1
|
Yang Z, Liu H, Su Z, Xu H, Yuan Z, Rao Y. Enhanced production of aspochalasin D through genetic engineering of Aspergillus flavipes. Appl Microbiol Biotechnol 2023; 107:2911-2920. [PMID: 37004567 DOI: 10.1007/s00253-023-12501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
Aspochalasin D (AD) belongs to the polyketide-amino acid hybrid natural products with anti-cancer, anti-bacterial, and anti-fouling bioactivities. However, the low production limits its further application. In this study, AD was separated and identified from Aspergillus flavipes 3.17641. Next, besides the optimization of culture conditions using a single-factor experiment and response surface methodology, metabolic engineering was employed to increase the AD production. It shows that the deletion of the shunt gene aspoA and overexpression of the pathway-specific regulator aspoG significantly improve the AD production. Its production reached to 812.1 mg/L under the optimized conditions, with 18.5-fold increase. Therefore, this study not only provides a general method for improving the production of similar natural products in other fungi, but also enables the further biological function development of AD in agriculture and pharmaceutical. KEY POINTS: • The Aspochalasin D (AD) production was improved by optimizing culture conditions. • The deletion of the shunt gene aspoA increased the AD production. • Overexpression of the pathway regulator aspoG further improved the AD production.
Collapse
Affiliation(s)
- Zhaopeng Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Huiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zengping Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Li H, Wang D, Zhang DD, Geng Q, Li JJ, Sheng RC, Xue HS, Zhu H, Kong ZQ, Dai XF, Klosterman SJ, Subbarao KV, Chen FM, Chen JY. A polyketide synthase from Verticillium dahliae modulates melanin biosynthesis and hyphal growth to promote virulence. BMC Biol 2022; 20:125. [PMID: 35637443 PMCID: PMC9153097 DOI: 10.1186/s12915-022-01330-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/13/2022] [Indexed: 01/15/2023] Open
Abstract
Background During the disease cycle, plant pathogenic fungi exhibit a morphological transition between hyphal growth (the phase of active infection) and the production of long-term survival structures that remain dormant during “overwintering.” Verticillium dahliae is a major plant pathogen that produces heavily melanized microsclerotia (MS) that survive in the soil for 14 or more years. These MS are multicellular structures produced during the necrotrophic phase of the disease cycle. Polyketide synthases (PKSs) are responsible for catalyzing production of many secondary metabolites including melanin. While MS contribute to long-term survival, hyphal growth is key for infection and virulence, but the signaling mechanisms by which the pathogen maintains hyphal growth are unclear. Results We analyzed the VdPKSs that contain at least one conserved domain potentially involved in secondary metabolism (SM), and screened the effect of VdPKS deletions in the virulent strain AT13. Among the five VdPKSs whose deletion affected virulence on cotton, we found that VdPKS9 acted epistatically to the VdPKS1-associated melanin pathway to promote hyphal growth. The decreased hyphal growth in VdPKS9 mutants was accompanied by the up-regulation of melanin biosynthesis and MS formation. Overexpression of VdPKS9 transformed melanized hyphal-type (MH-type) into the albinistic hyaline hyphal-type (AH-type), and VdPKS9 was upregulated in the AH-type population, which also exhibited higher virulence than the MH-type. Conclusions We show that VdPKS9 is a powerful negative regulator of both melanin biosynthesis and MS formation in V. dahliae. These findings provide insight into the mechanism of how plant pathogens promote their virulence by the maintenance of vegetative hyphal growth during infection and colonization of plant hosts, and may provide novel targets for the control of melanin-producing filamentous fungi. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01330-2.
Collapse
|
3
|
Heterologous Expression of Secondary Metabolite Genes in Trichoderma reesei for Waste Valorization. J Fungi (Basel) 2022; 8:jof8040355. [PMID: 35448586 PMCID: PMC9032437 DOI: 10.3390/jof8040355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023] Open
Abstract
Trichoderma reesei (Hypocrea jecorina) was developed as a microbial cell factory for the heterologous expression of fungal secondary metabolites. This was achieved by inactivation of sorbicillinoid biosynthesis and construction of vectors for the rapid cloning and expression of heterologous fungal biosynthetic genes. Two types of megasynth(et)ases were used to test the strain and vectors, namely a non-reducing polyketide synthase (nr-PKS, aspks1) from Acremonium strictum and a hybrid highly-reducing PKS non-ribosomal peptide synthetase (hr-PKS-NRPS, tenS + tenC) from Beauveria bassiana. The resulting engineered T. reesei strains were able to produce the expected natural products 3-methylorcinaldehyde and pretenellin A on waste materials including potato, orange, banana and kiwi peels and barley straw. Developing T. reesei as a heterologous host for secondary metabolite production represents a new method for waste valorization by the direct conversion of waste biomass into secondary metabolites.
