1
|
Dash SR, Pandya R, Singh G, Sharma H, Das T, Haldar H, Hotha S, Vanka K. Unravelling the prebiotic origins of the simplest α-ketoacids in cometary ices: a computational investigation. Chem Commun (Camb) 2024; 60:11283-11286. [PMID: 39295450 DOI: 10.1039/d4cc03074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
We have employed the ab initio nanoreactor (AINR) and DFT calculations to explore how the soft impact of comets entering early earth's dense atmosphere could induce chemical reactions in trapped interstellar ice components, leading to the origin of glyoxylic and pyruvic acids the simplest α-ketoacids essential for prebiotic metabolic cycles.
Collapse
Affiliation(s)
- Soumya Ranjan Dash
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rinu Pandya
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Geetika Singh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - Himanshu Sharma
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tamal Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hritwik Haldar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India.
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India.
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Goldman N, Fried LE, Lindsey RK, Pham CH, Dettori R. Enhancing the accuracy of density functional tight binding models through ChIMES many-body interaction potentials. J Chem Phys 2023; 158:144112. [PMID: 37061479 DOI: 10.1063/5.0141616] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Semi-empirical quantum models such as Density Functional Tight Binding (DFTB) are attractive methods for obtaining quantum simulation data at longer time and length scales than possible with standard approaches. However, application of these models can require lengthy effort due to the lack of a systematic approach for their development. In this work, we discuss the use of the Chebyshev Interaction Model for Efficient Simulation (ChIMES) to create rapidly parameterized DFTB models, which exhibit strong transferability due to the inclusion of many-body interactions that might otherwise be inaccurate. We apply our modeling approach to silicon polymorphs and review previous work on titanium hydride. We also review the creation of a general purpose DFTB/ChIMES model for organic molecules and compounds that approaches hybrid functional and coupled cluster accuracy with two orders of magnitude fewer parameters than similar neural network approaches. In all cases, DFTB/ChIMES yields similar accuracy to the underlying quantum method with orders of magnitude improvement in computational cost. Our developments provide a way to create computationally efficient and highly accurate simulations over varying extreme thermodynamic conditions, where physical and chemical properties can be difficult to interrogate directly, and there is historically a significant reliance on theoretical approaches for interpretation and validation of experimental results.
Collapse
Affiliation(s)
- Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Laurence E Fried
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Rebecca K Lindsey
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - C Huy Pham
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - R Dettori
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
3
|
Hamilton BW, Kroonblawd MP, Strachan A. Extemporaneous Mechanochemistry: Shock-Wave-Induced Ultrafast Chemical Reactions Due to Intramolecular Strain Energy. J Phys Chem Lett 2022; 13:6657-6663. [PMID: 35838665 DOI: 10.1021/acs.jpclett.2c01798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Regions of energy localization referred to as hotspots are known to govern shock initiation and the run-to-detonation in energetic materials. Mounting computational evidence points to accelerated chemistry in hotspots from large intramolecular strains induced via the interactions between the shock wave and microstructure. However, definite evidence mapping intramolecular strain to accelerated or altered chemical reactions has so far been elusive. From a large-scale reactive molecular dynamics simulation of the energetic material 1,3,5-triamino-2,4,6-trinitrobenzene, we map decomposition kinetics to molecular temperature and intramolecular strain energy prior to reaction. Both temperature and intramolecular strain are shown to accelerate chemical kinetics. A detailed analysis of the atomistic trajectory shows that intramolecular strain can induce a mechanochemical alteration of decomposition mechanisms. The results in this paper could inform continuum-level chemistry models to account for a wide range of mechanochemical effects.
