1
|
Guo M, Ye YD, Cai JP, Xu HT, Wei W, Sun JY, Wang CY, Wang CB, Li YH, Zhu B. PEG-SeNPs as therapeutic agents inhibiting apoptosis and inflammation of cells infected with H1N1 influenza A virus. Sci Rep 2024; 14:21318. [PMID: 39266597 PMCID: PMC11393426 DOI: 10.1038/s41598-024-71486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
The rapid variation of influenza challenges vaccines and treatments, which makes an urgent task to develop the high-efficiency and low-toxicity new anti-influenza virus drugs. Selenium is one of the essential trace elements for the human body that possesses a good antiviral activity. In this study, we assessed anti-influenza A virus (H1N1) activity of polyethylene glycol (PEG)-modified gray selenium nanoparticles (PEG-SeNPs) on Madin-Darby Canine Kidney (MDCK) cells in vitro. CCK-8 assay showed that PEG-SeNPs had a protective effect on H1N1-infected MDCK cells. Moreover, PEG-SeNPs significantly reduced the mRNA level of H1N1. TUNEL-DAPI test showed that DNA damage reached a high level but effectively prevented after PEG-SeNPs treatment. Meanwhile, JC-1, Annexin V-FITC and cell cycle assay demonstrated the apoptosis induced by H1N1 was reduced greatly when treated with PEG-SeNPs. Furthermore, the downregulation of p-ATM, p-ATR and P53 protein, along with the upregualation of AKT protein indicated that PEG-SeNPs could inhibit H1N1-induced cell apoptosis through reactive oxygen species (ROS)-mediated related signaling pathways. Finally, Cytokine detection demonstrated PEG-SeNPs inhibited the production of pro-inflammatory factors after infection, including IL-1β, IL-5, IL-6, and TNF-α. To sum up, PEG-SeNPs might become a new potential anti-H1N1 influenza virus drug due to its antiviral and anti-inflammatory activity.
Collapse
Affiliation(s)
- Min Guo
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Yu-Dan Ye
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Jian-Piao Cai
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hai-Tong Xu
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Wei Wei
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Jia-Yu Sun
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Chen-Yang Wang
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Chang-Bing Wang
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China
| | - Ying-Hua Li
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China.
| | - Bing Zhu
- Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318 Renmin Middle Road, Guangzhou, China.
| |
Collapse
|
2
|
Non-Negligible Role of Trace Elements in Influenza Virus Infection. Metabolites 2023; 13:metabo13020184. [PMID: 36837803 PMCID: PMC9967670 DOI: 10.3390/metabo13020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Influenza virus has continuously spread around the globe for more than 100 years since the first influenza epidemic in 1918. The rapid and unpredictable gene variation of the influenza virus could possibly bring about another pandemic in future, which might threaten to overwhelm us without adequate preparation. Consequently, it is extremely urgent to identify effective broad-spectrum antiviral treatments for a variety of influenza virus variants. As essential body components, trace elements are great potential candidates with an as yet poorly understood ability to protect the host from influenza infection. Herein, we have summarized the present state of knowledge concerning the function of trace elements in influenza virus replication along with an analysis of their potential molecular mechanisms. Modulation of host immune responses to the influenza virus is one of the most common modes to achieve the anti-influenza activity of trace elements, such as selenium and zinc. Simultaneously, some antioxidant and antiviral signal pathways can be altered with the participation of trace elements. More interestingly, some micro-elements including selenium, zinc, copper and manganese, directly target viral proteins and regulate their stability and activity to influence the life cycle of the influenza virus. Further verification of the antiviral effect and the mechanism will promote the application of trace elements as adjuvants in the clinic.