Collapse
|
4
|
Kuhnert E, Navarro-Muñoz J, Becker K, Stadler M, Collemare J, Cox R. Secondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon. Stud Mycol 2021; 99:100118. [PMID: 34527085 PMCID: PMC8403587 DOI: 10.1016/j.simyco.2021.100118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date little is known about the genetic background that drives the production and diversification of secondary metabolites in the Hypoxylaceae. With the recent availability of high-quality genome sequences for 13 representative species and one relative (Xylaria hypoxylon) we attempted to survey the diversity of biosynthetic pathways in these organisms to investigate their true potential as secondary metabolite producers. Manual search strategies based on the accumulated knowledge on biosynthesis in fungi enabled us to identify 783 biosynthetic pathways across 14 studied species, the majority of which were arranged in biosynthetic gene clusters (BGC). The similarity of BGCs was analysed with the BiG-SCAPE engine which organised the BGCs into 375 gene cluster families (GCF). Only ten GCFs were conserved across all of these fungi indicating that speciation is accompanied by changes in secondary metabolism. From the known compounds produced by the family members some can be directly correlated with identified BGCs which is highlighted herein by the azaphilone, dihydroxynaphthalene, tropolone, cytochalasan, terrequinone, terphenyl and brasilane pathways giving insights into the evolution and diversification of those compound classes. Vice versa, products of various BGCs can be predicted through homology analysis with known pathways from other fungi as shown for the identified ergot alkaloid, trigazaphilone, curvupallide, viridicatumtoxin and swainsonine BGCs. However, the majority of BGCs had no obvious links to known products from the Hypoxylaceae or other well-studied biosynthetic pathways from fungi. These findings highlight that the number of known compounds strongly underrepresents the biosynthetic potential in these fungi and that a tremendous number of unidentified secondary metabolites is still hidden. Moreover, with increasing numbers of genomes for further Hypoxylaceae species becoming available, the likelihood of revealing new biosynthetic pathways that encode new, potentially useful compounds will significantly improve. Reaching a better understanding of the biology of these producers, and further development of genetic methods for their manipulation, will be crucial to access their treasures.
Collapse
Affiliation(s)
- E. Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - J.C. Navarro-Muñoz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - K. Becker
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - M. Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - J. Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R.J. Cox
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
5
|
Kahlert L, Schotte C, Cox RJ. Total Mycosynthesis: Rational Bioconstruction and Bioengineering of Fungal Natural Products. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1401-2716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractTotal biosynthesis in fungi is beginning to compete with traditional chemical total synthesis campaigns. Herein, the advantages, disadvantages and future opportunities are discussed within the scope of several recent examples.1 Introduction2 Synthetic Examples2.1 2-Pyridones2.2 Cytochalasans2.3 Sorbicillinoids2.4 Decalins: Solanapyrone2.5 α-Pyrone Polyenes: Citreoviridin and Aurovertin2.6 Anditomin and Related Meroterpenoids2.7 Tropolone Sesquiterpenoids3 Conclusion
Collapse
|
6
|
Zhang H, Hantke V, Bruhnke P, Skellam EJ, Cox RJ. Chemical and Genetic Studies on the Formation of Pyrrolones During the Biosynthesis of Cytochalasans. Chemistry 2021; 27:3106-3113. [PMID: 33146923 PMCID: PMC7898483 DOI: 10.1002/chem.202004444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Indexed: 01/17/2023]
Abstract
A key step during the biosynthesis of cytochalasans is a proposed Knoevenagel condensation to form the pyrrolone core, enabling the subsequent 4+2 cycloaddition reaction that results in the characteristic octahydroisoindolone motif of all cytochalasans. In this work, we investigate the role of the highly conserved α,β-hydrolase enzymes PyiE and ORFZ during the biosynthesis of pyrichalasin H and the ACE1 metabolite, respectively, using gene knockout and complementation techniques. Using synthetic aldehyde models we demonstrate that the Knoevenagel condensation proceeds spontaneously but results in the 1,3-dihydro-2H-pyrrol-2-one tautomer, rather than the required 1,5-dihydro-2H-pyrrol-2-one tautomer. Taken together our results suggest that the α,β-hydrolase enzymes are essential for first ring cyclisation, but the precise nature of the intermediates remains to be determined.