Collapse
Affiliation(s)
- Brenden W Hamilton
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Alejandro Strachan
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Edalati K, Taniguchi I, Floriano R, Luchessi AD. Glycine amino acid transformation under impacts by small solar system bodies, simulated via high-pressure torsion method. Sci Rep 2022; 12:5677. [PMID: 35383225 PMCID: PMC8983748 DOI: 10.1038/s41598-022-09735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/28/2022] [Indexed: 11/15/2022] Open
Abstract
Impacts by small solar system bodies (meteoroids, asteroids, comets and transitional objects) are characterized by a combination of energy dynamics and chemical modification on both terrestrial and small solar system bodies. In this context, the discovery of glycine amino acid in meteorites and comets has led to a hypothesis that impacts by astronomical bodies could contribute to delivery and polymerization of amino acids in the early Earth to generate proteins as essential molecules for life. Besides the possibility of abiotic polymerization of glycine, its decomposition by impacts could generate reactive groups to form other essential organic biomolecules. In this study, the high-pressure torsion (HPT) method, as a new platform for simulation of impacts by small solar system bodies, was applied to glycine. In comparison with high-pressure shock experiments, the HPT method simultaneously introduces high pressure and deformation strain. It was found that glycine was not polymerized in the experimental condition assayed, but partially decomposed to ethanol under pressures of 1 and 6 GPa and shear strains of < 120 m/m. The detection of ethanol implies the inherent availability of remaining nitrogen-containing groups, which can incorporate to the formation of other organic molecules at the impact site. In addition, this finding highlights a possibility of the origin of ethanol previously detected in comets.
Collapse
Affiliation(s)
- Kaveh Edalati
- WPI International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan.
| | - Ikuo Taniguchi
- WPI International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
| | - Ricardo Floriano
- School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Augusto Ducati Luchessi
- School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| |
Collapse
|
5
|
Lindsey RK, Huy Pham C, Goldman N, Bastea S, Fried LE. Machine‐Learning a Solution for Reactive Atomistic Simulations of Energetic Materials. PROPELLANTS EXPLOSIVES PYROTECHNICS 2022. [DOI: 10.1002/prep.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rebecca K. Lindsey
- Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore California 94550 USA
| | - Cong Huy Pham
- Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore California 94550 USA
| | - Nir Goldman
- Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore California 94550 USA
- Department of Chemical Engineering University of California, Davis Davis California 95616 USA
| | - Sorin Bastea
- Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore California 94550 USA
| | - Laurence E. Fried
- Physical and Life Sciences Directorate Lawrence Livermore National Laboratory Livermore California 94550 USA
| |
Collapse
|
6
|
Lavado N, de la Concepción JG, Cintas P, Babiano R. Synthesis of C xN y-rich polycyclic oligomers from primeval monomers in aqueous media. Phys Chem Chem Phys 2022; 24:3632-3646. [PMID: 35103738 DOI: 10.1039/d1cp05204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multichannel, non-thermolytic and efficient pathway is described toward the formation of functionalized carbon nitride-like oligomers, starting from readily available cyanamide and glyoxal (in ratios >2), in aqueous media under mild conditions. Such oligomers can be isolated as stable solids that result from structures involving cyanamide self-additions along with structures formally derived from the condensation of cyanamide, dicyandiamide or melamine with glyoxal, leading occasionally to oxygen-containing units. The oligomeric aggregates have masses up to 500 u, as inferred from mass spectra analyses, and their formation can be rationalized in terms of polyadditions of cyanamide (up to 10-mer) and glyoxal. The latter is not only a willing reaction partner, but also promotes facile condensation by enhancing the reactivity of nitrile fragments and inducing a significant lowering of the energy barriers. This mechanistic surmise is also supported by DFT calculations of the early condensation steps. As a result, melamine/triazine-type structures are obtained in aquatic environments under much milder conditions than those usually required by other synthetic procedures. Moreover, our results also help unveil the abiotic processes affording complex organic matter on celestial bodies and early earth.
Collapse
Affiliation(s)
- Nieves Lavado
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Juan García de la Concepción
- Departamento de Astrofísica, Centro de Astrobiología (INTA-CSIC), 28850 Torrejón de Ardoz, Madrid, Spain.,Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Reyes Babiano
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| |
Collapse
|
7
|
Cavalcante LSR, Daemen LL, Goldman N, Moulé AJ. Davis Computational Spectroscopy Workflow-From Structure to Spectra. J Chem Inf Model 2021; 61:4486-4496. [PMID: 34449225 DOI: 10.1021/acs.jcim.1c00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe an automated workflow that connects a series of atomic simulation tools to investigate the relationship between atomic structure, lattice dynamics, materials properties, and inelastic neutron scattering (INS) spectra. Starting from the atomic simulation environment (ASE) as an interface, we demonstrate the use of a selection of calculators, including density functional theory (DFT) and density functional tight binding (DFTB), to optimize the structures and calculate interatomic force constants. We present the use of our workflow to compute the phonon frequencies and eigenvectors, which are required to accurately simulate the INS spectra in crystalline solids like diamond and graphite as well as molecular solids like rubrene. We have also implemented a machine-learning force field based on Chebyshev polynomials called the Chebyshev interaction model for efficient simulation (ChIMES) to improve the accuracy of the DFTB simulations. We then explore the transferability of our DFTB/ChIMES models by comparing simulations derived from different training sets. We show that DFTB/ChIMES demonstrates ∼100× reduction in computational expense while retaining most of the accuracy of DFT as well as yielding high accuracy for different materials outside of our training sets. The DFTB/ChIMES method within the workflow expands the possibilities to use simulations to accurately predict materials properties of increasingly complex structures that would be unfeasible with ab initio methods.
