1
|
Krishnamoorthy K, Pazhamalai P, Swaminathan R, Mohan V, Kim S. Unravelling the Bi-Functional Electrocatalytic Properties of {Mo 72Fe 30} Polyoxometalate Nanostructures for Overall Water Splitting Using Scanning Electrochemical Microscope and Electrochemical Gating Methods. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401073. [PMID: 38610120 PMCID: PMC11220659 DOI: 10.1002/advs.202401073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Indexed: 04/14/2024]
Abstract
This study reports the use of Keplerate-type {Mo72Fe30} polyoxometalate (POMs) nanostructures as a bi-functional-electrocatalyst for HER and OER in an alkaline medium with a lower overpotential (135 mV for HER and 264 mV for OER), and excellent electrochemical stability. The bi-functional catalytic properties of {Mo72Fe30} POM are studied using a scanning electrochemical microscope (SECM) via current mapping using substrate generation and tip collection mode. Furthermore, the bipolar nature of the {Mo72Fe30} POM nano-electrocatalysts is studied using the electrochemical gating via simultaneous monitoring of the electrochemical (cell) and electrical ({Mo72Fe30} POM) signals. Next, a prototype water electrolyzer fabricated using {Mo72Fe30} POM electrocatalysts showed they can drive 10 mA cm-2 with a low cell voltage of 1.62 V in lab-scale test conditions. Notably, the {Mo72Fe30} POM electrolyzers' performance assessment based on recommended conditions for industrial aspects shows that they require a very low overpotential of 1.89 V to drive 500 mA cm-2, highlighting their promising candidature toward clean-hydrogen production.
Collapse
Affiliation(s)
- Karthikeyan Krishnamoorthy
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
- Research Institute of New Energy Industry (RINEI)Jeju National UniversityJeju63243South Korea
- CSIR‐Advanced Materials and Processes Research InstituteBhopalMadhya Pradesh462026India
| | - Parthiban Pazhamalai
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
- Research Institute of New Energy Industry (RINEI)Jeju National UniversityJeju63243South Korea
| | - Rajavarman Swaminathan
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
| | - Vigneshwaran Mohan
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
| | - Sang‐Jae Kim
- Nanomaterials & System LaboratoryMajor of Mechatronics EngineeringFaculty of Applied Energy SystemJeju National UniversityJeju63243South Korea
- Research Institute of New Energy Industry (RINEI)Jeju National UniversityJeju63243South Korea
- Nanomaterials & System LabMajor of Mechanical System EngineeringCollege of EngineeringJeju National UniversityJeju63243South Korea
| |
Collapse
|
2
|
Chung NT, Dung VC, Duc DX. Recent achievements in the synthesis of benzimidazole derivatives. RSC Adv 2023; 13:32734-32771. [PMID: 37942457 PMCID: PMC10628531 DOI: 10.1039/d3ra05960j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023] Open
Abstract
Benzimidazoles are a class of heterocyclic compounds in which a benzene ring is fused to the 4 and 5 positions of an imidazole ring. Benzimidazole refers to the parent compound, while benzimidazoles are a class of heterocyclic compounds having similar ring structures, but different substituents. Benzimidazole derivatives possess a wide range of bioactivities including antimicrobial, anthelmintic, antiviral, anticancer, and antihypertensive activities. Many compounds possessing a benzimidazole skeleton have been employed as drugs in the market. The application of benzimidazoles in other fields has also been documented. The synthesis of benzimidazole derivatives has attracted much attention from chemists and numerous articles on the synthesis of this class of heterocyclic compound have been reported over the years. The condensation between 1,2-benzenediamine and aldehydes has received intensive interest, while many novel methods have been developed. In this article, we will give a comprehensive review of studies on the synthesis of benzimidazole, which date back to 2013. We have also tried to describe reaction mechanisms as much as we can. The work might be useful for chemists who work in the synthesis of heterocycles or drug chemistry.
