1
|
Paradiso VM, Fioschi G, Tripaldi M, Sanarica L, Pisarra C, Noviello M, Prezioso I, Gambacorta G. Low-pressure continuous dynamic extraction from oak chips combined with passive micro-oxygenation to tune red wine properties. Heliyon 2024; 10:e36100. [PMID: 39224380 PMCID: PMC11367132 DOI: 10.1016/j.heliyon.2024.e36100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Static infusion of oak chips in wine is a common practice during wine ageing, aimed at improving sensory properties and stability of wines. The wine/chips contact required to reach the desired effect can last several weeks or months. A low-pressure continuous dynamic (LPCD) extractor in which a closed-circle, low-pressure continuous flow of wine passes through an extraction cell filled with chips, was evaluated as a tool to tune red wine properties in few hours. The aim of this work was to evaluate the effect of the use of a LPCD extractor the effect on color, volatile compounds and sensory properties of a Primitivo wine, as well as to assess the combined effect of LPCD extractor, passive microxygenation through polyethylenetereftalate (PET) containers and exogenous tannins. Their combined effect caused a significant increase of stabilized pigments was observed, without compromising the aroma profile. LPCD extraction, passive micro-oxygenation through plastic materials and enological tannins can be considered as a low-cost, and potentially low-impact, integrated technological platform suitable to tune wine sensory properties and stability, when either traditional approaches (such as barrel aging) or other assisted extraction technologies are not applicable or preferred, even in small wineries.
Collapse
Affiliation(s)
- Vito Michele Paradiso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. 6, Lecce-Monteroni, I-73100, Lecce, Italy
| | - Gabriele Fioschi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. 6, Lecce-Monteroni, I-73100, Lecce, Italy
| | | | | | | | - Mirella Noviello
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126, Bari, Italy
| | - Ilaria Prezioso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. 6, Lecce-Monteroni, I-73100, Lecce, Italy
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126, Bari, Italy
| |
Collapse
|
2
|
Monteiro A, Pereira S, Bernardo S, Gómez-Cadenas A, Moutinho-Pereira J, Dinis LT. Biochemical analysis of three red grapevine varieties during three phenological periods grown under Mediterranean climate conditions. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:855-867. [PMID: 38886872 DOI: 10.1111/plb.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
In Mediterranean regions, severe summers are becoming more common, leading to restrictions to vine productivity and yield quality, requiring sustainable practices to support this sector. We assessed the behaviour of three red grapevine varieties from the Douro Region to examine their tolerance to summer climate stress from the perspective that the less common varieties may have potential for increased use in a climate change scenario. Leaf and fruit biochemical profile, antioxidant activity and fruit colorimetric parameters were assessed at different phenological stages in Aragonez (AR), Tinto Cão (TC) and Touriga Nacional (TN) grape varieties. All three varieties exhibit significant variability in phenological timing, influenced by genetic and environmental factors. Photosynthetic pigment strategies differed among varieties. Chlorophyll content in AR was high to cope with high radiation, while TN displaying a balanced approach, and TC had lower pigment levels, with higher levels of phenolics, antioxidants, and soluble sugars, particularly during stress. The variations in berry biochemical profile highlight the distinct characteristics of the varieties. TC and TN show potential for coping with climate change, having elevated total acidity, while AR has larger and heavier berries with distinct coloration. These findings reinforce the need to study the behaviour of different varieties in each Terroir, to understand their diverse strategies to deal with summer climate stress. This will help in selecting the most suitable variety for these conditions under vineyard management in the Douro Region.