Collapse
Affiliation(s)
- L S R Cavalcante
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nir Goldman
- Department of Chemical Engineering, University of California, Davis, California 95616, United States.,Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Adam J Moulé
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
8
|
Kinouchi H, Sugimoto K, Yamaoka Y, Takikawa H, Takasu K. Oxidative β-Cleavage of Fused Cyclobutanols Leading to Hydrofuran-Fused Polycyclic Aromatic Compounds. J Org Chem 2021; 86:12615-12622. [PMID: 34474562 DOI: 10.1021/acs.joc.1c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Treatment of aryl-fused bicyclo[4.2.0]octanols with an oxidant such as phenyliodine diacetate (PIDA) or hypochlorous acid gave dihydrofuran-containing polycyclic aromatic compounds by selective β-cleavage of the cyclobutanol moiety. Mechanistic studies suggest that the oxygen atom of the hydrofuran ring is incorporated from the hydroxy group of the substrate via intramolecular addition. The oxidative transformation should serve as a new method to prepare functionalized polycyclic aromatic compounds.
Collapse
Affiliation(s)
- Hayate Kinouchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuma Sugimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Takikawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Zhao L, Prendergast M, Kaiser RI, Xu B, Lu W, Ahmed M, Hasan Howlader A, Wnuk SF, Korotchenko AS, Evseev MM, Bashkirov EK, Azyazov VN, Mebel AM. A molecular beam and computational study on the barrierless gas phase formation of (iso)quinoline in low temperature extraterrestrial environments. Phys Chem Chem Phys 2021; 23:18495-18505. [PMID: 34612388 DOI: 10.1039/d1cp02169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite remarkable progress toward the understanding of the formation pathways leading to polycyclic aromatic hydrocarbons (PAHs) in combustion systems and in deep space, the complex reaction pathways leading to nitrogen-substituted PAHs (NPAHs) at low temperatures of molecular clouds and hydrocarbon-rich, nitrogen-containing atmospheres of planets and their moons like Titan have remained largely obscure. Here, we demonstrate through laboratory experiments and computations that the simplest prototype of NPAHs - quinoline and isoquinoline (C9H7N) - can be synthesized via rapid and de-facto barrier-less reactions involving o-, m- and p-pyridinyl radicals (C5H4N˙) with vinylacetylene (C4H4) under low-temperature conditions.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Goldman N, Kweon KE, Sadigh B, Heo TW, Lindsey RK, Pham CH, Fried LE, Aradi B, Holliday K, Jeffries JR, Wood BC. Semi-Automated Creation of Density Functional Tight Binding Models through Leveraging Chebyshev Polynomial-Based Force Fields. J Chem Theory Comput 2021; 17:4435-4448. [PMID: 34128678 DOI: 10.1021/acs.jctc.1c00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional tight binding (DFTB) is an attractive method for accelerated quantum simulations of condensed matter due to its enhanced computational efficiency over standard density functional theory (DFT) approaches. However, DFTB models can be challenging to determine for individual systems of interest, especially for metallic and interfacial systems where different bonding arrangements can lead to significant changes in electronic states. In this regard, we have created a rapid-screening approach for determining systematically improvable DFTB interaction potentials that can yield transferable models for a variety of conditions. Our method leverages a recent reactive molecular dynamics force field where many-body interactions are represented by linear combinations of Chebyshev polynomials. This allows for the efficient creation of multi-center representations with relative ease, requiring only a small investment in initial DFT calculations. We have focused our workflow on TiH2 as a model system and show that a relatively small training set based on unit-cell-sized calculations yields a model accurate for both bulk and surface properties. Our approach is easy to implement and can yield reliable DFTB models over a broad range of thermodynamic conditions, where physical and chemical properties can be difficult to interrogate directly and there is historically a significant reliance on theoretical approaches for interpretation and validation of experimental results.
