1
|
Dhir S, Derue H, Ribeiro-da-Silva A. Temporal changes of spinal microglia in murine models of neuropathic pain: a scoping review. Front Immunol 2024; 15:1460072. [PMID: 39735541 PMCID: PMC11671780 DOI: 10.3389/fimmu.2024.1460072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024] Open
Abstract
Neuropathic pain (NP) is an ineffectively treated, debilitating chronic pain disorder that is associated with maladaptive changes in the central nervous system, particularly in the spinal cord. Murine models of NP looking at the mechanisms underlying these changes suggest an important role of microglia, the resident immune cells of the central nervous system, in various stages of disease progression. However, given the number of different NP models and the resource limitations that come with tracking longitudinal changes in NP animals, many studies fail to truly recapitulate the patterns that exist between pain conditions and temporal microglial changes. This review integrates how NP studies are being carried out in murine models and how microglia changes over time can affect pain behavior in order to inform better study design and highlight knowledge gaps in the field. 258 peer-reviewed, primary source articles looking at spinal microglia in murine models of NP were selected using Covidence. Trends in the type of mice, statistical tests, pain models, interventions, microglial markers and temporal pain behavior and microglia changes were recorded and analyzed. Studies were primarily conducted in inbred, young adult, male mice having peripheral nerve injury which highlights the lack of generalizability in the data currently being collected. Changes in microglia and pain behavior, which were both increased, were tested most commonly up to 2 weeks after pain initiation despite aberrant microglia activity also being recorded at later time points in NP conditions. Studies using treatments that decrease microglia show decreased pain behavior primarily at the 1- and 2-week time point with many studies not recording pain behavior despite the involvement of spinal microglia dysfunction in their development. These results show the need for not only studying spinal microglia dynamics in a variety of NP conditions at longer time points but also for better clinically relevant study design considerations.
Collapse
Affiliation(s)
- Simran Dhir
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Hannah Derue
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Yin Y, Yan Y, Jin X, Fu Y, Chen Y. Netrin-1 Promotes M2 Type Activation and Inhibits Pyroptosis of Microglial Cells by Depressing RAC1/Nf-?B Pathway to Alleviate Inflammatory Pain. Physiol Res 2024; 73:305-314. [PMID: 38710054 PMCID: PMC11081182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/28/2023] [Indexed: 05/08/2024] Open
Abstract
Netrin-1 (NTN-1) plays a vital role in the progress of nervous system development and inflammatory diseases. However, the role and underlying mechanism of NTN-1 in inflammatory pain (IP) are unclear. BV2 microglia were treated with LPS to mimic the cell status under IP. Adeno-associated virus carrying the NTN-1 gene (AAV-NTN-1) was used to overexpress NTN-1. Complete Freund's Adjuvant (CFA)-induced mouse was recruited as an in vivo model. MTT and commercial kits were utilized to evaluate cell viability and cell death of BV2 cells. The mRNA expressions and secretions of cytokines were measured using the ELISA method. Also, the pyroptosis and activation of BV2 cells were investigated based on western blotting. To verify the role of Rac1/NF-kappaB signaling, isochamaejasmin (ISO) and AAV-Rac1 were presented. The results showed that NTN-1 expression was decreased in LPS-treated BV2 microglia and spinal cord tissues of CFA-injected mice. Overexpressing NTN-1 dramatically reversed cell viability and decreased cell death rate of BV2 microglia under lipopolysaccharide (LPS) stimulation, while the level of pyroptosis was inhibited. Besides, AAV-NTN-1 rescued the activation of microglia and inflammatory injury induced by LPS, decreasing IBA-1 expression, as well as iNOS, IL-1beta and IL-6 secretions. Meanwhile AAV-NTN-1 promoted the anti-inflammation response, including increases in Arg-1, IL-4 and IL-10 levels. In addition, the LPS-induced activation of Rac1/NF-kappaB signaling was depressed by NTN-1 overexpression. The same results were verified in a CFA-induced mouse model. In conclusion, NTN-1 alleviated IP by suppressing pyroptosis and promoting M2 type activation of microglia via inhibiting Rac1/NF-?B signaling, suggesting the protective role of NTN-1 in IP. Keywords: Netrin-1, Inflammatory pain, Pyroptosis, Microglia M2 activation, Rac1/NF-kappaB.
