1
|
Cheng X, Tempeler J, Danylyuk S, Böker A, Tsarkova L. Disclosing Topographical and Chemical Patterns in Confined Films of High-Molecular-Weight Block Copolymers under Controlled Solvothermal Annealing. Polymers (Basel) 2024; 16:1943. [PMID: 39000798 PMCID: PMC11243801 DOI: 10.3390/polym16131943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
The microphase separation of high-molecular-weight block copolymers into nanostructured films is strongly dependent on the surface fields. Both, the chain mobility and the effective interaction parameters can lead to deviations from the bulk morphologies in the structures adjacent to the substrate. Resolving frustrated morphologies with domain period L0 above 100 nm is an experimental challenge. Here, solvothermal annealing was used to assess the contribution of elevated temperatures of the vapor Tv and of the substrate Ts on the evolution of the microphase-separated structures in thin films symmetric of polystyrene-b-poly(2vinylpyridine) block copolymer (PS-PVP) with L0 about 120 nm. Pronounced topographic mesh-like and stripe patterns develop on a time scale of min and are attributed to the perforated lamella (PL) and up-standing lamella phases. By setting Tv/Ts combinations it is possible to tune the sizes of the resulting PL patterns by almost 10%. Resolving chemical periodicity using selective metallization of the structures revealed multiplication of the topographic stripes, i.e., complex segregation of the component within the topographic pattern, presumably as a result of morphological phase transition from initial non-equilibrium spherical morphology. Reported results reveal approaches to tune the topographical and chemical periodicity of microphase separation of high-molecular-weight block copolymers under strong confinement, which is essential for exploiting these structures as functional templates.
Collapse
Affiliation(s)
- Xiao Cheng
- Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
- School of Civil Engineering, Southeast University, Dongnandaxue Road 2, Jiangning District, Nanjing 211189, China
| | - Jenny Tempeler
- Fraunhofer Institute for Laser Technology (ILT), Steinbachstr. 15, 52074 Aachen, Germany
| | - Serhiy Danylyuk
- Fraunhofer Institute for Laser Technology (ILT), Steinbachstr. 15, 52074 Aachen, Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| | - Larisa Tsarkova
- German Textile Research Center North-West (DTNW), Adlerstr. 1, 47798 Krefeld, Germany
| |
Collapse
|
2
|
Kumaki J. In Situ Real-Time Atomic Force Microscopy Observation of the Surface Mobility on Each Domain of a Polystyrene- b-poly(methyl methacrylate) Film at High Temperatures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12974-12986. [PMID: 38857434 DOI: 10.1021/acs.langmuir.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The surface chain movements within the microdomains of a polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) and corresponding homopolymer films were observed via in situ real-time atomic force microscopy (AFM) at high temperatures and analyzed quantitatively using particle image velocimetry (PIV). At low temperatures, mobility within the PS microdomains resembled that within the PS homopolymer film, but movements in the PMMA microdomains were notably accelerated compared to the PMMA homopolymer. Conversely, at high temperatures, mobility within both PS and PMMA microdomains was considerably suppressed compared to their respective homopolymer films, likely owing to the fixed linkage of the block chains at the microdomain interface. This combination of real-time AFM observation and PIV analysis is an effective method for quantitatively evaluating surface chain mobility in real space.
Collapse
Affiliation(s)
- Jiro Kumaki
- Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
3
|
Pula P, Leniart A, Majewski PW. Solvent-assisted self-assembly of block copolymer thin films. SOFT MATTER 2022; 18:4042-4066. [PMID: 35608282 DOI: 10.1039/d2sm00439a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solvent-assisted block copolymer self-assembly is a compelling method for processing and advancing practical applications of these materials due to the exceptional level of the control of BCP morphology and significant acceleration of ordering kinetics. Despite substantial experimental and theoretical efforts devoted to understanding of solvent-assisted BCP film ordering, the development of a universal BCP patterning protocol remains elusive; possibly due to a multitude of factors which dictate the self-assembly scenario. The aim of this review is to aggregate both seminal reports and the latest progress in solvent-assisted directed self-assembly and to provide the reader with theoretical background, including the outline of BCP ordering thermodynamics and kinetics phenomena. We also indicate significant BCP research areas and emerging high-tech applications where solvent-assisted processing might play a dominant role.
