1
|
Beall CE, Fabbri E, Clark AH, Meier V, Yüzbasi NS, Graule T, Takahashi S, Shirase Y, Uchida M, Schmidt TJ. Designing bifunctional perovskite catalysts for the oxygen reduction and evolution reactions. EES CATALYSIS 2024; 2:1152-1163. [PMID: 39246681 PMCID: PMC11375951 DOI: 10.1039/d4ey00084f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/07/2024] [Indexed: 09/10/2024]
Abstract
The development of unified regenerative fuel cells (URFCs) necessitates an active and stable bifunctional oxygen electrocatalyst. The unique challenge of possessing high activity for both the oxygen reduction (ORR) and oxygen evolution (OER) reactions, while maintaining stability over a wide potential window impedes the design of bifunctional oxygen electrocatalysts. Herein, two design strategies are explored to optimize their performance. The first incorporates active sites for the ORR and OER, Mn and Co, into a single perovskite structure, which is achieved with the perovskites Ba0.5Sr0.5Co0.8Mn0.2O3-δ (BSCM) and La0.5Ba0.25Sr0.25Co0.5Mn0.5O3-δ (LBSCM). The second combines an active ORR perovskite catalyst (La0.4Sr0.6MnO3-δ (LSM)) with an OER active perovskite catalyst (Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)) in a physical mixed composite (BSCF/LSM). The success of the two strategies is investigated by measuring the catalysts' catalytic performance and response to alternating reducing and oxidizing potentials to mimic the dynamic conditions experienced during the operation of URFCs. Additionally, the continuous, potentiodynamic change in Mn, Co, and Fe oxidation states during the ORR and OER is elucidated with operando X-ray absorption spectroscopy (XAS) measurements, revealing key insights into the nature of the active sites. The results reveal important catalyst physiochemical properties and provide a guide for future research and design principles for bifunctional oxygen electrocatalysts.
Collapse
Affiliation(s)
- Casey E Beall
- Paul Scherrer Institute (PSI) 5232 Villigen PSI Switzerland
| | | | - Adam H Clark
- Paul Scherrer Institute (PSI) 5232 Villigen PSI Switzerland
| | - Vivian Meier
- Paul Scherrer Institute (PSI) 5232 Villigen PSI Switzerland
- Institute for Physical Molecular Science, ETH Zürich 8093 Zürich Switzerland
| | | | | | - Sayaka Takahashi
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi 400-0021 Kofu Japan
| | - Yuto Shirase
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi 400-0021 Kofu Japan
| | - Makoto Uchida
- Hydrogen and Fuel Cell Nanomaterials Center, University of Yamanashi 400-0021 Kofu Japan
| | - Thomas J Schmidt
- Paul Scherrer Institute (PSI) 5232 Villigen PSI Switzerland
- Institute for Physical Molecular Science, ETH Zürich 8093 Zürich Switzerland
| |
Collapse
|
2
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Ingavale S, Gopalakrishnan M, Enoch CM, Pornrungroj C, Rittiruam M, Praserthdam S, Somwangthanaroj A, Nootong K, Pornprasertsuk R, Kheawhom S. Strategic Design and Insights into Lanthanum and Strontium Perovskite Oxides for Oxygen Reduction and Oxygen Evolution Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308443. [PMID: 38258405 DOI: 10.1002/smll.202308443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/25/2023] [Indexed: 01/24/2024]
Abstract
Perovskite oxides exhibit bifunctional activity for both oxygen reduction (ORR) and oxygen evolution reactions (OER), making them prime candidates for energy conversion in applications like fuel cells and metal-air batteries. Their intrinsic catalytic prowess, combined with low-cost, abundance, and diversity, positions them as compelling alternatives to noble metal and metal oxides catalysts. This review encapsulates the nuances of perovskite oxide structures and synthesis techniques, providing insight into pivotal active sites that underscore their bifunctional behavior. The focus centers on the breakthroughs surrounding lanthanum (La) and strontium (Sr)-based perovskite oxides, specifically their roles in zinc-air batteries (ZABs). An introduction to the mechanisms of ORR and OER is provided. Moreover, the light is shed on strategies and determinants central to optimizing the bifunctional performance of La and Sr-based perovskite oxides.