Collapse
Affiliation(s)
- Y Yin
- Department of Anesthesiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
| | | | | | | | | |
Collapse
|
3
|
Zheng Y, Zhao J, Chang S, Zhuang Z, Waimei S, Li X, Chen Z, Jing B, Zhang D, Zhao G. β-Sitosterol Alleviates Neuropathic Pain by Affect Microglia Polarization through Inhibiting TLR4/NF-κB Signaling Pathway. J Neuroimmune Pharmacol 2023; 18:690-703. [PMID: 38041701 DOI: 10.1007/s11481-023-10091-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 10/17/2023] [Indexed: 12/03/2023]
Abstract
The etiology of neuropathic pain is mostly caused by mechanical deformation and neuroinflammation, of which neuroinflammation is the main cause of chronic neuropathic pain. Activation of the TLR4/NF-κB signaling pathway mediates elevated levels of inflammatory cytokines, and we clearly demonstrated by in vivo and in vitro Western blot experiments that β-sitosterol significantly inhibited the elevated Toll-like receptor 4 (TLR4) expression levels and nuclear factor-kappa B (NF-κB) activation associated with inflammatory responses. In cellular experiments, we clearly saw that both β-sitosterol and TLR4/NF-κB signaling pathway inhibitors could inhibit M1 proinflammatory phenotype expression and promote M2 anti-inflammatory phenotype expression in GMI-R1 microglia by flow cytometry and immunofluorescence assays. Therefore, we suggest that β-sitosterol can affect microglial polarization by inhibiting the TLR4/NF-κB signaling pathway thereby reducing neuroinflammation and thus alleviating neuropathic pain.
Collapse
Affiliation(s)
- Yachun Zheng
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China
- Department of Acupuncture and Rehabilitation, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Jiaji Zhao
- Chemistry & Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shiquan Chang
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China
| | - Zifeng Zhuang
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China
| | - Si Waimei
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China
| | - Xin Li
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China
| | - Zenni Chen
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China
| | - Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China
| | - Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China.
| | - Guoping Zhao
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Active Opioid Antinociceptive Principles for Medicinal Chemistry and Drug Design. Molecules 2023; 28:7089. [PMID: 37894567 PMCID: PMC10609244 DOI: 10.3390/molecules28207089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pain continues to be an enormous global health challenge, with millions of new untreated or inadequately treated patients reported annually. With respect to current clinical applications, opioids remain the mainstay for the treatment of pain, although they are often associated with serious side effects. To optimize their tolerability profiles, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery, and they hold potential for pain management. Traditional medicine has had a long history in clinical practice due to the fact that nature provides a rich source of active principles. For instance, opium had been used for pain management until the 19th century when its individual components, such as morphine, were purified and identified. In this review article, we conducted a literature survey aimed at identifying natural products interacting either directly with opioid receptors or indirectly through other mechanisms controlling opioid receptor signaling, whose structures could be interesting from a drug design perspective.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology, Toxicology University of Catania, Via Santa Sofia n. 97, 95100 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Carmela Parenti
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
5
|
Espinosa JM, Quintero-Flórez A, Carrasquilla N, Montero E, Rodríguez-Rodríguez A, Castellano JM, Perona JS. Bioactive compounds in pomace olive oil modulate the inflammatory response elicited by postprandial triglyceride-rich lipoproteins in BV-2 cells. Food Funct 2023; 14:8987-8999. [PMID: 37740318 DOI: 10.1039/d3fo02460a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Modulation of microglial response could be a target to reduce neuroinflammation associated with Alzheimer's disease. In this study, we propose that lipophilic bioactive molecules present in pomace olive oil (POO), transported in triglyceride-rich lipoproteins (TRLs), are able to modulate microglial high-oleic sunflower oil (HOSO, points) or pomace olive oil (POO, stripes). In order to prove this hypothesis, a randomized crossover postprandial trial was performed in 18 healthy young women. POO was assayed in opposition to high-oleic sunflower oil (HOSO), a common dietary oil which shares with POO an almost identical fatty acid composition but lacks certain biomolecules with recognized antioxidant and anti-inflammatory activities. TRLs were isolated from blood at the baseline and 2 and 4 hours postprandially and used to treat BV-2 cells to assess their ability to modulate the microglial function. We found that the intake of POO leads to the constitution of postprandial TRLs that are able to modulate the inflammatory response in microglia compared to HOSO. TRL-derived POO reduced the release of pro-inflammatory cytokines (tumor necrosis factor-α, and interleukins 1β and 6) and nitric oxide and downregulated genes codifying for these cytokines and inducible nitric oxide synthase (iNOS) in BV-2 cells. Moreover, the ingestion of POO by healthy women slightly improved glycemic control and TRL clearance throughout the postprandial phase compared to HOSO. In conclusion, we demonstrated that consuming POO results in postprandial TRLs containing lipophilic bioactive compounds capable of regulating the inflammatory response prompted by microglial activation.