Collapse
Affiliation(s)
- Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Kyoung E Kweon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Babak Sadigh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Tae Wook Heo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Rebecca K Lindsey
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - C Huy Pham
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Laurence E Fried
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universität Bremen, P.O.B. 330440, Bremen D-28334, Germany
| | - Kiel Holliday
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jason R Jeffries
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Brandon C Wood
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
11
|
Myint PC, Benedict LX, Wu CJ, Belof JL. Minimization of Gibbs Energy in High-Pressure Multiphase, Multicomponent Mixtures through Particle Swarm Optimization. ACS OMEGA 2021; 6:13341-13364. [PMID: 34056482 PMCID: PMC8158846 DOI: 10.1021/acsomega.1c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 05/11/2023]
Abstract
We present a global optimization method to construct phase boundaries in multicomponent mixtures by minimizing the Gibbs energy. The minimization method is, in essence, an extension of the Maxwell construction procedure that is used in single-component systems. For a given temperature, pressure, and overall mixture composition, it reveals the mole fractions of the thermodynamically stable phases and the composition of these phases. Our approach is based on particle swarm optimization (PSO), which is a gradient-free, stochastic method. It is not reliant on good initial guesses for the phase fractions and compositions, which is an important requirement for the high-pressure applications considered in this study because data on phase boundaries at high pressures tend to be extremely limited. One practical use of this method is to create equation-of-state tables needed by continuum-scale, multiphysics codes that are ubiquitous in high-pressure science. Currently, there does not exist a method to generate such tables that rigorously account for changes in phase boundaries due to mixing. We have done extensive testing to demonstrate that PSO can reliably determine the Gibbs energy minimum and can capture nontrivial features like eutectic and peritectic temperatures to produce coherent phase diagrams. As part of our testing, we have developed a PSO-based Helmholtz-energy minimization procedure that we have used to cross-check the results of the Gibbs energy minimization. We conclude with a critique of our approach and provide suggestions for future work, including a PSO-based entropy-maximization method that would enable the aforementioned continuum codes to perform on-the-fly, phase-equilibria calculations of multicomponent mixtures.
Collapse
Affiliation(s)
- Philip C. Myint
- Physics
Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Lorin X. Benedict
- Physics
Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Christine J. Wu
- Physics
Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Jonathan L. Belof
- Materials
Science Division, Lawrence Livermore National
Laboratory, 7000 East
Avenue, Livermore, California 94550, United States
| |
Collapse
|
12
|
Lindsey RK, Bastea S, Goldman N, Fried LE. Investigating 3,4-bis(3-nitrofurazan-4-yl)furoxan detonation with a rapidly tuned density functional tight binding model. J Chem Phys 2021; 154:164115. [PMID: 33940855 DOI: 10.1063/5.0047800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We describe a machine learning approach to rapidly tune density functional tight binding models for the description of detonation chemistry in organic molecular materials. Resulting models enable simulations on the several 10s of ps scales characteristic to these processes, with "quantum-accuracy." We use this approach to investigate early shock chemistry in 3,4-bis(3-nitrofurazan-4-yl)furoxan, a hydrogen-free energetic material known to form onion-like nanocarbon particulates following detonation. We find that the ensuing chemistry is significantly characterized by the formation of large CxNyOz species, which are likely precursors to the experimentally observed carbon condensates. Beyond utility as a means of investigating detonation chemistry, the present approach can be used to generate quantum-based reference data for the development of full machine-learned interatomic potentials capable of simulation on even greater time and length scales, i.e., for applications where characteristic time scales exceed the reach of methods including Kohn-Sham density functional theory, which are commonly used for reference data generation.
