1
|
Mititelu M, Lupuliasa D, Neacșu SM, Olteanu G, Busnatu ȘS, Mihai A, Popovici V, Măru N, Boroghină SC, Mihai S, Ioniță-Mîndrican CB, Scafa-Udriște A. Polyunsaturated Fatty Acids and Human Health: A Key to Modern Nutritional Balance in Association with Polyphenolic Compounds from Food Sources. Foods 2024; 14:46. [PMID: 39796335 PMCID: PMC11719865 DOI: 10.3390/foods14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are vital dietary elements that play a significant role in human nutrition. They are highly regarded for their positive contributions to overall health and well-being. Beyond the fact that they provide a substantial supply of energy to the body (a role that saturated fats can also perform), these unsaturated fatty acids and, especially, the essential ones are involved in cell membrane structure, blood pressure regulation, and coagulation; participate in the proper functioning of the immune system and assimilation of fat-soluble vitamins; influence the synthesis of pro- and anti-inflammatory substances; and protect the cardiovascular system. Modern diets like the Western diet and the American diet are rich in saturated fats found especially in fast food products, sweets, and processed foods, a fact that has led to an increase in the prevalence of metabolic diseases worldwide (obesity, type II diabetes, gout, cardiovascular disease). Nutritionists have drawn attention to the moderate consumption of saturated fats and the need to increase the intake of unsaturated fats to the detriment of saturated ones. This paper examines the biochemical roles of polyunsaturated fats, particularly essential fatty acids, and contrasts their benefits with the detrimental effects of saturated fat overconsumption. Furthermore, it highlights the necessity for dietary shifts towards increased PUFA intake to mitigate the global burden of diet-related health issues. The co-occurrence of PUFAs and polyphenols in plant-based foods highlights the sophistication of nature's design. These bioactive compounds are not randomly distributed but are present in foods humans have consumed together historically. From traditional diets like the Mediterranean, which pairs olive oil (PUFAs and polyphenols) with vegetables and legumes, to Asian cuisines combining sesame seeds with turmeric, cultural practices have long harnessed this natural synergy.
Collapse
Affiliation(s)
- Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.S.B.); (A.S.-U.)
| | - Andreea Mihai
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Violeta Popovici
- “Costin C. Kiriţescu” National Institute of Economic Research—Center for Mountain Economics (INCE-CEMONT) of Romanian Academy, 725700 Vatra-Dornei, Romania;
| | - Nicoleta Măru
- Department of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Steluța Constanța Boroghină
- Department of Complementary Sciences, History of Medicine and Medical Culture, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Sebastian Mihai
- Department of Therapeutic Chemistry, Faculty of Pharmacy, “Ovidius“ University of Constanta, 6 Căpitan Aviator Al Șerbănescu Street, 900470 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Alexandru Scafa-Udriște
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.S.B.); (A.S.-U.)
| |
Collapse
|
2
|
Qosimah D, Laminem L, Setyawati D, Mandasari C. Harnessing black soldier fly ( Hermetia illucens) prepupae against Aeromonas hydrophila: Fermentation-based fatty acids production and its bioinformatic assessment. Open Vet J 2024; 14:902-912. [PMID: 38682129 PMCID: PMC11052624 DOI: 10.5455/ovj.2024.v14.i3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/19/2024] [Indexed: 05/01/2024] Open
Abstract
Background Aeromonas hydrophila (A. hydrophila) is a bacterium with zoonotic potential and is multidrug-resistant. It utilizes hemolysin and aerolysin to spread infection. Black soldier flies (BSFs) can be antibacterial because of the fatty acids it contains. Aims This study aimed to investigate and compare the fatty acid profiles of BSF prepupae grown in fermented and nonfermented media using bioinformatics tools and assess their potential as antibacterial agents against A. hydrophila. Methods The study used BSF prepupae reared on various organic substrates. BSF prepupae grown in fermented or nonfermented substrate were observed against fatty acid. The fatty acid analysis was performed using GC-MS. Fatty acids were analyzed statistically using the one-way ANOVA test with a 95% confidence level. Fatty acid bioactivity was predicted using the online PASS-two-way drug program. Molecular docking on BSF fatty acid compounds was analyzed with PyMol 2.2 and discovery Studio version 21.1.1. Results The molecular docking test showed the strongest bond was oleic acid with aerolysin and linoleic acid with hemolysin. BSF prepupae grown on fermented media showed higher crude fat and saturated fatty acids (SFAs) but lower unsaturated fatty acids than nonfermented media. Conclusion Black soldier fly prepupae, particularly those grown on fermented media, possess antibacterial activity against A. hydrophila through potential fatty acid-mediated inhibition of crucial virulence factors.