Collapse
Affiliation(s)
- Juan Manuel Espinosa
- Instituto de la Grasa, Department of Food and Health, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013, Seville, Spain.
| | | | - Natalia Carrasquilla
- Instituto de la Grasa, Department of Food and Health, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013, Seville, Spain.
| | - Emilio Montero
- University Hospital Virgen del Rocío, Andalusian Regional Health Service, Seville, Spain
| | | | - José María Castellano
- Instituto de la Grasa, Department of Food and Health, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013, Seville, Spain.
| | - Javier S Perona
- Instituto de la Grasa, Department of Food and Health, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013, Seville, Spain.
| |
Collapse
|
6
|
Park J, Lee C, Kim YT. Effects of Natural Product-Derived Compounds on Inflammatory Pain via Regulation of Microglial Activation. Pharmaceuticals (Basel) 2023; 16:941. [PMID: 37513853 PMCID: PMC10386117 DOI: 10.3390/ph16070941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory pain is a type of pain caused by tissue damage associated with inflammation and is characterized by hypersensitivity to pain and neuroinflammation in the spinal cord. Neuroinflammation is significantly increased by various neurotransmitters and cytokines that are expressed in activated primary afferent neurons, and it plays a pivotal role in the development of inflammatory pain. The activation of microglia and elevated levels of pro-inflammatory cytokines are the hallmark features of neuroinflammation. During the development of neuroinflammation, various intracellular signaling pathways are activated or inhibited in microglia, leading to the regulation of inflammatory proteins and cytokines. Numerous attempts have been conducted to alleviate inflammatory pain by inhibiting microglial activation. Natural products and their compounds have gained attention as potential candidates for suppressing inflammatory pain due to verified safety through centuries of use. Many studies have also shown that natural product-derived compounds have the potential to suppress microglial activation and alleviate inflammatory pain. Herein, we review the literature on inflammatory mediators and intracellular signaling involved in microglial activation in inflammatory pain, as well as natural product-derived compounds that have been found to suppress microglial activation. This review suggests that natural product-derived compounds have the potential to alleviate inflammatory pain through the suppression of microglial activation.