Collapse
Affiliation(s)
- A Monteiro
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - S Pereira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - S Bernardo
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - A Gómez-Cadenas
- Departmento de Biología, Bioquímica y Ciencias Naturalesl, Universitat Jaume I, Castellón de la Plana, Spain
| | - J Moutinho-Pereira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - L-T Dinis
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
3
|
Sureram S, Chutiwitoonchai N, Pooprasert T, Sangsopha W, Limjiasahapong S, Jariyasopit N, Sirivatanauksorn Y, Khoomrung S, Mahidol C, Ruchirawat S, Kittakoop P. Discovery of procyanidin condensed tannins of (-)-epicatechin from Kratom, Mitragyna speciosa, as virucidal agents against SARS-CoV-2. Int J Biol Macromol 2024; 273:133059. [PMID: 38866269 DOI: 10.1016/j.ijbiomac.2024.133059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Kratom, Mitragyna speciosa, is one of the most popular herbs in the West and Southeast Asia. A number of previous works have focused on bioactive alkaloids in this plant; however, non-alkaloids have never been investigated for their biological activities. Antiviral and virucidal assays of a methanol leaf extract of Kratom, M. speciosa, revealed that a crude extract displayed virucidal activity against the SARS-CoV-2. Activity-guided isolation of a methanol leaf extract of Kratom led to the identification of B-type procyanidin condensed tannins of (-)-epicatechin as virucidal compounds against SARS-CoV-2. The fraction containing condensed tannins exhibited virucidal activity with an EC50 value of 8.38 μg/mL and a selectivity index (SI) value >23.86. LC-MS/MS analysis and MALDI-TOF MS identified the structure of the virucidal compounds in Kratom as B-type procyanidin condensed tannins, while gel permeation chromatograph (GPC) revealed weight average molecular weight of 238,946 Da for high molecular-weight condensed tannins. In addition to alkaloids, (-)-epicatechin was found as a major component in the leaves of M. speciosa, but it did not have virucidal activity. Macromolecules of (-)-epicatechin, i.e., procyanidin condensed tannins, showed potent virucidal activity against SARS-CoV-2, suggesting that the high molecular weights of these polyphenols are important for virucidal activity.
Collapse
Affiliation(s)
- Sanya Sureram
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand University, Thailand
| | - Nopporn Chutiwitoonchai
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Pathumthani 12120, Thailand.
| | - Tam Pooprasert
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand University, Thailand
| | - Watchara Sangsopha
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand University, Thailand
| | - Suphitcha Limjiasahapong
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Narumol Jariyasopit
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yongyut Sirivatanauksorn
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakda Khoomrung
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Center of Research Excellent in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chulabhorn Mahidol
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand University, Thailand; Chulabhorn Graduate Institute, Program in Chemical Sciences, Kamphaeng Phet, 6 Road, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand University, Thailand; Chulabhorn Graduate Institute, Program in Chemical Sciences, Kamphaeng Phet, 6 Road, Laksi, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand University, Thailand; Chulabhorn Graduate Institute, Program in Chemical Sciences, Kamphaeng Phet, 6 Road, Laksi, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand.
| |
Collapse
|
4
|
Lyu X, Zhou Y, Li F, Zhou M, Wei C, Lin L, Li X, Zhang C. Improving Muscat Hamburg Wine Quality with Innovative Fermentation Strategies Using Schizosaccharomyces pombe Derived from Fermented Grains of Sauce-Flavor Baijiu. Foods 2024; 13:1648. [PMID: 38890877 PMCID: PMC11172094 DOI: 10.3390/foods13111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
This study investigates innovative approaches to improve the quality and aroma characteristics of Muscat Hamburg wine production by substituting the conventional Saccharomyces cerevisiae yeast with an efficient fermentation strain of Schizosaccharomyces pombe. The typical use of S. cerevisiae in Muscat Hamburg wine often leads to uniformity and prolonged processing times, requiring subsequent malolactic fermentation to degrade excessive malic acid. The study advocates for the replacement of S. cerevisiae with a specific S. pombe strain, Sp-410, isolated from the fermented grains of sauce-flavor Baijiu, a Chinese spirit. Muscat Hamburg wine fermented with the S. pombe strain demonstrates decreased malic acid levels, offering a potential alternative to malolactic fermentation. However, exclusive S. pombe fermentation may result in an overproduction of acetic acid metabolites, leading to a monotonous taste. In response, the study proposes a mixed fermentation approach, combining the S. pombe strain with a Saccharomyces uvarum strain and a non-Saccharomyces yeast, Torulaspora delbrueckii. The optimized mixed fermentation strategies (M:SP+TD and M60SP+TD) involve specific proportions and intervals of inoculation, aiming to enhance the quality and aroma complexity of Muscat Hamburg wine. In conclusion, this research contributes to advancing the production of high-quality Muscat Hamburg wines, utilizing S. pombe as the primary yeast strain and implementing mixed fermentation methodologies.