Collapse
Affiliation(s)
- Dahliatul Qosimah
- Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | | | | | | |
Collapse
|
3
|
A novel crystalline template for the structural determination of flexible chain compounds of nanoscale length. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Cutignano A, Conte M, Tirino V, Del Vecchio V, De Angelis R, Nebbioso A, Altucci L, Romano G. Cytotoxic Potential of the Marine Diatom Thalassiosira rotula: Insights into Bioactivity of 24-Methylene Cholesterol. Mar Drugs 2022; 20:md20100595. [PMID: 36286419 PMCID: PMC9604713 DOI: 10.3390/md20100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Marine microalgae are receiving great interest as sustainable sources of bioactive metabolites for health, nutrition and personal care. In the present study, a bioassay-guided screening allowed identifying an enriched fraction from SPE separation of the methanolic extract of the marine diatom Thalassiosira rotula with a chemically heterogeneous composition of cytotoxic molecules, including PUFAs, the terpene phytol, the carotenoid fucoxanthin and the phytosterol 24-methylene cholesterol (24-MChol). In particular, this latter was the object of deep investigation aimed to gain insight into the mechanisms of action activated in two tumour cell models recognised as resistant to chemical treatments, the breast MCF7 and the lung A549 cell lines. The results of our studies revealed that 24-MChol, in line with the most studied β-sitosterol (β-SIT), showed cytotoxic activity in a 3–30 µM range of concentration involving the induction of apoptosis and cell cycle arrest, although differences emerged between the two sterols and the two cancer systems when specific targets were investigated (caspase-3, caspase-9, FAS and TRAIL).
Collapse
Affiliation(s)
- Adele Cutignano
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Akton 55, 80133 Napoli, Italy
- Correspondence: ; Tel.: +39-081-8675313
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Napoli, Italy
| | - Vitale Del Vecchio
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Napoli, Italy
| | - Roberto De Angelis
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Akton 55, 80133 Napoli, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’, Via L. De Crecchio 7, 80138 Napoli, Italy
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale Area P.I.P., 83031 Ariano Irpino, Italy
| | - Giovanna Romano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Akton 55, 80133 Napoli, Italy
| |
Collapse
|
5
|
Papon N, Copp BR, Courdavault V. Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnol Adv 2021; 54:107871. [PMID: 34801661 DOI: 10.1016/j.biotechadv.2021.107871] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The marine environment is a huge reservoir of biodiversity and represents an excellent source of chemical compounds, some of which have large economical values. In the urgent quest for new pharmaceuticals, marine-based drug discovery has progressed significantly over the past several decades and we now benefit from a series of approved marine natural products (MNPs) to treat cancer and pain while an additional collection of promising leads are in clinical trials. However, the discovery and supply of MNPs has always been challenging given their low bioavailability and structural complexity. Their manufacture for pre-clinical and clinical development but also commercialization mainly relies upon marine source extraction and chemical synthesis, which are associated with high costs, unsustainability and severe environmental problems. In this review, we discuss how metabolic engineering now raises reasonable expectations for the implementation of microbial cell factories, which may provide a sustainable approach for MNP-based drug supply in the near future.
Collapse
Affiliation(s)
- Nicolas Papon
- Univ. Angers, Univ. Brest, GEIHP, SFR ICAT, F-49000 Angers, France.