Collapse
Affiliation(s)
- Rebecca K Lindsey
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Sorin Bastea
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Laurence E Fried
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
13
|
Hamilton BW, Kroonblawd MP, Li C, Strachan A. A Hotspot's Better Half: Non-Equilibrium Intra-Molecular Strain in Shock Physics. J Phys Chem Lett 2021; 12:2756-2762. [PMID: 33705143 DOI: 10.1021/acs.jpclett.1c00233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shockwave interactions with a material's microstructure localizes energy into hotspots, which act as nucleation sites for complex processes such as phase transformations and chemical reactions. To date, hotspots have been described via their temperature fields. Nonreactive, all-atom molecular dynamics simulations of shock-induced pore collapse in a molecular crystal show that more energy is localized as potential energy (PE) than can be inferred from the temperature field and that PE localization persists beyond thermal diffusion. The origin of the PE hotspot is traced to large intramolecular strains, storing energy in modes readily available for chemical decomposition.
Collapse
Affiliation(s)
- Brenden W Hamilton
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 United States
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Chunyu Li
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 United States
| | - Alejandro Strachan
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 United States
| |
Collapse
|
14
|
Hamilton BW, Steele BA, Sakano MN, Kroonblawd MP, Kuo IFW, Strachan A. Predicted Reaction Mechanisms, Product Speciation, Kinetics, and Detonation Properties of the Insensitive Explosive 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105). J Phys Chem A 2021; 125:1766-1777. [PMID: 33617263 DOI: 10.1021/acs.jpca.0c10946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105) is a relatively new and promising insensitive high-explosive (IHE) material that remains only partially characterized. IHEs are of interest for a range of applications and from a fundamental science standpoint, as the root causes behind insensitivity are poorly understood. We adopt a multitheory approach based on reactive molecular dynamic simulations performed with density functional theory, density functional tight-binding, and reactive force fields to characterize the reaction pathways, product speciation, reaction kinetics, and detonation performance of LLM-105. We compare and contrast these predictions to 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), a prototypical IHE, and 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX), a more sensitive and higher performance material. The combination of different predictive models allows access to processes operative on progressively longer timescales while providing benchmarks for assessing uncertainties in the predictions. We find that the early reaction pathways of LLM-105 decomposition are extremely similar to TATB; they involve intra- and intermolecular hydrogen transfer. Additionally, the detonation performance of LLM-105 falls between that of TATB and HMX. We find agreement between predictive models for first-step reaction pathways but significant differences in final product formations. Predictions of detonation performance result in a wide range of values, and one-step kinetic parameters show the similar reaction rates at high temperatures for three out of four models considered.
Collapse
Affiliation(s)
- Brenden W Hamilton
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brad A Steele
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Michael N Sakano
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - I-Feng W Kuo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Alejandro Strachan
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Niklasson AMN. Extended Lagrangian Born-Oppenheimer molecular dynamics for orbital-free density-functional theory and polarizable charge equilibration models. J Chem Phys 2021; 154:054101. [PMID: 33557538 DOI: 10.1063/5.0038190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Extended Lagrangian Born-Oppenheimer molecular dynamics (XL-BOMD) [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for orbital-free Hohenberg-Kohn density-functional theory and for charge equilibration and polarizable force-field models that can be derived from the same orbital-free framework. The purpose is to introduce the most recent features of orbital-based XL-BOMD to molecular dynamics simulations based on charge equilibration and polarizable force-field models. These features include a metric tensor generalization of the extended harmonic potential, preconditioners, and the ability to use only a single Coulomb summation to determine the fully equilibrated charges and the interatomic forces in each time step for the shadow Born-Oppenheimer potential energy surface. The orbital-free formulation has a charge-dependent, short-range energy term that is separate from long-range Coulomb interactions. This enables local parameterizations of the short-range energy term, while the long-range electrostatic interactions can be treated separately. The theory is illustrated for molecular dynamics simulations of an atomistic system described by a charge equilibration model with periodic boundary conditions. The system of linear equations that determines the equilibrated charges and the forces is diagonal, and only a single Ewald summation is needed in each time step. The simulations exhibit the same features in accuracy, convergence, and stability as are expected from orbital-based XL-BOMD.