Collapse
Affiliation(s)
- Xiaotong Lyu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.L.); (Y.Z.); (M.Z.); (L.L.); (X.L.)
| | - Yifei Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.L.); (Y.Z.); (M.Z.); (L.L.); (X.L.)
| | - Furong Li
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China;
| | - Meiyi Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.L.); (Y.Z.); (M.Z.); (L.L.); (X.L.)
| | - Chunhui Wei
- Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Yibin 643000, China;
| | - Liangcai Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.L.); (Y.Z.); (M.Z.); (L.L.); (X.L.)
| | - Xin Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.L.); (Y.Z.); (M.Z.); (L.L.); (X.L.)
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.L.); (Y.Z.); (M.Z.); (L.L.); (X.L.)
| |
Collapse
|
5
|
Amarowicz R, Pegg RB. Condensed tannins-Their content in plant foods, changes during processing, antioxidant and biological activities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:327-398. [PMID: 38906590 DOI: 10.1016/bs.afnr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Condensed tannins are considered nutritionally undesirable, because they precipitate proteins, inhibit digestive enzymes, and can affect the absorption of vitamins and minerals. From the consumer's point of view, they impart astringency to foods. Yet, they are viewed as a double-edged sword, since they possess antioxidant and anti-inflammatory activities. Intake of a small quantity of the right kind of tannins may in fact be beneficial to human health. This chapter reports on the chemical structure of condensed tannins, their content in plants and food of plant origin, how they are extracted, and methods for their determination. A description of the effects of processing on condensed tannins is discussed and includes soaking, dehulling, thermal processing (i.e., cooking, boiling, autoclaving, extrusion), and germination. The astringency of condensed tannins is described in relation to their interactions with proteins. Finally, details about the biological properties of condensed tannins, including their antimicrobial, anti-inflammatory, anticancer, anti-diabetic, and anti-obesity activities, are reviewed.
Collapse
Affiliation(s)
- Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Ronald B Pegg
- Department of Food Science & Technology, The University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Velázquez-Martínez RI, Criado C, Muñoz-González C, Crespo J, Pozo-Bayón MÁ. Evaluation of the Long-Lasting Flavour Perception after the Consumption of Wines Treated with Different Types of Oenological Additives Considering Individual 6-n-Propylthiouracil Taster Status. Foods 2023; 12:2835. [PMID: 37569104 PMCID: PMC10416954 DOI: 10.3390/foods12152835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Due to the limited scientific knowledge on the impact of commercial oenological additives on flavour perception, the aim of this work was to evaluate the effect of different types of oenological additives on the long-lasting flavour perception (flavour persistence) during wine tasting, also considering the effect of the individual PROP (6-n-propylthiouracil) taster status (PTS). To do so, white and red wines with two oenotannins (ellagitannin and gallotannin) and a commercial yeast mannoprotein were prepared. A control wine of each type was also made without additives. All the wines were spiked with a mixture of aromatic compounds responsible for the "fruity" and "woody" notes. Retronasal aroma and astringency were evaluated at the same time using time-intensity (TI) methodology and a trained panel (n = 40), including PROP non-tasters (NTs) and tasters (Ts). The results showed a significant effect of PTS on the long-lasting perception of astringency, being Ts who showed higher values than NTs for most TI parameters. However, PTS did not affect aroma persistence. In addition, the three oenological additives had an effect on astringency and retronasal aroma perception. They significantly increased the long-lasting perception of astringency compared to the control, while gallotannin also increased the persistence of the woody aroma.