Collapse
Affiliation(s)
- Haili Zhang
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Verena Hantke
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Pia Bruhnke
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Elizabeth J. Skellam
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
- Current Address: Department of ChemistryUniversity of North Texas1508 W Mulberry30167DentonTexasUSA
| | - Russell J. Cox
- Institute for Organic ChemistryLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- Biomolekulares Wirkstoff Zentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| |
Collapse
|
7
|
Becker K, Pfütze S, Kuhnert E, Cox RJ, Stadler M, Surup F. Hybridorubrins A-D: Azaphilone Heterodimers from Stromata of Hypoxylon fragiforme and Insights into the Biosynthetic Machinery for Azaphilone Diversification. Chemistry 2021; 27:1438-1450. [PMID: 32748960 PMCID: PMC7898651 DOI: 10.1002/chem.202003215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/14/2022]
Abstract
The diversity of azaphilones in stromatal extracts of the fungus Hypoxylon fragiforme was investigated and linked to their biosynthetic machineries by using bioinformatics. Nineteen azaphilone-type compounds were isolated and characterized by NMR spectroscopy and mass spectrometry, and their absolute stereoconfigurations were assigned by using Mosher ester analysis and electronic circular dichroism spectroscopy. Four unprecedented bis-azaphilones, named hybridorubrins A-D, were elucidated, in addition to new fragirubrins F and G and various known mitorubrin derivatives. Only the hybridorubrins, which are composed of mitorubrin and fragirubrin moieties, exhibited strong inhibition of Staphylococcus aureus biofilm formation. Analysis of the genome of H. fragiforme revealed the presence of two separate biosynthetic gene clusters (BGCs) hfaza1 and hfaza2 responsible for azaphilone formation. While the hfaza1 BGC likely encodes the assembly of the backbone and addition of fatty acid moieties to yield the (R)-configured series of fragirubrins, the hfaza2 BGC contains the necessary genes to synthesise the widely distributed (S)-mitorubrins. This study is the first example of two distant cross-acting fungal BGCs collaborating to produce two families of azaphilones and bis-azaphilones derived therefrom.
Collapse
Affiliation(s)
- Kevin Becker
- Department Microbial DrugsHelmholtz Centre for Infection Research GmbH (HZI)Inhoffenstrasse 738124BraunschweigGermany
- German Centre for Infection Research Association (DZIF)Partner site Hannover-BraunschweigInhoffenstrasse 738124BraunschweigGermany
| | - Sebastian Pfütze
- Department Microbial DrugsHelmholtz Centre for Infection Research GmbH (HZI)Inhoffenstrasse 738124BraunschweigGermany
- German Centre for Infection Research Association (DZIF)Partner site Hannover-BraunschweigInhoffenstrasse 738124BraunschweigGermany
| | - Eric Kuhnert
- Institute for Organic ChemistryLeibniz University HannoverSchneiderberg 1B30167HannoverGermany
- Centre for Biomolecular Drug Research (BMWZ)Schneiderberg 3830167HannoverGermany
| | - Russell J. Cox
- Institute for Organic ChemistryLeibniz University HannoverSchneiderberg 1B30167HannoverGermany
- Centre for Biomolecular Drug Research (BMWZ)Schneiderberg 3830167HannoverGermany
| | - Marc Stadler
- Department Microbial DrugsHelmholtz Centre for Infection Research GmbH (HZI)Inhoffenstrasse 738124BraunschweigGermany
- German Centre for Infection Research Association (DZIF)Partner site Hannover-BraunschweigInhoffenstrasse 738124BraunschweigGermany
| | - Frank Surup
- Department Microbial DrugsHelmholtz Centre for Infection Research GmbH (HZI)Inhoffenstrasse 738124BraunschweigGermany
- German Centre for Infection Research Association (DZIF)Partner site Hannover-BraunschweigInhoffenstrasse 738124BraunschweigGermany
| |
Collapse
|
8
|
Skellam E. Analysis of the Secondary Metabolism in Magnaporthe oryzae. Methods Mol Biol 2021; 2356:41-56. [PMID: 34236675 DOI: 10.1007/978-1-0716-1613-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Magnaporthe oryzae produces a number of secondary metabolites, some of which are thought to be responsible for the virulence of this fungus toward rice. Due to the importance of understanding plant-pathogen interactions, several of these metabolites have been investigated chemically and biosynthetically. This chapter provides an overview of the secondary metabolites isolated from M. oryzae and describes a general method for metabolite extraction, followed by an analysis using high-performance liquid chromatography (HPLC) combined with mass spectrometry (LCMS).