Collapse
Affiliation(s)
- Sagar Ingavale
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohan Gopalakrishnan
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Carolin Mercy Enoch
- Department of Chemistry, SRM Institute of Science & Technology, Kattankulathur, Chennai, 603203, India
| | - Chanon Pornrungroj
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Meena Rittiruam
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supareak Praserthdam
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anongnat Somwangthanaroj
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kasadit Nootong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rojana Pornprasertsuk
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Niigata, 940-2188, Japan
- Center of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Soorathep Kheawhom
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
4
|
Alharbi SM, Alkhalifah MA, Howchen B, Rahmah ANA, Celorrio V, Fermin DJ. Activating Mn Sites by Ni Replacement in α-MnO 2. ACS MATERIALS AU 2024; 4:74-81. [PMID: 38221925 PMCID: PMC10786130 DOI: 10.1021/acsmaterialsau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/01/2023] [Accepted: 10/05/2023] [Indexed: 01/16/2024]
Abstract
Transition metal oxides are characterized by an acute structure and composition dependent electrocatalytic activity toward the oxygen evolution (OER) and oxygen reduction (ORR) reactions. For instance, Mn containing oxides are among the most active ORR catalysts, while Ni based compounds tend to show high activity toward the OER in alkaline solutions. In this study, we show that incorporation of Ni into α-MnO2, by adding Ni precursor into the Mn-containing hydrothermal solution, can generate distinctive sites with different electronic configurations and contrasting electrocatalytic activity. The structure and composition of the Ni modified hollandite α-MnO2 phase were investigated by X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), transmission electron microscopy coupled to energy-dispersive X-ray spectroscopy (TEM-EDX), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and X-ray photoelectron spectroscopy (XPS). Our analysis suggests that Mn replacement by Ni into the α-MnO2 lattice (site A) occurs up to approximately 5% of the total Mn content, while further increasing Ni content promotes the nucleation of separate Ni phases (site B). XAS and XRD show that the introduction of sites A and B have a negligible effect on the overall Mn oxidation state and bonding characteristics, while very subtle changes in the XPS spectra appear to suggest changes in the electronic configuration upon Ni incorporation into the α-MnO2 lattice. On the other hand, changes in the electronic structure promoted by site A have a significant impact in the pseudocapacitive responses obtained by cyclic voltammetry in KOH solution at pH 13, revealing the appearance of Mn 3d orbitals at the energy (potential) range relevant to the ORR. The evolution of Mn 3d upon Ni replacement significantly increases the catalytic activity of α-MnO2 toward the ORR. Interestingly, the formation of segregated Ni phases (site B) leads to a decrease in the ORR activity while increasing the OER rate.
Collapse
Affiliation(s)
- Sami M. Alharbi
- School
of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K.
- Department
of Chemistry, College of Science, Qassim
University, Buraydah 52571, Saudi Arabia
| | - Mohammed A. Alkhalifah
- School
of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K.
- Department
of Chemistry, College of Science, King Faisal
University, P.O. Box 380, Al-Ahsa, 31982, Saudi Arabia
| | - Benjamin Howchen
- School
of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K.
| | - Athi N. A. Rahmah
- School
of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K.
| | - Veronica Celorrio
- Diamond
Light Source Ltd., Diamond
House, Harwell Campus, Didcot OX11 0DE, U.K.