Collapse
Affiliation(s)
- Anders M N Niklasson
- Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
16
|
Kroonblawd MP, Goldman N, Maiti A, Lewicki JP. A Quantum-Based Approach to Predict Primary Radiation Damage in Polymeric Networks. J Chem Theory Comput 2021; 17:463-473. [PMID: 33272015 DOI: 10.1021/acs.jctc.0c00967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Initial atomistic-level radiation damage in chemically reactive materials is thought to induce reaction cascades that can result in undesirable degradation of macroscale properties. Ensembles of quantum-based molecular dynamics (QMD) simulations can accurately predict these cascades, but extracting chemical insights from the many underlying trajectories is a labor-intensive process that can require substantial a priori intuition. We develop here a general and automated graph-based approach to extract all chemically distinct structures sampled in QMD simulations and apply our approach to predict primary radiation damage of polydimethylsiloxane (PDMS), the main constituent of silicones. A postprocessing protocol is developed to identify underlying polymer backbone structures as connected components in QMD trajectories. These backbones form a repository of radiation-damaged structures. A scheme for extracting and updating a library of isomorphically distinct structures is proposed to identify the spanning set and aid chemical interpretation of the repository. The analyses are applied to ensembles of cascade QMD simulations in which the four element types in PDMS are selectively excited in primary knock-on atom events. Our approach reveals a much higher degree of combinatorial complexity in this system than was inferred through radiolysis experiments. Probabilities are extracted for radiation-induced network changes including formation of branch points, carbon linkages, cycles, bond scissions, and carbon uptake into the Si-O siloxane backbone network. The general analysis framework presented here is readily extendable to modeling chemical degradation of other polymers and molecular materials and provides a basis for future quantum-informed multiscale modeling of radiation damage.
Collapse
Affiliation(s)
- Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Amitesh Maiti
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - James P Lewicki
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
17
|
Steele BA, Goldman N, Kuo IFW, Kroonblawd MP. Mechanochemical synthesis of glycine oligomers in a virtual rotational diamond anvil cell. Chem Sci 2020; 11:7760-7771. [PMID: 34123069 PMCID: PMC8163322 DOI: 10.1039/d0sc00755b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/11/2020] [Indexed: 01/18/2023] Open
Abstract
Mechanochemistry of glycine under compression and shear at room temperature is predicted using quantum-based molecular dynamics (QMD) and a simulation design based on rotational diamond anvil cell (RDAC) experiments. Ensembles of high throughput semiempirical density functional tight binding (DFTB) simulations are used to identify chemical trends and bounds for glycine chemistry during rapid shear under compressive loads of up to 15.6 GPa. Significant chemistry is found to occur during compressive shear above 10 GPa. Recovered products consist of small molecules such as water, structural analogs to glycine, heterocyclic molecules, large oligomers, and polypeptides including the simplest polypeptide glycylglycine at up to 4% mass fraction. The population and size of oligomers generally increases with pressure. A number of oligomeric polypeptide precursors and intermediates are also identified that consist of two or three glycine monomers linked together through C-C, C-N, and/or C-O bridges. Even larger oligomers also form that contain peptide C-N bonds and exhibit branched structures. Many of the product molecules exhibit one or more chiral centers. Our simulations demonstrate that athermal mechanical compressive shearing of glycine is a plausible prebiotic route to forming polypeptides.
Collapse
Affiliation(s)
- Brad A Steele
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - I-Feng W Kuo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| |
Collapse
|
18
|
Dantanarayana V, Nematiaram T, Vong D, Anthony JE, Troisi A, Nguyen Cong K, Goldman N, Faller R, Moulé AJ. Predictive Model of Charge Mobilities in Organic Semiconductor Small Molecules with Force-Matched Potentials. J Chem Theory Comput 2020; 16:3494-3503. [DOI: 10.1021/acs.jctc.0c00211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Varuni Dantanarayana
- Department of Chemistry, University of California—Davis, Davis, California 95616, United States
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Tahereh Nematiaram
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Daniel Vong
- Department of Materials Science and Engineering, University of California—Davis, Davis, California 95616, United States
| | - John E. Anthony
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Alessandro Troisi
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Kien Nguyen Cong
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Nir Goldman
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Department of Chemical Engineering, University of California—Davis - Davis, California 95616, United States
| | - Roland Faller
- Department of Chemical Engineering, University of California—Davis - Davis, California 95616, United States