Collapse
Affiliation(s)
- Rafael I. Velázquez-Martínez
- Instituto de Investigacion en Ciencias de la Alimentacion, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain; (R.I.V.-M.); (C.C.); (C.M.-G.)
| | - Celia Criado
- Instituto de Investigacion en Ciencias de la Alimentacion, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain; (R.I.V.-M.); (C.C.); (C.M.-G.)
| | - Carolina Muñoz-González
- Instituto de Investigacion en Ciencias de la Alimentacion, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain; (R.I.V.-M.); (C.C.); (C.M.-G.)
| | - Julia Crespo
- Departamento de Investigación Agroambiental, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), El Encín, A-2 km 38.2, 28805 Alcalá de Henares, Spain;
| | - María Ángeles Pozo-Bayón
- Instituto de Investigacion en Ciencias de la Alimentacion, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain; (R.I.V.-M.); (C.C.); (C.M.-G.)
| |
Collapse
|
7
|
Ma Y, Yu K, Chen X, Wu H, Xiao X, Xie L, Wei Z, Xiong R, Zhou X. Effects of Plant-Derived Polyphenols on the Antioxidant Activity and Aroma of Sulfur-Dioxide-Free Red Wine. Molecules 2023; 28:5255. [PMID: 37446916 DOI: 10.3390/molecules28135255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Significant efforts have been made in recent years to produce healthier wines, with the primary goal of reducing the use of sulfur dioxide (SO2), which poses health risks. This study aimed to assess the effectiveness of three plant-derived polyphenols (dihydromyricetin, resveratrol, and catechins) as alternatives to SO2 in wine. After a three-month aging process, the wines were evaluated using analytical techniques such as high-performance liquid chromatography, colorimetry, gas chromatography-olfactometry-mass spectrometry, as well as electronic nose and electronic tongue analyses, with the purpose to assess parameters including antioxidant activity, color, contents of volatile aroma compounds, and sensory characteristics. The results demonstrated various degrees of improvement in the antioxidant activity, aromatic intensity, and sensory characteristics of wines using polyphenols. Notably, dihydromyricetin (200 mg/L) exhibited the strongest antioxidant activity, with increases of 18.84%, 23.28%, and 20.87% in 2,2-diphenyl-1-picrylhydrazyl, 2,2'azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and ferric-ion-reducing antioxidant power assays, respectively. Resveratrol (200 mg/L) made the most significant contribution to volatile aroma compounds, with an 8.89% increase in the total content of alcohol esters. In E-nose analysis, catechins (200 mg/L) showed the highest response to aromatic compounds and the lowest response to volatile sulfur compounds, while also exhibiting the best sensory characteristics. Therefore, the three plant-derived polyphenols investigated here exhibited the potential to enhance wine quality as alternatives to SO2. However, it is important to consider the specific impact of different polyphenols on wine; hence, suitable antioxidants should be selected in wine production according to specific requirements.