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry & BioDiscovery Institute, University of North Texas, Denton, TX, USA.
| |
Collapse
|
9
|
Wang C, Lambert C, Hauser M, Deuschmann A, Zeilinger C, Rottner K, Stradal TEB, Stadler M, Skellam EJ, Cox RJ. Diversely Functionalised Cytochalasins through Mutasynthesis and Semi-Synthesis. Chemistry 2020; 26:13578-13583. [PMID: 32484589 PMCID: PMC7692911 DOI: 10.1002/chem.202002241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 11/11/2022]
Abstract
Mutasynthesis of pyrichalasin H from Magnaporthe grisea NI980 yielded a series of unprecedented 4'-substituted cytochalasin analogues in titres as high as the wild-type system (≈60 mg L-1 ). Halogenated, O-alkyl, O-allyl and O-propargyl examples were formed, as well as a 4'-azido analogue. 4'-O-Propargyl and 4'-azido analogues reacted smoothly in Huisgen cycloaddition reactions, whereas p-Br and p-I compounds reacted in Pd-catalysed cross-coupling reactions. A series of examples of biotin-linked, dye-linked and dimeric cytochalasins was rapidly created. In vitro and in vivo bioassays of these compounds showed that the 4'-halogenated and azido derivatives retained their cytotoxicity and antifungal activities; but a unique 4'-amino analogue was inactive. Attachment of larger substituents attenuated the bioactivities. In vivo actin-binding studies with adherent mammalian cells showed that actin remains the likely intracellular target. Dye-linked compounds revealed visualisation of intracellular actin structures even in the absence of phalloidin, thus constituting a potential new class of actin-visualisation tools with filament-barbed end-binding specificity.
Collapse
Affiliation(s)
- Chongqing Wang
- Institute for Organic Chemistry and BMWZLeibniz University of HannoverSchneiderberg 3830167HannoverGermany
| | - Christopher Lambert
- Department Microbial DrugsHelmholtz Centre for Infection Research, Bldg. B, Room 175aInhoffenstrasse 738124BraunschweigGermany
- Division of Molecular Cell BiologyZoological InstituteTechnische Universität BraunschweigSpielmannstrasse 738106BraunschweigGermany
| | - Maurice Hauser
- Institute for Organic Chemistry and BMWZLeibniz University of HannoverSchneiderberg 3830167HannoverGermany
| | - Adrian Deuschmann
- Institute for Organic Chemistry and BMWZLeibniz University of HannoverSchneiderberg 3830167HannoverGermany
| | - Carsten Zeilinger
- Institute for Organic Chemistry and BMWZLeibniz University of HannoverSchneiderberg 3830167HannoverGermany
| | - Klemens Rottner
- Department of Cell BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
- Division of Molecular Cell BiologyZoological InstituteTechnische Universität BraunschweigSpielmannstrasse 738106BraunschweigGermany
| | - Theresia E. B. Stradal
- Department of Cell BiologyHelmholtz Centre for Infection ResearchInhoffenstrasse 738124BraunschweigGermany
| | - Marc Stadler
- Department Microbial DrugsHelmholtz Centre for Infection Research, Bldg. B, Room 175aInhoffenstrasse 738124BraunschweigGermany
| | - Elizabeth J. Skellam
- Institute for Organic Chemistry and BMWZLeibniz University of HannoverSchneiderberg 3830167HannoverGermany
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZLeibniz University of HannoverSchneiderberg 3830167HannoverGermany
| |
Collapse
|
10
|
Zhu S, Yan Y, Qu Y, Wang J, Feng X, Liu X, Lin F, Lu J. Role refinement of melanin synthesis genes by gene knockout reveals their functional diversity in Pyricularia oryzae strains. Microbiol Res 2020; 242:126620. [PMID: 33189072 DOI: 10.1016/j.micres.2020.126620] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 11/15/2022]
Abstract
Pyricularia oryzae is a plant pathogenic fungus that severely affects rice production. Past studies, primarily using mutants generated by spontaneous mutations or artificial physical and chemical mutagenesis, have determined that melanin is required for appressorium turgor, penetration, and virulence of P. oryzae. However, these roles need to be verified by gene knockout and/or overexpression in different strains considering the potential differences in the level of virulence. Here, we confirmed the indispensable roles of melanin in the development and virulence of P. oryzae by knocking out and over-expressing three melanin synthesis genes (ALB1, RSY1, and BUF1) in two wild-type strains (Guy11 and 70-15). Deletion of ALB1, RSY1, or BUF1 led to loss of melanin and virulence in both strains. ALB1, RSY1 and BUF1 in Guy11, and BUF1 in 70-15 were required for conidiation, respectively. ALB1, RSY1, and BUF1 were required for conidial resistance to environmental stresses (UV exposure, oxidization, and freezing damage) in both strains. Guy11 cells had greater amounts of melanin and more transcripts of melanin synthesis genes than 70-15 cells. Paired culture experiments between the deletion or over-expression mutants of melanin synthesis genes suggested that the reaction catalyzed by Buf1, but not Alb1 and Rsy1, was likely a rate-limiting step in melanin biosynthesis in 70-15. These results expand our understanding on melanin and its synthesis genes in P. oryzae as well as its responses to biotic and abiotic environments.