Collapse
Affiliation(s)
- Przemyslaw Pula
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| | - Arkadiusz Leniart
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| | - Pawel W Majewski
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| |
Collapse
|
4
|
Murphy JG, Raybin JG, Sibener SJ. Correlating polymer structure, dynamics, and function with atomic force microscopy. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia G. Murphy
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| | - Jonathan G. Raybin
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| | - Steven J. Sibener
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| |
Collapse
|
5
|
Selkirk A, Prochukhan N, Lundy R, Cummins C, Gatensby R, Kilbride R, Parnell A, Baez Vasquez J, Morris M, Mokarian-Tabari P. Optimization and Control of Large Block Copolymer Self-Assembly via Precision Solvent Vapor Annealing. Macromolecules 2021; 54:1203-1215. [PMID: 34276069 PMCID: PMC8280752 DOI: 10.1021/acs.macromol.0c02543] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/07/2021] [Indexed: 01/08/2023]
Abstract
The self-assembly of ultra-high molecular weight (UHMW) block copolymers (BCPs) remains a complex and time-consuming endeavor owing to the high kinetic penalties associated with long polymer chain entanglement. In this work, we report a unique strategy of overcoming these kinetic barriers through precision solvent annealing of an UHMW polystyrene-block-poly(2-vinylpyridine) BCP system (M w: ∼800 kg/mol) by fast swelling to very high levels of solvent concentration (ϕs). Phase separation on timescales of ∼10 min is demonstrated once a thickness-dependent threshold ϕs value of ∼0.80-0.86 is achieved, resulting in lamellar feature spacings of over 190 nm. The threshold ϕs value was found to be greater for films with higher dry thickness (D 0) values. Tunability of the domain morphology is achieved through controlled variation of both D 0 and ϕs, with the kinetically unstable hexagonal perforated lamellar (HPL) phase observed at ϕs values of ∼0.67 and D 0 values of 59-110 nm. This HPL phase can be controllably induced into an order-order transition to a lamellar morphology upon further increase of ϕs to 0.80 or above. As confirmed by grazing-incidence small-angle X-ray scattering, the lateral ordering of the lamellar domains is shown to improve with increasing ϕs up to a maximum value at which the films transition to a disordered state. Thicker films are shown to possess a higher maximum ϕs value before transitioning to a disordered state. The swelling rate is shown to moderately influence the lateral ordering of the phase-separated structures, while the amount of hold time at a particular value of ϕs does not notably enhance the phase separation process. These large period self-assembled lamellar domains are then employed to facilitate pattern transfer using a liquid-phase infiltration method, followed by plasma etching, generating ordered, high aspect ratio Si nanowall structures with spacings of ∼190 nm and heights of up to ∼500 nm. This work underpins the feasibility of a room-temperature, solvent-based annealing approach for the reliable and scalable fabrication of sub-wavelength nanostructures via BCP lithography.
Collapse
Affiliation(s)
- Andrew Selkirk
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Nadezda Prochukhan
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Ross Lundy
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Cian Cummins
- CNRS,
Bordeaux INP, LCPO, UMR 5629 and CNRS, Centre de Recherche Paul Pascal,
UMR 5031, Université de Bordeaux, Pessac F-33600, France
| | - Riley Gatensby
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Rachel Kilbride
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Andrew Parnell
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Jhonattan Baez Vasquez
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Michael Morris
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| | - Parvaneh Mokarian-Tabari
- Advanced
Material and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, Dublin 2, Ireland
| |
Collapse
|
6
|
Wang Y, Wang Z, Zhu P, Liu X, Wang L, Dong X, Wang D. Microphase separation/crosslinking competition-based ternary microstructure evolution of poly(ether- b-amide). RSC Adv 2021; 11:6934-6942. [PMID: 35423183 PMCID: PMC8694882 DOI: 10.1039/d0ra10627e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/24/2021] [Indexed: 11/25/2022] Open
Abstract
The temperature dependence of the rheological properties of poly(ether-b-amide) (PEBA) segmented copolymer under oscillatory shear flow has been investigated. The magnitude of the dynamic storage modulus is affected by the physical microphase separation and irreversible crosslinking network, with the latter spontaneously forming between the polyamide segments and becoming the dominant factor in determining the microstructural evolution at temperatures well above the melting point of PEBA. From the rheological results, the initial temperature of the rheological properties dominated by the microphase separation and crosslinking (T cross) structures were determined, respectively. Based on the two obtained temperatures, the microstructure evolution upon the heating can be separated into the ternary microstructure domains: homogenous (temperature below ), microphase separation dominating (between and T cross), and crosslinking dominating domains (above T cross). When the PEBA is heated to above T cross, the content of crosslinking network increases with time and temperature, leading to an irreversible and non-negligible influence on the rheological, crystallization, and mechanical properties. A more pronounced strain-hardening phenomenon during the uniaxial stretching is observed for the sample with a higher content of crosslinking network.
