1
|
Awang H, Hezam A, Peppel T, Strunk J. Enhancing the Photocatalytic Activity of Halide Perovskite Cesium Bismuth Bromide/Hydrogen Titanate Heterostructures for Benzyl Alcohol Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:752. [PMID: 38727346 PMCID: PMC11085227 DOI: 10.3390/nano14090752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Halide perovskite Cs3Bi2Br9 (CBB) has excellent potential in photocatalysis due to its promising light-harvesting properties. However, its photocatalytic performance might be limited due to the unfavorable charge carrier migration and water-induced properties, which limit the stability and photocatalytic performance. Therefore, we address this constraint in this work by synthesizing a stable halide perovskite heterojunction by introducing hydrogen titanate nanosheets (H2Ti3O7-NS, HTiO-NS). Optimizing the weight % (wt%) of CBB enables synthesizing the optimal CBB/HTiO-NS, CBHTNS heterostructure. The detailed morphology and structure characterization proved that the cubic shape of CBB is anchored on the HTiO-NS surface. The 30 wt% CBB/HTiO-NS-30 (CBHTNS-30) heterojunction showed the highest BnOH photooxidation performance with 98% conversion and 75% benzoic acid (BzA) selectivity at 2 h under blue light irradiation. Detailed optical and photoelectrochemical characterization showed that the incorporating CBB and HTiO-NS widened the range of the visible-light response and improved the ability to separate the photo-induced charge carriers. The presence of HTiO-NS has increased the oxidative properties, possibly by charge separation in the heterojunction, which facilitated the generation of superoxide and hydroxyl radicals. A possible reaction pathway for the photocatalytic oxidation of BnOH to BzH and BzA was also suggested. Furthermore, through scavenger experiments, we found that the photogenerated h+, e- and •O2- play an essential role in the BnOH photooxidation, while the •OH have a minor effect on the reaction. This work may provide a strategy for using HTiO-NS-based photocatalyst to enhance the charge carrier migration and photocatalytic performance of CBB.
Collapse
Affiliation(s)
- Huzaikha Awang
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany;
- Preparatory Centre for Science and Technology, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Abdo Hezam
- School of Natural Sciences, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany;
| | - Tim Peppel
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany;
| | - Jennifer Strunk
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany;
- School of Natural Sciences, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany;
| |
Collapse
|
2
|
Kim DY, Jung JG, Lee YJ, Park MH. Lead-Free Halide Perovskite Nanocrystals for Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6317. [PMID: 37763594 PMCID: PMC10532894 DOI: 10.3390/ma16186317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Lead-based halide perovskite nanocrystals (PeNCs) have demonstrated remarkable potential for use in light-emitting diodes (LEDs). This is because of their high photoluminescence quantum yield, defect tolerance, tunable emission wavelength, color purity, and high device efficiency. However, the environmental toxicity of Pb has impeded their commercial viability owing to the restriction of hazardous substances directive. Therefore, Pb-free PeNCs have emerged as a promising solution for the development of eco-friendly LEDs. This review article presents a detailed analysis of the various compositions of Pb-free PeNCs, including tin-, bismuth-, antimony-, and copper-based perovskites and double perovskites, focusing on their stability, optoelectronic properties, and device performance in LEDs. Furthermore, we address the challenges encountered in using Pb-free PeNC-LEDs and discuss the prospects and potential of these Pb-free PeNCs as sustainable alternatives to lead-based PeLEDs. In this review, we aim to shed light on the current state of Pb-free PeNC LEDs and highlight their significance in driving the development of eco-friendly LED technologies.