Collapse
Affiliation(s)
- Nguyen Thi Chung
- Department of Chemistry, Institute of Education, Vinh University 182 Le Duan Street Nghe An 430000 Vietnam
| | - Vo Cong Dung
- Centre for Education Accreditation, Vinh University 182 Le Duan Street Nghe An 430000 Vietnam
| | - Dau Xuan Duc
- Department of Chemistry, Institute of Education, Vinh University 182 Le Duan Street Nghe An 430000 Vietnam
| |
Collapse
|
3
|
Tereshchenko KA, Shiyan DA, Grzhegorzhevskii KV, Lyulinskaya YL, Okhotnikov GO, Ulitin NV, Khursan SL, Abramov PA. KINETICS AND MECHANISM OF A SELF- OSCILATION REACTION OF KEPLERATE-TYPE POLYOXOMOLIBDATE DEGRADATION IN AN AQUEOUS SOLUTION. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622120125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Ostroushko AA, Terziyan TV, Rzhannikova AP, Adamova LV, Grzhegorzhevskii KV, Tonkushina MO. Interaction of Low-Molecular Compounds with Nanoclusters: Thermodynamics, Relationship with Dielectric Permittivity and Polarizability of Molecules, Magic Numbers, Research Prospects. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422060164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Yin J, Huang C, Zhou Y, Zhang L, Li N, Sun R. Selective Oxidation of 2-Chloroethyl Ethyl Sulfide in Aqueous Media Catalyzed by {Mo 72M 30} Nano-polyoxometalate Clusters Differentiating the Catalytic Activity of Nodal Metals. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianbo Yin
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chengcheng Huang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ran Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Rezaeifard A, Mokhtari R, Garazhian Z, Jafarpour M, Grzhegorzhevskii KV. Tetrahedral Keggin Core Tunes the Visible Light-Assisted Catalase-Like Activity of Icosahedral Keplerate Shell. Inorg Chem 2022; 61:7878-7889. [PMID: 35533083 DOI: 10.1021/acs.inorgchem.2c00476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, the effect of Keggin polyoxometalates encapsulated in Keplerate {Mo72Fe30} shell (K shell) on the visible light-assisted catalase-like activity (H2O2 dismutation) of the resulting core-shell clusters PMo12@K, SiMo12@K, and BW12@K was investigated. Superior photodismutation activity of PMo12@K compared to that of K shell and two other core-shell clusters was discovered. The homogeneity of PMo12@K and its improved oxidative stability, increased redox potential, and reduced band gap caused by a synergistic effect between the Keplerate shell and Keggin core seem reasonable to explain such a superiority. The light-dependent photocatalytic performance of PMo12@K evaluated by action spectra revealed a maximum apparent quantum efficiency (AQY) at 400 nm, demonstrating the visible light-driven photocatalytic reaction. A first-order rate constant of 2 × 10-4 s-1 and activation energy of 108.8 kJ mol-1 alongside a turnover frequency of 0.036 s-1 and a total turnover number of up to ∼3800 approved the effective photocatalytic activity and improved the oxidative stability of PMo12@K. A nonradical photocatalytic mechanism through a Fe-OOH intermediate was proposed. Thus, the structure, optical activity, and oxidative stability of a host Keplerate-type nanocluster can be tuned significantly by encapsulation of a guest, like "cluster-in-cluster" structures, which opens the scope for introducing new visible light-sensitive hierarchical nanostructures.