| | - David J. Fermin
- School
of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
5
|
Bare ZJL, Morelock RJ, Musgrave CB. Dataset of theoretical multinary perovskite oxides. Sci Data 2023; 10:244. [PMID: 37117319 PMCID: PMC10147628 DOI: 10.1038/s41597-023-02127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023] Open
Abstract
Perovskite oxides (ternary chemical formula ABO3) are a diverse class of materials with applications including heterogeneous catalysis, solid-oxide fuel cells, thermochemical conversion, and oxygen transport membranes. However, their multicomponent (chemical formula [Formula: see text]) chemical space is underexplored due to the immense number of possible compositions. To expand the number of computed [Formula: see text] compounds we report a dataset of 66,516 theoretical multinary oxides, 59,708 of which are perovskites. First, 69,407 [Formula: see text] compositions were generated in the a-b+a- Glazer tilting mode using the computationally-inexpensive Structure Prediction and Diagnostic Software (SPuDS) program. Next, we optimized these structures with density functional theory (DFT) using parameters compatible with the Materials Project (MP) database. Our dataset contains these optimized structures and their formation (ΔHf) and decomposition enthalpies (ΔHd) computed relative to MP tabulated elemental references and competing phases, respectively. This dataset can be mined, used to train machine learning models, and rapidly and systematically expanded by optimizing more SPuDS-generated [Formula: see text] perovskite structures using MP-compatible DFT calculations.
Collapse
Affiliation(s)
- Zachary J L Bare
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Ryan J Morelock
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Charles B Musgrave
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
6
|
Flores-Lasluisa JX, Huerta F, Cazorla-Amorós D, Morallón E. Transition metal oxides with perovskite and spinel structures for electrochemical energy production applications. ENVIRONMENTAL RESEARCH 2022; 214:113731. [PMID: 35753372 DOI: 10.1016/j.envres.2022.113731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Transition metal oxide-based materials are an interesting alternative to substitute noble-metal based catalyst in energy conversion devices designed for oxygen reduction (ORR), oxygen evolution (OER) and hydrogen evolution reactions (HER). Perovskite (ABO3) and spinel (AB2O4) oxides stand out against other structures due to the possibility of tailoring their chemical composition and, consequently, their properties. Particularly, the electrocatalytic performance of these materials depends on features such as chemical composition, crystal structure, nanostructure, cation substitution level, eg orbital filling or oxygen vacancies. However, they suffer from low electrical conductivity and surface area, which affects the catalytic response. To mitigate these drawbacks, they have been combined with carbon materials (e.g. carbon black, carbon nanotubes, activated carbon, and graphene) that positively influence the overall catalytic activity. This review provides an overview on tunable perovskites (mainly lanthanum-based) and spinels featuring 3d metal cations such as Mn, Fe, Co, Ni and Cu on octahedral sites, which are known to be active for the electrochemical energy conversion.
Collapse
Affiliation(s)
- J X Flores-Lasluisa
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - F Huerta
- Dept. Ingenieria Textil y Papelera, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1, E-03801, Alcoy, Spain
| | - D Cazorla-Amorós
- Dept. Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - E Morallón
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain.
| |
Collapse
|
7
|
Zheng X, Cao X, Zhang Y, Zeng K, Chen L, Yang R. Tunable dual cationic redox couples boost bifunctional oxygen electrocatalysis for long-term rechargeable Zn-air batteries. J Colloid Interface Sci 2022; 628:922-930. [PMID: 36030717 DOI: 10.1016/j.jcis.2022.08.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
Efficient nonprecious bifunctional electrocatalysts toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential for improving the electrochemical performance of Zinc-air (Zn-air) batteries. Herein, we report a cobalt-doped Mn2(OH)3VO3 catalyst prepared by facile hydrothermal method, and the ratios of cationic redox couples of catalysts were tuned with different Co doping amounts. The as-prepared Mn1.8Co0.2(OH)3VO3 (MnCoVO-1) catalyst achieves the highest ratio of (Mn3+Mn4+)/Mn2+ and Co3+/Co2+ redox couples which serve as ORR and OER active sites respectively, and exhibits the enhanced electrocatalytic performance. Furthermore, when employed as air-cathode catalyst for rechargeable Zn-air batteries, the MnCoVO-1 catalyst reveals a high power density (278 mW cm-2), enhanced rate performance and outstanding long-term stability of over 270 h. This work demonstrates the Co-doped Mn2(OH)3VO3 with optimized electronic structure by rational doping engineering can serve as a promising bifunctional catalyst for oxygen electrocatalysis and rechargeable Zn-air batteries.