Collapse
Affiliation(s)
- Do-Young Kim
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Jae-Geun Jung
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Ye-Ji Lee
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
| | - Min-Ho Park
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
- Integrative Institute of Basic Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| |
Collapse
|
3
|
Investigation of CsBr:BiBr3 precursor ratio concentration on cesium bismuth bromide perovskite formation. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Lee M, Chung H, Hong SV, Woo HY, Chae JY, Yoon TY, Diroll BT, Paik T. Dynamically tunable multicolor emissions from zero-dimensional Cs 3LnCl 6 (Ln: europium and terbium) nanocrystals with wide color gamut. NANOSCALE 2023; 15:1513-1521. [PMID: 36472217 DOI: 10.1039/d2nr04771c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study demonstrates dynamically tunable multicolor emissions from a single component, zero-dimensional (0-D) cesium europium chloride (Cs3EuCl6) and cesium terbium chloride (Cs3TbCl6) nanocrystals (NCs). Highly uniform colloidal Cs3EuCl6 and Cs3TbCl6 NCs are synthesized via the heating-up method. Excitation-wavelength-dependent multicolor emissions from Cs3EuCl6 and Cs3TbCl6 NCs are observed. Under excitation of 330-400 nm, both NCs exhibit blue photoluminescence (PL). Under wavelengths shorter than 330 nm, characteristic red and green emissions are observed from Cs3EuCl6 and Cs3TbCl6, respectively, owing to the atomic emissions from the f-orbitals in trivalent europium (Eu3+) and terbium (Tb3+) ions. Cs3EuCl6 and Cs3TbCl6 NCs exhibit broadband excitation spectra and enhanced absorption properties. Particularly, Cs3EuCl6 NCs exhibit a very narrow full-width at half-maximum in both blue and red PL and no overlap between the two spectra. The photophysical properties of these NCs are further investigated to understand the multicolor PL origins by time-resolved and temperature-dependent PL measurements. Finally, the potential applications of Cs3EuCl6 and Cs3TbCl6 NCs as anti-counterfeiting inks for high-level security are demonstrated. Given their broadband excitation with enhanced absorption properties and dynamically tunable colors with a wide color gamut, Cs3EuCl6 and Cs3TbCl6 NCs have great potential as novel multicolor NC emitters for many emerging applications.
Collapse
Affiliation(s)
- Minji Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Hyesun Chung
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Seong Vin Hong
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Ho Young Woo
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Ji-Yeon Chae
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Tae Yeol Yoon
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois, USA
| | - Taejong Paik
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Yang Z, Meng W, Kang J, Wang X, Shu X, Chen T, Xu R, Xu F, Hong F. Unraveling the Defect-Dominated Broadband Emission Mechanisms in (001)-Preferred Two-Dimensional Layered Antimony-Halide Perovskite Film. J Phys Chem Lett 2022; 13:11736-11744. [PMID: 36515687 DOI: 10.1021/acs.jpclett.2c03151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
By adding molar-controlled SbCl3 in a Cs3Sb2Cl9 precursor, we employed a low-temperature solution-processed approach to prepare high-quality (001)-preferred Cs3Sb2Cl9 thin film, which demonstrates a stable defect-dominated broadband emission at room temperature. Density functional theory calculations reveal that the defect emission originates from the donor-acceptor pair (DAP) recombination between chlorine vacancy (VCl) and cesium vacancy (VCs). Furthermore, VCl + VCs DAP is more stable on the (001) surface. The improved film quality and the more stable VCl + VCs DAP increase the activation energy related to defect states, resulting in an enhancement of the defect emission for the high-quality (001)-preferred film. This work provides deep insight into the key role of the (001) surface in defect emission and a feasible strategy to enhance the defect emission in 2D halide perovskites A3B2X9 (A = CH3NH3, Cs, Rb; B = Bi, Sb; X = Cl, Br, I) by control of the thin film preferred orientation.