Collapse
Affiliation(s)
- Siyi Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yuxin Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yingmin Qu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiaohong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fucheng Lin
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Jianping Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
11
|
Zhong Z, Lin L, Zheng H, Bao J, Chen M, Zhang L, Tang W, Ebbole DJ, Wang Z. Emergence of a hybrid PKS-NRPS secondary metabolite cluster in a clonal population of the rice blast fungus Magnaporthe oryzae. Environ Microbiol 2020; 22:2709-2723. [PMID: 32216010 DOI: 10.1111/1462-2920.14994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
Secondary metabolites (SMs) are crucial for fungi and vary in function from beneficial antibiotics to pathogenicity factors. To generate diversified SMs that enable different functions, SM-coding regions rapidly evolve in fungal genomes. However, the driving force and genetic mechanism of fungal SM diversification in the context of host-pathogen interactions remain largely unknown. Previously, we grouped field populations of the rice blast fungus Magnaporthe oryzae (syn: Pyricularia oryzae) into three major globally distributed clades based on population genomic analyses. Here, we characterize a recent duplication of an avirulent gene-containing SM cluster, ACE1, in a clonal M. oryzae population (Clade 2). We demonstrate that the ACE1 cluster is specifically duplicated in Clade 2, a dominant clade in indica rice-growing areas. With long-read sequencing, we obtained chromosome-level genome sequences of four Clade 2 isolates, which displayed differences in genomic organization of the ACE1 duplication process. Comparative genomic analyses suggested that the original ACE1 cluster experienced frequent rearrangement in Clade 2 isolates and revealed that the new ACE1 cluster is located in a newly formed and transposable element-rich region. Taken together, these results highlight the frequent mutation and expansion of an avirulent gene-containing SM cluster through transposable element-mediated whole-cluster duplication in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huakun Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiandong Bao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meilian Chen
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Limei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Daniel J Ebbole
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| |
Collapse
|
12
|
Huang X, Zhang W, Tang S, Wei S, Lu X. Collaborative Biosynthesis of a Class of Bioactive Azaphilones by Two Separate Gene Clusters Containing Four PKS/NRPSs with Transcriptional Crosstalk in Fungi. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
| | - Shen Tang
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
- College of Bioscience and BioengineeringJiangxi Agricultural University No. 1101 Zhimin Road Nanchang 330045 China
| | - Suhui Wei
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
- Marine Biology and Biotechnology LaboratoryQingdao National Laboratory for Marine Science and Technology No. 1 Wenhai Road, Aoshanwei Qingdao 266101 China
| |
Collapse
|
13
|
Huang X, Zhang W, Tang S, Wei S, Lu X. Collaborative Biosynthesis of a Class of Bioactive Azaphilones by Two Separate Gene Clusters Containing Four PKS/NRPSs with Transcriptional Crosstalk in Fungi. Angew Chem Int Ed Engl 2020; 59:4349-4353. [DOI: 10.1002/anie.201915514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
| | - Shen Tang
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
- College of Bioscience and BioengineeringJiangxi Agricultural University No. 1101 Zhimin Road Nanchang 330045 China
| | - Suhui Wei
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
- Marine Biology and Biotechnology LaboratoryQingdao National Laboratory for Marine Science and Technology No. 1 Wenhai Road, Aoshanwei Qingdao 266101 China
| |
Collapse
|
14
|
Hantke V, Skellam EJ, Cox RJ. Evidence for enzyme catalysed intramolecular [4+2] Diels–Alder cyclization during the biosynthesis of pyrichalasin H. Chem Commun (Camb) 2020; 56:2925-2928. [DOI: 10.1039/c9cc09590j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vivo evidence is presented for the activity of PyiF as the required intramolecular Diels Alderase during the biosynthesis of the cytochalasan pyrichalasin H in the fungus Magnaporthe grisea NI980.
Collapse
Affiliation(s)
- Verena Hantke
- Institute for Organic Chemistry and BMWZ
- Leibniz University Hannover
- Hannover 30167
- Germany
| | - Elizabeth J. Skellam
- Institute for Organic Chemistry and BMWZ
- Leibniz University Hannover
- Hannover 30167
- Germany
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZ
- Leibniz University Hannover
- Hannover 30167
- Germany
| |
Collapse
|