Collapse
Affiliation(s)
- Abdolreza Rezaeifard
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Rezvan Mokhtari
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Zohreh Garazhian
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Maasoumeh Jafarpour
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Kirill V Grzhegorzhevskii
- Institute of Natural Sciences and Mathematics, Ural Federal University named after the B.N. Yeltsin, Ekaterinburg 620002, Russia
| |
Collapse
|
7
|
|
8
|
Kolli HK, Jana D, Das SK. Nanoblackberries of {W 72Fe 33} and {Mo 72Fe 30}: Electrocatalytic Water Reduction. Inorg Chem 2021; 60:15569-15582. [PMID: 34590839 DOI: 10.1021/acs.inorgchem.1c02202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reversible self-assembly of a {Mo72Fe30} cluster into nanoblackberries in a dilute solution of the relevant crystalline compound [Mo72Fe30O252(CH3COO)12{Mo2O7(H2O)}2{H2Mo2O8(H2O)}(H2O)91]·150H2O ({Mo72Fe30}cryst) was demonstrated by Liu, Müller, and their co-workers as a landmark discovery in the area of polyoxometalate chemistry. We have described, in the present work, how these ∼2.5 nm nano-objects, {M72Fe30} (M = W, Mo) can be self-assembled into nanoblackberries irreversibly, leading to their solid-state isolation as the nanomaterials Fe3[W72Fe30O252(CH3COO)2(OH)25(H2O)103]·180H2O ({W72Fe33}NM) and Na2[Mo72Fe30O252(CH3COO)4(OH)16(H2O)108]·180H2O ({Mo72Fe30}NM), respectively (NM stands for nanomaterial). The formulations of these one-pot-synthesized nanoblackberries of {W72Fe33}NM and {Mo72Fe30}NM have been established by spectral analysis including Raman spectroscopy, elemental analysis including ICP metal analysis, volumetric analysis (for iron), microscopy techniques, and DLS studies. The thermal stability of the tungsten nanoblackberries {W72Fe33}NM is much higher than that of its molybdenum analogue {Mo72Fe30}NM. This might due to the extra three ferric (Fe3+) ions per {W72Fe30} cluster in {W72Fe33}NM, which are not part of the {W72Fe30} cluster cage but are placed between two adjacent clusters (i.e., each cluster has six surrounding 0.5Fe3+) to form this self-assembly. The isolated blackberries behave like an inorganic acid, a water suspension of which shows pH values of 3.9 for {W72Fe33}NM and 3.7 for {Mo72Fe30}NM because of the deprotonation of the hydroxyl groups in them. We have demonstrated, for the first time, a meaningful application of these inexpensive and easily synthesized nanoblackberries by showing that they can act as electrocatalysts for the hydrogen evolution reaction (HER) by reducing water. We have performed detailed kinetic studies for the electrocatalytic water reduction catalyzed by {W72Fe33}NM and {Mo72Fe30}NM in a comparative study. The relevant turnover frequencies (TOFs) of {W72Fe33}NM and {Mo72Fe30}NM (∼0.72 and ∼0.45 s-1, respectively), the overpotential values of {W72Fe33}NM and {Mo72Fe30}NM (527 and 767 mV, respectively at 1 mA cm-2), and the relative stability issues of the catalysts indicate that {W72Fe33}NM is reasonably superior to {Mo72Fe30}NM. We have described a rationale of why {W72Fe33}NM performs better than {Mo72Fe30}NM in terms of catalytic activity and stability.
Collapse
Affiliation(s)
- Hema Kumari Kolli
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Debu Jana
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Samar K Das
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
9
|
Zheng J, Zhang L, Li Y, Sun HB, Zhang G, Sun Q. Novel core-shell nanocomposite as an effective heterogeneous catalyst for the synthesis of benzimidazoles. NANOTECHNOLOGY 2021; 32:265603. [PMID: 33843659 DOI: 10.1088/1361-6528/abef2f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Core-shell nanocomposites with a catalytic metal-organic framework (MOF) shell are more effective and stable than bare MOF. We have successfully designed an effective heterogeneous catalyst for the synthesis of benzimidazole by integrating acidic catalytic activity, and promoted the aerobic oxidation and magnetic recyclability of core-shell nanocomposite Fe3O4@SiO2@UiO-66. The Fe3O4@SiO2 core is encapsulated by the in situ-grown UiO-66 shell, and the UiO-66 shell retains the porous structure and crystallinity of UiO-66 with abundant exposed Lewis acid sites. It shows high catalytic ability for the synthesis of various benzimidazoles through the acid-catalyzed condensation and aerobic oxidation with in situ oxygen. The Fe3O4@SiO2 core provides magnetic recyclability of Fe3O4@SiO2@UiO-66, and maintains high catalytic ability and stability over six cycles.
Collapse
Affiliation(s)
- Jianwei Zheng
- College of Science, Northeastern University, Shengyang 110819, People's Republic of China
| | | | | | | | | | | |
Collapse
|