Collapse
|
3
|
Subirana MA, Boada R, Xiao T, Llugany M, Valiente M. Direct and indirect selenium speciation in biofortified wheat: A tale of two techniques. PHYSIOLOGIA PLANTARUM 2023; 175:e13843. [PMID: 36538026 PMCID: PMC10107779 DOI: 10.1111/ppl.13843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Wheat can be biofortified with different inorganic selenium (Se) forms, selenite or selenate. The choice of Se source influences the physiological response of the plant and the Se metabolites produced. We looked at selenium uptake, distribution and metabolization in wheat exposed to selenite, selenate and a 1:1 molar mixture of both to determine the impact of each treatment on the Se speciation in roots, shoots, and grains. To achieve a comprehensive quantification of the Se species, the complementarity of high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry and X-ray absorption spectroscopy was exploited. This approach allowed the identification of the six main selenium species: selenomethionine, selenocysteine, selenocystine, selenite, selenate, and elemental selenium. The three treatments resulted in similar total selenium concentration in grains, 90-150 mg Se kg-1 , but produced different effects in the plant. Selenite enhanced root accumulation (66% of selenium) and induced the maximum toxicity, whereas selenate favored shoot translocation (46%). With the 1:1 mixture, selenium was distributed along the plant generating lower toxicity. Although all conditions resulted in >92% of organic selenium in the grain, selenate produced mainly C-Se-C forms, such as selenomethionine, while selenite (alone or in the mixture) enhanced the production of C-Se-Se-C forms, such as selenocystine, modifying the selenoamino acid composition. These results provide a better understanding of the metabolization of selenium species which is key to minimize plant toxicity and any concomitant effect that may arise due to Se-biofortification.
Collapse
Affiliation(s)
- Maria Angels Subirana
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Roberto Boada
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Tingting Xiao
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Mercè Llugany
- Plant Physiology Group (BABVE), Facultat de BiociènciesUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Manuel Valiente
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
4
|
Huseynov TM, Guliyeva RT, Jafarova SH, Jafar NH. Sodium Selenite As Potential Adjuvant Therapy for COVID-19. Biophysics (Nagoya-shi) 2022; 67:775-778. [PMID: 36567968 PMCID: PMC9762656 DOI: 10.1134/s0006350922050074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
The review considers the role that selenium plays in RNA virus infections and, in particular, COVID-19. Many RNA viruses are selenium dependent because antisense interactions arise between viral RNAs and host mRNA regions containing the selencysteine insertion sequence to cause selenium deficiency, oxidative stress, immune response impairment, etc. Sodium selenite is a licensed selenium-containing product and is widely used in medicine, veterinary, and agriculture. Its advantages include the following. Sodium selenite rapidly penetrates through cell membranes in all tissues of the body; is intensely involved in metabolic processes accompanied by oxidation of sulfur-containing cell proteins; exerts an antiaggregation effect by reducing thromboxane activity; interrupts the contact of a virion (SARS-CoV-1 and SARS-CoV-2) with the membrane of a healthy cell; and suppresses NF-κB activity, which significantly increases in coronavirus infections. Arguments supporting the use of sodium selenite as adjuvant therapy in COVID-19 are discussed.
Collapse
Affiliation(s)
- T. M. Huseynov
- Institute of Biophysics, National Academy of Sciences of Azerbaijan, AZ1143 Baku, Azerbaijan
| | - R. T. Guliyeva
- Institute of Biophysics, National Academy of Sciences of Azerbaijan, AZ1143 Baku, Azerbaijan
| | - S. H. Jafarova
- Institute of Biophysics, National Academy of Sciences of Azerbaijan, AZ1143 Baku, Azerbaijan
| | | |
Collapse
|
5
|
Ramos-Inza S, Plano D, Sanmartín C. Metal-based compounds containing selenium: An appealing approach towards novel therapeutic drugs with anticancer and antimicrobial effects. Eur J Med Chem 2022; 244:114834. [PMID: 36215861 DOI: 10.1016/j.ejmech.2022.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
|
6
|