Collapse
Affiliation(s)
- Xiangjun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China; College of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow University, Suzhou 215006, China
| | - Xuecheng Cao
- Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yu Zhang
- Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Kai Zeng
- College of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow University, Suzhou 215006, China
| | - Long Chen
- Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ruizhi Yang
- College of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow University, Suzhou 215006, China.
| |
Collapse
|
8
|
Dosaev K, Istomin S, Strebkov D, Tsirlina G, Antipov E, Savinova E. AMn2O4 Spinels (A - Li, Mg, Mn, Cd) as ORR catalysts: the role of Mn coordination and oxidation state in the catalytic activity and their propensity to degradation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Active Knowledge Extraction from Cyclic Voltammetry. ENERGIES 2022. [DOI: 10.3390/en15134575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cyclic Voltammetry (CV) is an electro-chemical characterization technique used in an initial material screening for desired properties and to extract information about electro-chemical reactions. In some applications, to extract kinetic information of the associated reactions (e.g., rate constants and turn over frequencies), CV curve should have a specific shape (for example an S-shape). However, often the characterization settings to obtain such curve are not known a priori. In this paper, an active search framework is defined to accelerate identification of characterization settings that enable knowledge extraction from CV experiments. Towards this goal, a representation of CV responses is used in combination with Bayesian Model Selection (BMS) method to efficiently label the response to be either S-shape or not S-shape. Using an active search with BMS oracle, we report a linear target identification in a six-dimensional search space (comprised of thermodynamic, mass transfer, and solution variables as dimensions). Our framework has the potential to be a powerful virtual screening technique for molecular catalysts, bi-functional fuel cell catalysts, and other energy conversion and storage systems.
Collapse
|
10
|
Alkhalifah MA, Howchen B, Staddon J, Celorrio V, Tiwari D, Fermin DJ. Correlating Orbital Composition and Activity of LaMn xNi 1-xO 3 Nanostructures toward Oxygen Electrocatalysis. J Am Chem Soc 2022; 144:4439-4447. [PMID: 35254811 PMCID: PMC9097476 DOI: 10.1021/jacs.1c11757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The atomistic rationalization
of the activity of transition metal
oxides toward oxygen electrocatalysis is one of the most complex challenges
in the field of electrochemical energy conversion. Transition metal
oxides exhibit a wide range of structural and electronic properties,
which are acutely dependent on composition and crystal structure.
So far, identifying one or several properties of transition metal
oxides as descriptors for oxygen electrocatalysis remains elusive.
In this work, we performed a detailed experimental and computational
study of LaMnxNi1–xO3 perovskite nanostructures, establishing
an unprecedented correlation between electrocatalytic activity and
orbital composition. The composition and structure of the single-phase
rhombohedral oxide nanostructures are characterized by a variety of
techniques, including X-ray diffraction, X-ray absorption spectroscopy,
X-ray photoelectron spectroscopy, and electron microscopy. Systematic
electrochemical analysis of pseudocapacitive responses in the potential
region relevant to oxygen electrocatalysis shows the evolution of
Mn and Ni d-orbitals as a function of the perovskite composition.
We rationalize these observations on the basis of electronic structure
calculations employing DFT with HSE06 hybrid functional. Our analysis
clearly shows a linear correlation between the OER kinetics and the
integrated density of states (DOS) associated with Ni and Mn 3d states
in the energy range relevant to operational conditions. In contrast,
the ORR kinetics exhibits a second-order reaction with respect to
the electron density in Mn and Ni 3d states. For the first time, our
study identifies the relevant DOS dominating both reactions and the
importance of understanding orbital occupancy under operational conditions.