Collapse
Affiliation(s)
- Joon Park
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Changho Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
7
|
Qasaymeh RM, Rotondo D, Seidel V. Phytochemical study and immunomodulatory activity of Fraxinus excelsior L. J Pharm Pharmacol 2023; 75:117-128. [PMID: 36332078 DOI: 10.1093/jpp/rgac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Fraxinus excelsior L. (FE) is traditionally used to treat inflammatory and pain disorders. This study aimed to identify the constituents of FE leaves and evaluate the effects of its n-hexane (FEH), ethyl acetate (FEE), methanol (FEM) extracts and constituents on the viability of THP-1 cells and their ability to release pro-inflammatory cytokines. METHODS THP-1 cell viability was assessed using an MTT assay. The immunomodulatory activity was evaluated by measuring tumour necrosis factor-alpha (TNF-α) and interleukin 12 (IL-12) released by lipopolysaccharide-stimulated THP-1 cells using enzyme-linked immunosorbent assays. KEY FINDINGS Triterpenes, tyrosol esters, alkanes, phytyl and steryl esters, pinocembrin and bis(2-ethylhexyl)phthalate were isolated from FE. The tyrosol esters showed no significant effect on THP-1 cell viability. FEH, FEE, FEM, and pinocembrin, ursolic acid, oleanolic acid had IC50 values of 56.9, 39.9, 124.7 µg/ml and 178.6, 61.5 and 199.8 µM, respectively. FE extracts, ursolic acid, oleanolic acid and pinocembrin significantly reduced TNF-α/IL-12 levels. The tyrosol esters did not significantly affect TNF-α/IL-12 production. CONCLUSIONS FE was able to reduce pro-inflammatory cytokine production indicating a mechanistic focus in its use for inflammation and pain. Further investigations are warranted to unravel the mode of action of the tested constituents and discover other potentially active compounds in FE extracts.
Collapse
Affiliation(s)
- Rana Mohammad Qasaymeh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Dino Rotondo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Veronique Seidel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
8
|
Squillace S, Salvemini D. Nitroxidative stress in pain and opioid-induced adverse effects: therapeutic opportunities. Pain 2022; 163:205-213. [PMID: 34145168 DOI: 10.1097/j.pain.0000000000002347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
9
|
Jin GL, Hong LM, Liu HP, Yue RC, Shen ZC, Yang J, Xu Y, Huang HH, Li Y, Xiong BJ, Su YP, Yu CX. Koumine modulates spinal microglial M1 polarization and the inflammatory response through the Notch-RBP-Jκ signaling pathway, ameliorating diabetic neuropathic pain in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153640. [PMID: 34330066 DOI: 10.1016/j.phymed.2021.153640] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Diabetic neuropathic pain (DNP), a complication of diabetes, has serious impacts on human health. As the pathogenesis of DNP is very complex, clinical treatments for DNP is limited. Koumine (KM) is an active ingredient extracted from Gelsemium elegans Benth. that exerts an inhibitory effect on neuropathic pain (NP) in several animal models. PURPOSE To clarify the anti-NP effect of KM on rats with DNP and the molecular mechanisms involving the Notch- Jκ recombination signal binding protein (RBP-Jκ) signaling pathway. METHODS Male Sprague-Dawley rats were administered streptozocin (STZ) by intraperitoneal injection to induce DNP. The effect of KM on mechanical hyperalgesia in rats with DNP was evaluated using the Von Frey test. Microglial polarization in the spinal cord was examined using western blotting and quantitative real-time PCR. The Notch-RBP-Jκ signaling pathway was analysed using western blotting. RESULTS KM attenuated DNP during the observation period. In addition, KM alleviated M1 microglial polarization in STZ-induced rats. Subsequent experiments revealed that Notch-RBP-Jκ signaling pathway was activated in the spinal cord of rats with DNP, and the activation of this pathways was decreased by KM. Additionally, KM-mediated analgesia and deactivation of the Notch-RBP-Jκ signaling pathway were inhibited by the Notch signaling agonist jagged 1, indicating that the anti-DNP effect of KM may be regulated by the Notch-RBP-Jκ signaling pathway. CONCLUSIONS KM is a potentially desirable candidate treatment for DNP that may inhibit microglial M1 polarization through the Notch-RBP-Jκ signaling pathway.
Collapse
Affiliation(s)
- Gui-Lin Jin
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China.
| | - Li-Mian Hong
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China; Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Hai-Ping Liu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Rong-Cai Yue
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Zu-Cheng Shen
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Jian Yang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Ying Xu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Hui-Hui Huang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Yi Li
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Bo-Jun Xiong
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Yan-Ping Su
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Chang-Xi Yu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China; Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, P.R. China.
| |
Collapse
|