Morán-Serradilla C, Angulo-Elizari E, Henriquez-Figuereo A, Sanmartín C, Sharma AK, Plano D. Seleno-Metabolites and Their Precursors: A New Dawn for Several Illnesses? Metabolites 2022; 12:874. [PMID: 36144278 PMCID: PMC9504997 DOI: 10.3390/metabo12090874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an essential element for human health as it is involved in different physiological functions. Moreover, a great number of Se compounds can be considered potential agents in the prevention and treatment of some diseases. It is widely recognized that Se activity is related to multiple factors, such as its chemical form, dose, and its metabolism. The understanding of its complex biochemistry is necessary as it has been demonstrated that the metabolites of the Se molecules used to be the ones that exert the biological activity. Therefore, the aim of this review is to summarize the recent information about its most remarkable metabolites of acknowledged biological effects: hydrogen selenide (HSe-/H2Se) and methylselenol (CH3SeH). In addition, special attention is paid to the main seleno-containing precursors of these derivatives and their role in different pathologies.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Eduardo Angulo-Elizari
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
7
|
Xu T, Li Y, Wu HL, Chen H, Wu H, Guo M, Zhao M, Wang C, Lin T, Lin Z, Chen D, Xiang W, Zhu B. The inhibition of enterovirus 71 induced apoptosis by Durvillaea antarctica through P53 and STAT1 signaling pathway. J Med Virol 2021; 93:3532-3538. [PMID: 33230830 DOI: 10.1002/jmv.26693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
The infection of enterovirus 71 (EV71) resulted in hand, foot, and mouth disease and may lead to severe nervous system damage and even fatalities. There are no effective drugs to treat the EV71 virus and it is crucial to find novel drugs against it. Polysaccharide isolated from Durvillaea antarctica green algae has an antiviral effect. In this study, D. antarctica polysaccharide (DAPP) inhibited the infection of EV71 was demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), reverse transcription polymerase chain reaction, flow cytometry, and western blot. MTT assay showed that DAPP had no toxicity on Vero cells at the concentration 250 μg/ml. Furthermore, DAPP significantly reduced the RNA level of EV71 in a dose-dependent manner. Moreover, DAPP inhibited the Vero cells apoptosis induced by EV71 via the P53 signaling pathway. Meanwhile, the expression of signal transducer and activator of transcription 1 and mammalian target of rapamycin were increased and the proinflammatory cytokines were significantly inhibited by DAPP. Taken together, these results suggested that DAPP could be a potential pharmaceutical against the infection of EV71 virus.
Collapse
Affiliation(s)
- Tiantian Xu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hua-Lian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Haiyang Chen
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Houbo Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Min Guo
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingqi Zhao
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Changbing Wang
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tao Lin
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhengfang Lin
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Danyang Chen
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Wang C, Xia Y, Huo S, Shou D, Mei Q, Tang W, Li Y, Liu H, Zhou Y, Zhu B. Silencing of MEF2D by siRNA Loaded Selenium Nanoparticles for Ovarian Cancer Therapy. Int J Nanomedicine 2020; 15:9759-9770. [PMID: 33304100 PMCID: PMC7723231 DOI: 10.2147/ijn.s270441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Delivery of therapeutic small interfering RNA (siRNA) via functionalized nanoparticles holds great promise for cancer therapy. However, developing a safe and efficient delivery carrier of siRNA is a challenging issue. METHODS RGDfC peptide was used to modify the surface of selenium nanoparticles (SeNPs) to synthesize a biocompatible siRNA delivery vehicle (R-SeNPs), and MEF2D-siRNA was loaded onto R-SeNPs to prepare a functionalized selenium nanoparticle R-Se@MEF2D-siRNA. The chemical properties of R-SeNPs were characterized, and the anticancer efficacy as well as related mechanisms of R-Se@MEF2D-siRNA were further explored. RESULTS R-Se@MEF2D-siRNA was significantly taken up by SKOV3 cells and could enter SKOV3 cells mainly in the clathrin-associated endocytosis way. The result of in vitro siRNA release demonstrated that R-Se@MEF2D-siRNA could release MEF2D-siRNA quicker in a microenvironment simulating a lysosomal environment in tumor cells compared to a normal physiological environment. The results of qRT-PCR assay proved that R-Se@MEF2D-siRNA could effectively silence the expression of the MEF2D gene in SKOV3 cells. R-Se@MEF2D-siRNA remarkably suppressed the proliferation of SKOV3 cells and further triggered its apoptosis. In addition, R-Se@MEF2D-siRNA had the capability to disrupt mitochondrial membrane potential (MMP) in SKOV3 cells and resulted in the overproduction of reactive oxygen species (ROS), indicating that mitochondrial dysfunction and ROS generation played an important role in the apoptosis of SKOV3 cells induced by R-Se@MEF2D-siRNA. In vivo, R-Se@MEF2D-siRNA also exhibited excellent antitumor activity mainly through decreasing tumor cells proliferation and triggering their apoptosis in tumor-bearing nude mice. CONCLUSION R-Se@MEF2D-siRNA provides an alternative strategy for ovarian cancer treatment in the clinic.