| | - Adam J. Moulé
- Department of Chemical Engineering, University of California—Davis - Davis, California 95616, United States
| |
Collapse
|
19
|
Niklasson AMN. Density-Matrix Based Extended Lagrangian Born–Oppenheimer Molecular Dynamics. J Chem Theory Comput 2020; 16:3628-3640. [DOI: 10.1021/acs.jctc.0c00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anders M. N. Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
20
|
Clarke SM, Steele BA, Kroonblawd MP, Zhang D, Kuo IFW, Stavrou E. An Isosymmetric High-Pressure Phase Transition in α-Glycylglycine: A Combined Experimental and Theoretical Study. J Phys Chem B 2020; 124:1-10. [PMID: 31794209 DOI: 10.1021/acs.jpcb.9b07313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the effects of hydrostatic pressure on α-glycylglycine (α-digly) using a combined experimental and theoretical approach. The results of powder X-ray diffraction show a change in compressibility of the axes above 6.7 GPa, but also indicate that the structure remains in the same monoclinic space group, suggesting an isosymmetric phase transition. A noticeable change in the Raman spectra between 6 and 7.5 GPa further supports the observed phase transition. First-principles-based calculations combined with the crystal structure prediction code USPEX predict a number of possible polymorphs at high pressure. An orthorhombic structure with a bent peptide backbone is the lowest enthalpy polymorph above 6.4 GPa; however, it is not consistent with experimental observations. A second monoclinic structure isosymmetric to α-digly, α'-digly, is predicted to become more stable above 11.4 GPa. The partial atomic charges in α'-digly differ from α-digly, and the molecule is bent, possibly indicating different reactivity of α'-digly. The similarity in the lattice parameters predicted from calculations and the axial changes observed experimentally support that the α'-digly phase is likely observed at high pressure. A possible explanation for the isosymmetric phase transition is discussed in terms of relaxing strained hydrogen bonding interactions. Such combined experimental and modeling efforts provide atomic-level insight into how pressure-driven conformational changes alter hydrogen-bonding networks in complicated molecular crystals.
Collapse
Affiliation(s)
- Samantha M Clarke
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , P.O. Box 808, Livermore , California 94550 , United States
| | - Brad A Steele
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , P.O. Box 808, Livermore , California 94550 , United States
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , P.O. Box 808, Livermore , California 94550 , United States
| | - Dongzhou Zhang
- Partnership for Extreme Crystallography, University of Hawaii at Manoa , Argonne , Illinois 60439 , United States
| | - I-Feng W Kuo
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , P.O. Box 808, Livermore , California 94550 , United States
| | - Elissaios Stavrou
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , P.O. Box 808, Livermore , California 94550 , United States
| |
Collapse
|
21
|
Organic Molecules: Is It Possible to Distinguish Aromatics from Aliphatics Collected by Space Missions in High Speed Impacts? SCI 2019. [DOI: 10.3390/sci1020053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A prime site of astrobiological interest within the Solar System is the interior ocean of Enceladus. This ocean has already been shown to contain organic molecules and is thought to have the conditions necessary for more complex organic biomolecules to emerge and potentially even life itself. This sub-surface ocean has been accessed by Cassini, an unmanned spacecraft that interacted with the water plumes ejected naturally from Enceladus. The encounter speed with these plumes and their contents was 5 km s−1 and above. Encounters at such speeds allow analysis of vaporised material from submicron-sized particles within the plume, but sampling micron-sized particles remains an open question. The latter particles can impact metal targets exposed on the exterior of future spacecraft, producing impact craters lined with impactor residue, which can then be analysed. Although there is considerable literature on how mineral grains behave in such high-speed impacts, and also on the relationship between the crater residue and the original grain composition, far less is known regarding the behaviour of organic particles. Here we consider a deceptively simple yet fundamental scientific question: for impacts at speeds of around 5–6 kms−1 would the impactor residue alone be sufficient to enable us to recognise the signature conferred by organic particles? Furthermore, would it be possible to identify the organic molecules involved, or at least distinguish between aromatic and aliphatic chemical structures? For polystyrene (aromatic-rich) and poly (methyl methacrylate) (solely aliphatic) latex particles impinging at around 5 km s−1 onto metal targets, we found that sufficient residue is retained at the impact site to permit identification of a carbon-rich projectile, but not of the particular molecules involved, nor is it currently possible to discriminate between aromatic-rich and solely aliphatic particles. This suggests that an alternative analytical method to simple impacts on metal targets is required to enable successful collection of organic samples in a fly-by Enceladus mission.
Collapse
|