Collapse
Affiliation(s)
- Yi Ma
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Kangjie Yu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Xiaojiao Chen
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Huixiang Wu
- Department of Light Industry Textile Garment Testing, Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510670, China
| | - Xiongjun Xiao
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Liming Xie
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Ziyun Wei
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Rong Xiong
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Xun Zhou
- Department of Light Industry Textile Garment Testing, Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510670, China
| |
Collapse
|
8
|
Uysal RS, Issa-Issa H, Sendra E, Carbonell-Barrachina ÁA. Changes in anthocyanin pigments, trans-resveratrol, and colorimetric characteristics of Fondillón wine and other “Monastrell” wines during the aging period. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
AbstractThe studied red wines, which are Fondillón, reserva, crianza, and young, are prepared from exclusive “Monastrell” grapes, and protected under the Alicante Denomination of Origin (Alicante, Spain). The objectives of the present study were (i) to show the effect of aging period on the amount of anthocyanin pigments, trans-resveratrol, and the colorimetric characteristics (color intensity, color density, and tonality) of Fondillón and other Monastrell wines (young, crianza, and reserva) which have different aging periods, and (ii) to propose a new traceability method for the determination of the Fondillón originality. Identification of anthocyanin compounds and determination of trans-resveratrol content were performed using LC–MS/MS. Correlation analysis was performed among anthocyanin compounds and color parameters. A sharp decrease in the anthocyanins content was observed in Fondillón wine. Besides, statistically significant changes were found in all colorimetric parameters between young and Fondillón samples. A significant change from red hue to brick red/yellow hue was observed between the colors of young and Fondillón wines, respectively. A significant decrease in the content of trans-resveratrol was also observed as a result of the aging period of these “Monastrell” wines. In this study, anthocyanin compounds of Fondillón wine were identified for the first time and their effects on the colorimetric parameters of the wine were revealed. Consequently, the authenticity of Fondillón wines can be determined by monitoring of anthocyanin compounds and trans-resveratrol.
Collapse
|
9
|
Zhang XK, Jeffery DW, Li DM, Lan YB, Zhao X, Duan CQ. Red wine coloration: A review of pigmented molecules, reactions, and applications. Compr Rev Food Sci Food Saf 2022; 21:3834-3866. [PMID: 35912664 DOI: 10.1111/1541-4337.13010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 01/28/2023]
Abstract
Color is one of the most distinctive qualities of red wine. Despite new knowledge in the field of pigment identification, copigmentation, and oxidation being forthcoming, there is still a large gap between the fundamental research and practical winemaking outcomes. A state-of-art review from these two aspects is, therefore, necessary. This review first introduces updated knowledge about the primary pigments in wine, with emphasis on their physicochemical properties. Then, the mechanisms of copigmentation and oxidation are elucidated in detail, along with their relative contributions to wine color. Finally, the practical effects of copigmentation and micro-oxygenation (MOX) in winemaking are summarized and discussed. In general, wine coloration is ultimately determined by the anthocyanin flavylium cation, which is greatly influenced by wine pH. In young red wine, grape-derived anthocyanins and nonanthocyanin polyphenols (as copigments) are the foundation for wine coloration. During aging and storage, anthocyanin derivatives are formed via various chemical reactions, where moderate oxidation plays a vital role, whereas copigmentation constantly decreases. The essence of wine color evolution relates to the changes of physicochemical properties of primary pigments in wine, where the hydration equilibrium gradually diminishes. In practice, the effects of copigment addition and MOX during real vinification can be viewed as somewhat controversial, considering that many studies showed different effects on wine color and pigment concentration. Universal features can be summarized but some phenomena still remain unclear and deserve further exploration.
Collapse
Affiliation(s)
- Xin-Ke Zhang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
- "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing, China
| | - David W Jeffery
- Department of Wine Science and Waite Research Institute, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - De-Mei Li
- Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
- "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing, China
| | - Yi-Bin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xu Zhao
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
10
|
Paissoni MA, Bitelli G, Vilanova M, Montanini C, Río Segade S, Rolle L, Giacosa S. Relative impact of oenological tannins in model solutions and red wine according to phenolic, antioxidant, and sensory traits. Food Res Int 2022; 157:111203. [DOI: 10.1016/j.foodres.2022.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022]
|
11
|
Impact of Different Oak Chips’ Aging on the Volatile Compounds and Sensory Characteristics of Vitis amurensis Wines. Foods 2022; 11:foods11081126. [PMID: 35454713 PMCID: PMC9032624 DOI: 10.3390/foods11081126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 04/02/2022] [Indexed: 12/17/2022] Open
Abstract
In this work, different oak chips were used to age Vitis amurensis wine, and the effects on sensory properties were observed. Twenty-one different oak chips were added to a one-year-old wine made by a traditional technique. The wine was aged for 6 months before analysis by CIELab for color parameters, GC–MS for volatile compounds, and electronic tongue and a tasting panel for sensory properties. The results showed that the addition of any tested oak chip could significantly strengthen the wine’s red color. Among 61 volatile compounds, alcohols presented the highest concentrations (873 to 1401 mg/L), followed by esters (568 to 1039 mg/L) and organic acids (157 to 435 mg/L), while aldehydes and volatile phenols occurred at low concentrations. Different oak species with different toasting levels could affect, to varying degrees, the concentrations of esters, alcohols, and volatile phenols, but to a lesser extent those of aldehydes. Sensory analysis by a tasting panel indicated that non- and moderately roasted oak chips gave the wines higher scores than those with heavy toasting levels. The major mouthfeel descriptors determined by electronic tongue were in good agreement with those from the tasting panel.