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France.
| |
Collapse
|
6
|
Stranska M, Lovecka P, Vrchotova B, Uttl L, Bechynska K, Behner A, Hajslova J. Bacterial Endophytes from Vitis vinifera L. - Metabolomics Characterization of Plant-Endophyte Crosstalk. Chem Biodivers 2021; 18:e2100516. [PMID: 34609783 DOI: 10.1002/cbdv.202100516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 11/11/2022]
Abstract
Bacterial endophytes are known to protect Vitis vinifera L. against various harmful effects of the environment and support its growth. However, for the most part, biochemical responses of such co-existence have not yet been fully elucidated. In this work, we aimed to characterize the activities of endophytic consortia in a plant-endophyte extract by measuring five indicators of colonization (overall endophyte metabolic activity, microbial ACC deaminase activity, ability to solubilize phosphorus, ability to convert atmospheric nitrogen to ammonia ions, and ability to produce growth promoting indole acetic acid), and find relationships between these activities and metabolome. The V. vinifera canes for the metabolomics fingerprinting were extracted successively with water and methanol, and analysed by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry. For data processing, the MS-DIAL - MS-CleanR - MS-FINDER software platform was used, and the data matrix was processed by PCA and PLS-DA multivariate statistical methods. The metabolites that were upregulated with the heavy endophyte colonization were mainly chlorins, phenolics, flavonoid and terpenoid glycosides, tannins, dihydropyranones, sesquiterpene lactones, and long-chain unsaturated fatty acids.
Collapse
Affiliation(s)
- Milena Stranska
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technicka 3, 16628, Prague 6, Czech Republic
| | - Petra Lovecka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 3, 16628, Prague 6, Czech Republic
| | - Blanka Vrchotova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 3, 16628, Prague 6, Czech Republic
| | - Leos Uttl
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technicka 3, 16628, Prague 6, Czech Republic
| | - Kamila Bechynska
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technicka 3, 16628, Prague 6, Czech Republic
| | - Adam Behner
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technicka 3, 16628, Prague 6, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technicka 3, 16628, Prague 6, Czech Republic
| |
Collapse
|
7
|
Zhao T, Zhang XY, Deng RS, Tan Z, Chen GY, Nong XH. Three new unsaturated fatty acids from marine-derived fungus Aspergillus sp. SCAU150. Nat Prod Res 2021; 36:3965-3971. [PMID: 33764238 DOI: 10.1080/14786419.2021.1903002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Four unsaturated fatty acid derivatives including three new pantheric acids (1-3), together with three known polyketides (5-7), were isolated from a culture broth of the marine-derived fungus Aspergillus sp. SCAU150. Their complete structures were determined by NMR and HRESIMS data analyses. The antifungal activity of the isolated compounds above was evaluated and 2 was found to show moderated activity toward the phytopathogenic fungus Fusarium solani bio-80814 with an inhibition zone diameter of 6 mm under 5 µg/disc.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Xiao-Yong Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ran-Sha Deng
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Zhen Tan
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Xu-Hua Nong
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, Hainan, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| |
Collapse
|
8
|
Beyoğlu D, Idle JR. Metabolomic and Lipidomic Biomarkers for Premalignant Liver Disease Diagnosis and Therapy. Metabolites 2020; 10:E50. [PMID: 32012846 PMCID: PMC7074571 DOI: 10.3390/metabo10020050] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a plethora of attempts to discover biomarkers that are more reliable than α-fetoprotein for the early prediction and prognosis of hepatocellular carcinoma (HCC). Efforts have involved such fields as genomics, transcriptomics, epigenetics, microRNA, exosomes, proteomics, glycoproteomics, and metabolomics. HCC arises against a background of inflammation, steatosis, and cirrhosis, due mainly to hepatic insults caused by alcohol abuse, hepatitis B and C virus infection, adiposity, and diabetes. Metabolomics offers an opportunity, without recourse to liver biopsy, to discover biomarkers for premalignant liver disease, thereby alerting the potential of impending HCC. We have reviewed metabolomic studies in alcoholic liver disease (ALD), cholestasis, fibrosis, cirrhosis, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis (NASH). Specificity was our major criterion in proposing clinical evaluation of indole-3-lactic acid, phenyllactic acid, N-lauroylglycine, decatrienoate, N-acetyltaurine for ALD, urinary sulfated bile acids for cholestasis, cervonoyl ethanolamide for fibrosis, 16α-hydroxyestrone for cirrhosis, and the pattern of acyl carnitines for NAFL and NASH. These examples derive from a large body of published metabolomic observations in various liver diseases in adults, adolescents, and children, together with animal models. Many other options have been tabulated. Metabolomic biomarkers for premalignant liver disease may help reduce the incidence of HCC.
Collapse
Affiliation(s)
| | - Jeffrey R. Idle
- Arthur G. Zupko’s Division of Systems Pharmacology and Pharmacogenomics, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA;
| |
Collapse
|