Collapse
Affiliation(s)
- Zichen Yang
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Weiwei Meng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan430072, China
| | - Jiaxing Kang
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Xiang Wang
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Xin Shu
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Teng Chen
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai200444, China
| | - Run Xu
- Department of Electronic Information Materials, School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
- Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan314113, China
| | - Fei Xu
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
- Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan314113, China
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai200433, China
| | - Feng Hong
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
- Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan314113, China
| |
Collapse
|
6
|
Mu Y, He Z, Wang K, Pi X, Zhou S. Recent progress and future prospects on halide perovskite nanocrystals for optoelectronics and beyond. iScience 2022; 25:105371. [PMID: 36345343 PMCID: PMC9636552 DOI: 10.1016/j.isci.2022.105371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As an emerging new class of semiconductor nanomaterials, halide perovskite (ABX3, X = Cl, Br, or I) nanocrystals (NCs) are attracting increasing attention owing to their great potential in optoelectronics and beyond. This field has experienced rapid breakthroughs over the past few years. In this comprehensive review, halide perovskite NCs that are either freestanding or embedded in a matrix (e.g., perovskites, metal-organic frameworks, glass) will be discussed. We will summarize recent progress on the synthesis and post-synthesis methods of halide perovskite NCs. Characterizations of halide perovskite NCs by using a variety of techniques will be present. Tremendous efforts to tailor the optical and electronic properties of halide perovskite NCs in terms of manipulating their size, surface, and component will be highlighted. Physical insights gained on the unique optical and charge-carrier transport properties will be provided. Importantly, the growing potential of halide perovskite NCs for advancing optoelectronic applications and beyond including light-emitting devices (LEDs), solar cells, scintillators and X-ray imaging, lasers, thin-film transistors (TFTs), artificial synapses, and light communication will be extensively discussed, along with prospecting their development in the future.
Collapse
Affiliation(s)
- Yuncheng Mu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ziyu He
- Department of Material Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Kun Wang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Advanced Semiconductors and Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Shu Zhou
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
7
|
Chang J, Wang Y, Doert T, Ruck M. The Polymorphic Nature of
M
3
BiBr
6
Halides (
M
=Cs, Rb) and their Reversible Intercalation with Water to Isomorphous Hydrates at Room Temperature. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jen‐Hui Chang
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden 01062 Dresden Germany
| | - Yiran Wang
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden 01062 Dresden Germany
| | - Thomas Doert
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden 01062 Dresden Germany
| | - Michael Ruck
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden 01062 Dresden Germany
- Max Planck Institut für Chemische Physik fester Stoffe Nöthnitzer Straße 40 01187 Dresden Germany
| |
Collapse
|
8
|
Inoishi A, Hokazono M, Kashiwazaki E, Setoguchi N, Sakai T, Sakamoto R, Okada S. An All‐Solid‐State Bromide‐Ion Battery. ChemElectroChem 2021. [DOI: 10.1002/celc.202001481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Atsushi Inoishi
- Institute for Materials Chemistry and Engineering Kyushu University Kasuga-Koen 6-1 Kasuga-shi Fukuoka 816-8580 Japan
| | - Masahiro Hokazono
- Institute for Materials Chemistry and Engineering Kyushu University Kasuga-Koen 6-1 Kasuga-shi Fukuoka 816-8580 Japan
| | - Eiko Kashiwazaki
- Institute for Materials Chemistry and Engineering Kyushu University Kasuga-Koen 6-1 Kasuga-shi Fukuoka 816-8580 Japan
| | - Naoko Setoguchi
- Institute for Materials Chemistry and Engineering Kyushu University Kasuga-Koen 6-1 Kasuga-shi Fukuoka 816-8580 Japan
| | - Takaaki Sakai
- Global Zero Emission Research Center National Institute of Advanced Industrial Science and Technology 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Ryo Sakamoto
- Interdisciplinary Graduate School of Engineering Sciences Kyushu University Kasuga-Koen 6-1 Kasuga-shi Fukuoka 816-8580 Japan
| | - Shigeto Okada
- Institute for Materials Chemistry and Engineering Kyushu University Kasuga-Koen 6-1 Kasuga-shi Fukuoka 816-8580 Japan
| |
Collapse
|