Collapse
Affiliation(s)
- Changbing Wang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou510230, People’s Republic of China
| | - Yu Xia
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Shaochuan Huo
- Department of Orthopedics, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen518048, People’s Republic of China
- Shenzhen Research Institute of Guangzhou University of Chinese Medicine, Shenzhen518048, People’s Republic of China
| | - Diwen Shou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Qing Mei
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Wenjuan Tang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Yinghua Li
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou510180, People’s Republic of China
| | - Bing Zhu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510120, People’s Republic of China
| |
Collapse
|
9
|
Hiffler L, Rakotoambinina B. Selenium and RNA Virus Interactions: Potential Implications for SARS-CoV-2 Infection (COVID-19). Front Nutr 2020; 7:164. [PMID: 33015130 PMCID: PMC7498630 DOI: 10.3389/fnut.2020.00164] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 is an RNA virus responsible for the COVID-19 pandemic that already claimed more than 340,000 lives worldwide as of May 23, 2020, the majority of which are elderly. Selenium (Se), a natural trace element, has a key and complex role in the immune system. It is well-documented that Se deficiency is associated with higher susceptibility to RNA viral infections and more severe disease outcome. In this article, we firstly present evidence on how Se deficiency promotes mutations, replication and virulence of RNA viruses. Next, we review how Se might be beneficial via restoration of host antioxidant capacity, reduction of apoptosis and endothelial cell damages as well as platelet aggregation. It also appears that low Se status is a common finding in conditions considered at risk of severe COVID-19, especially in the elderly. Finally, we present a rationale for Se use at different stages of COVID-19. Se has been overlooked but may have a significant place in COVID-19 spectrum management, particularly in vulnerable elderly, and might represent a game changer in the global response to COVID-19.
Collapse
|
10
|
Hiffler L, Rakotoambinina B. Selenium and RNA Virus Interactions: Potential Implications for SARS-CoV-2 Infection (COVID-19). Front Nutr 2020. [PMID: 33015130 DOI: 10.2139/ssrn.3594240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
SARS-CoV-2 is an RNA virus responsible for the COVID-19 pandemic that already claimed more than 340,000 lives worldwide as of May 23, 2020, the majority of which are elderly. Selenium (Se), a natural trace element, has a key and complex role in the immune system. It is well-documented that Se deficiency is associated with higher susceptibility to RNA viral infections and more severe disease outcome. In this article, we firstly present evidence on how Se deficiency promotes mutations, replication and virulence of RNA viruses. Next, we review how Se might be beneficial via restoration of host antioxidant capacity, reduction of apoptosis and endothelial cell damages as well as platelet aggregation. It also appears that low Se status is a common finding in conditions considered at risk of severe COVID-19, especially in the elderly. Finally, we present a rationale for Se use at different stages of COVID-19. Se has been overlooked but may have a significant place in COVID-19 spectrum management, particularly in vulnerable elderly, and might represent a game changer in the global response to COVID-19.
Collapse
|
11
|
Hiffler L, Rakotoambinina B. Selenium and RNA Virus Interactions: Potential Implications for SARS-CoV-2 Infection (COVID-19). Front Nutr 2020. [PMID: 33015130 DOI: 10.31219/osf.io/vaqz6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
SARS-CoV-2 is an RNA virus responsible for the COVID-19 pandemic that already claimed more than 340,000 lives worldwide as of May 23, 2020, the majority of which are elderly. Selenium (Se), a natural trace element, has a key and complex role in the immune system. It is well-documented that Se deficiency is associated with higher susceptibility to RNA viral infections and more severe disease outcome. In this article, we firstly present evidence on how Se deficiency promotes mutations, replication and virulence of RNA viruses. Next, we review how Se might be beneficial via restoration of host antioxidant capacity, reduction of apoptosis and endothelial cell damages as well as platelet aggregation. It also appears that low Se status is a common finding in conditions considered at risk of severe COVID-19, especially in the elderly. Finally, we present a rationale for Se use at different stages of COVID-19. Se has been overlooked but may have a significant place in COVID-19 spectrum management, particularly in vulnerable elderly, and might represent a game changer in the global response to COVID-19.
Collapse
|