Collapse
|
12
|
Strati IF, Tataridis P, Shehadeh A, Chatzilazarou A, Bartzis V, Batrinou A, Sinanoglou VJ. Impact of tannin addition on the antioxidant activity and sensory character of Malagousia white wine. Curr Res Food Sci 2021; 4:937-945. [PMID: 34934957 PMCID: PMC8660703 DOI: 10.1016/j.crfs.2021.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022] Open
Abstract
Enological tannins are assessed as promising alternative to SO2 in order to control oxidative process during winemaking, due to allergic reactions incurred by sulfite sensitive individuals. In the present study, the commercial enological Tara tannin "Vitanil B″ was added, as alternative to the addition of sulfites, at different concentrations (100-500 mg/L) in white wine from grapes of Vitis vinifera L. var. Malagousia in order to enhance antioxidant stability and sensory character of the wine. Considering photometric analyses and chromatic parameters results, tannin addition (300 mg/L) in Malagousia enhanced total phenolic content, antioxidant and antiradical activity and prevented color deterioration, for a storage period of 100 d, compared to control and sulfited wines. Moreover, aroma quality, body, after taste and overall acceptance of wine treated with 300 mg/L tannin, were highly appreciated and received the highest scores. The overall evaluation of tannin addition was performed by Principal Component Analysis, leading to discrimination of wines, according to photometric, color and sensory analysis parameters. Conclusively, tannin addition resulted in a considerable increase of total phenolic content, antioxidant and antiradical activity, compared to the control and sulfited wines, maintaining the sensory parameters and overall acceptance of Malagousia wine.
Collapse
Affiliation(s)
- Irini F. Strati
- Department of Food Science and Technology, University of West Attica, Campus Alsos Egaleo, Ag. Spiridonos 28, GR 12243, Egaleo-Athens, Greece
| | - Panagiotis Tataridis
- Wine, Vine and Beverage Sciences Department, University of West Attica, Campus Alsos Egaleo, Ag. Spiridonos 28, GR 12243, Egaleo-Athens, Greece
| | - Adnan Shehadeh
- Wine, Vine and Beverage Sciences Department, University of West Attica, Campus Alsos Egaleo, Ag. Spiridonos 28, GR 12243, Egaleo-Athens, Greece
| | - Arhontoula Chatzilazarou
- Wine, Vine and Beverage Sciences Department, University of West Attica, Campus Alsos Egaleo, Ag. Spiridonos 28, GR 12243, Egaleo-Athens, Greece
| | - Vasileios Bartzis
- Department of Food Science and Technology, University of West Attica, Campus Alsos Egaleo, Ag. Spiridonos 28, GR 12243, Egaleo-Athens, Greece
| | - Anthimia Batrinou
- Department of Food Science and Technology, University of West Attica, Campus Alsos Egaleo, Ag. Spiridonos 28, GR 12243, Egaleo-Athens, Greece
| | - Vassilia J. Sinanoglou
- Department of Food Science and Technology, University of West Attica, Campus Alsos Egaleo, Ag. Spiridonos 28, GR 12243, Egaleo-Athens, Greece
| |
Collapse
|