pushpanath A, Bornadel A, Siirola E, Bisagni S, Zanotti-Gerosa A, Domínguez B. Biocatalytic Reduction of Activated Cinnamic Acid Derivatives : Asymmetric reduction of C=C double bonds using Johnson Matthey enzymes. JOHNSON MATTHEY TECHNOLOGY REVIEW 2020. [DOI: 10.1595/205651320x16001815466116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The asymmetric reduction of C=C double bonds is a sought-after chemical transformation to obtain chiral molecules used in the synthesis of fine chemicals. Biocatalytic C=C double bond reduction is a particularly interesting transformation complementary to more established chemocatalytic
methods. The enzymes capable of catalysing this reaction are called ene-reductases (ENEs). For the reaction to take place, ENEs need an electron withdrawing group (EWG) in conjugation with the double bond. Especially favourable EWGs are carbonyls and nitro groups; other EWGs, such as carboxylic
acids, esters or nitriles, often give poor results. In this work, a substrate engineering strategy is proposed whereby a simple transformation of the carboxylic acid into a fluorinated ester or a cyclic imide allows to increase the ability of ENEs to reduce the conjugated double bond. Up to
complete conversion of the substrates tested was observed with enzymes ENE-105 and *ENE-69.
Collapse
Affiliation(s)
- Samantha Staniland
- Johnson Matthey 260 Cambridge Science Park, Milton Road, Cambridge, CB4 0WE UK
| | - Tommaso Angelini
- Johnson Matthey 260 Cambridge Science Park, Milton Road, Cambridge, CB4 0WE UK
| | - Ahir Pushpanath
- Johnson Matthey 260 Cambridge Science Park, Milton Road, Cambridge, CB4 0WE UK
| | - Amin Bornadel
- Johnson Matthey 260 Cambridge Science Park, Milton Road, Cambridge, CB4 0WE UK
| | - Elina Siirola
- Johnson Matthey 260 Cambridge Science Park, Milton Road, Cambridge, CB4 0WE UK
| | - Serena Bisagni
- Johnson Matthey 260 Cambridge Science Park, Milton Road, Cambridge, CB4 0WE UK
| | | | - Beatriz Domínguez
- Johnson Matthey 260 Cambridge Science Park, Milton Road, Cambridge, CB4 0WE UK
| |
Collapse
|
14
|
Abstract
Ene reductases enable the asymmetric hydrogenation of activated alkenes allowing the manufacture of valuable chiral products. The enzymes complement existing metal- and organocatalytic approaches for the stereoselective reduction of activated C=C double bonds, and efforts to expand the biocatalytic toolbox with additional ene reductases are of high academic and industrial interest. Here, we present the characterization of a novel ene reductase from Paenibacillus polymyxa, named Ppo-Er1, belonging to the recently identified subgroup III of the old yellow enzyme family. The determination of substrate scope, solvent stability, temperature, and pH range of Ppo-Er1 is one of the first examples of a detailed biophysical characterization of a subgroup III enzyme. Notably, Ppo-Er1 possesses a wide temperature optimum (Topt: 20–45 °C) and retains high conversion rates of at least 70% even at 10 °C reaction temperature making it an interesting biocatalyst for the conversion of temperature-labile substrates. When assaying a set of different organic solvents to determine Ppo-Er1′s solvent tolerance, the ene reductase exhibited good performance in up to 40% cyclohexane as well as 20 vol% DMSO and ethanol. In summary, Ppo-Er1 exhibited activity for thirteen out of the nineteen investigated compounds, for ten of which Michaelis–Menten kinetics could be determined. The enzyme exhibited the highest specificity constant for maleimide with a kcat/KM value of 287 mM−1 s−1. In addition, Ppo-Er1 proved to be highly enantioselective for selected substrates with measured enantiomeric excess values of 92% or higher for 2-methyl-2-cyclohexenone, citral, and carvone.
Collapse
|