Collapse
Affiliation(s)
- Yu Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zefan Wang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ping Zhu
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xinran Liu
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Science Beijing 100049 P. R. China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Xia Dong
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Science Beijing 100049 P. R. China
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Science Beijing 100049 P. R. China
| |
Collapse
|
7
|
Cummins C, Alvarez-Fernandez A, Bentaleb A, Hadziioannou G, Ponsinet V, Fleury G. Strategy for Enhancing Ultrahigh-Molecular-Weight Block Copolymer Chain Mobility to Access Large Period Sizes (>100 nm). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13872-13880. [PMID: 33175555 DOI: 10.1021/acs.langmuir.0c02261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Assembling ultrahigh-molecular-weight (UHMW) block copolymers (BCPs) in rapid time scales is perceived as a grand challenge in polymer science due to slow kinetics. Through surface engineering and identifying a nonvolatile solvent (propylene glycol methyl ether acetate, PGMEA), we showcase the impressive ability of a series of lamellar poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) BCPs to self-assemble directly after spin-coating. In particular, we show the formation of large-period (≈111 nm) lamellar structures from a neat UHMW PS-b-P2VP BCP. The significant influence of solvent-polymer solubility parameters are explored to enhance the polymer chain mobility. After optimization using solvent vapor annealing, increased feature order of ultralarge-period PS-b-P2VP BCP patterns in 1 h is achieved. Isolated metallic and dielectric features are also demonstrated to exemplify the promise that large BCP periods offer for functional applications. The methods described in this article center on industry-compatible patterning schemes, solvents, and deposition techniques. Thus, our straightforward UHMW BCP strategy potentially paves a viable and practical path forward for large-scale integration in various sectors, e.g., photonic band gaps, polarizers, and membranes that demand ultralarge period sizes.
Collapse
Affiliation(s)
- Cian Cummins
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031, 115 Avenue Schweitzer, 33600 Pessac, France
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Alberto Alvarez-Fernandez
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Ahmed Bentaleb
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031, 115 Avenue Schweitzer, 33600 Pessac, France
| | | | - Virginie Ponsinet
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
8
|
Suthiwanich K, Hiraguchi Y, Nyu T, Mondarte EAQ, Takai M, Hayashi T. Imaging the Nanophase-separated Structure of Block Copolymer Thin Film by Atomic Force Microscopy in Aqueous Solution. CHEM LETT 2020. [DOI: 10.1246/cl.190894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kasinan Suthiwanich
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Yukari Hiraguchi
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Nyu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Evan Angelo Quimada Mondarte
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Madoka Takai
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Seki A, Uemura S, Funahashi M. Self-assembled structures of bent-shaped π-conjugated compounds: effect of siloxane groups for nano-segregation. CrystEngComm 2020. [DOI: 10.1039/d0ce01325k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The tuning of nanostructures is successfully achieved by introduction of siloxane unit to bithiophene-modified bent-shaped skeleton.
Collapse
Affiliation(s)
- Atsushi Seki
- Program in Advanced Materials Science
- Faculty of Engineering and Design
- Kagawa University
- Takamatsu
- Japan
| | - Shinobu Uemura
- Program in Advanced Materials Science
- Faculty of Engineering and Design
- Kagawa University
- Takamatsu
- Japan
| | - Masahiro Funahashi
- Program in Advanced Materials Science
- Faculty of Engineering and Design
- Kagawa University
- Takamatsu
- Japan
| |
Collapse
|