Collapse
Affiliation(s)
- Mohammed A Alkhalifah
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom
| | - Benjamin Howchen
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom
| | - Joseph Staddon
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom
| | - Veronica Celorrio
- Diamond Light Source Ltd., Diamond House, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Devendra Tiwari
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom.,Department of Mathematics, Physics & Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - David J Fermin
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
11
|
Synthesis and Electrochemical Activity of Carbon-Supported Trimetallic Ir95-xPd5Ptx Nanoparticles as Bifunctional Catalysts for Oxygen Evolution/Reduction Reactions. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Trunschke A. Prospects and challenges for autonomous catalyst discovery viewed from an experimental perspective. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00275b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Autonomous catalysis research requires elaborate integration of operando experiments into automated workflows. Suitable experimental data for analysis by artificial intelligence can be measured more readily according to standard operating procedures.
Collapse
Affiliation(s)
- Annette Trunschke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
13
|
Liu D, Zhou P, Bai H, Ai H, Du X, Chen M, Liu D, Ip WF, Lo KH, Kwok CT, Chen S, Wang S, Xing G, Wang X, Pan H. Development of Perovskite Oxide-Based Electrocatalysts for Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101605. [PMID: 34310054 DOI: 10.1002/smll.202101605] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Perovskite oxides are studied as electrocatalysts for oxygen evolution reactions (OER) because of their low cost, tunable structure, high stability, and good catalytic activity. However, there are two main challenges for most perovskite oxides to be efficient in OER, namely less active sites and low electrical conductivity, leading to limited catalytic performance. To overcome these intrinsic obstacles, various strategies are developed to enhance their catalytic activities in OER. In this review, the recent developments of these strategies is comprehensively summarized and systematically discussed, including composition engineering, crystal facet control, morphology modulation, defect engineering, and hybridization. Finally, perspectives on the design of perovskite oxide-based electrocatalysts for practical applications in OER are given.
Collapse
Affiliation(s)
- Dong Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Haoqiang Ai
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xinyu Du
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Mingpeng Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Kin Ho Lo
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Chi Tat Kwok
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xuesen Wang
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, 999078, China
| |
Collapse
|
14
|
Beall CE, Fabbri E, Schmidt TJ. Perovskite Oxide Based Electrodes for the Oxygen Reduction and Evolution Reactions: The Underlying Mechanism. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04473] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Casey E. Beall
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Emiliana Fabbri
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Thomas J. Schmidt
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
15
|
Balamurugan C, Song S, Jo H, Seo J. GdFeO 3 Perovskite Oxide Decorated by Group X Heterometal Oxides and Bifunctional Oxygen Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2788-2798. [PMID: 33410321 DOI: 10.1021/acsami.0c21169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are necessary in the renewable energy systems. However, the kinetically slow and large energy-demanding procedures of oxygen electrocatalysis make the preparation of bifunctional catalysts difficult. In this work, we report a novel hierarchical GdFeO3 perovskite oxide of a spherelike nanostructure and surface modification with the group X heterometal oxides. The nanostructured GdFeO3 layer behaved as a bifunctional electrocatalyst in the oxygen electrocatalysis of OER and ORR. Moreover, the surface decoration with catalytically active PtOx + Ni/NiO nanoparticles enhanced the electrocatalytic performances substantially. Incorporation of mesoporous PtOx + Ni/NiO nanoparticles into the porous GdFeO3 nanostructure enlarged the electrochemically active surface area and provided the interconnected nanostructures to facilitate the OER/ORR. The nanostructures were visualized by scanning electron microscopy and transmission electron microscopy images, and the surface area and pore size of nanoparticles were analyzed from N2 adsorption/desorption isotherms. Tafel analysis indicates that surface modification effectively improves the kinetics of oxygen reactions and accordingly increases the electrocatalytic efficiency. Finally, the 2 wt % PtOx + NiO|GdFeO3 (x = 0, 1, and 2) electrode achieved the enhanced OER performance with an overpotential of 0.19 V at 10 mA/cm2 in an alkaline solution and a high turnover frequency of 0.28 s-1 at η = 0.5 V. Furthermore, the ORR activity is observed with an onset potential of 0.80 V and a half-wave potential (E1/2) of 0.40 V versus reversible hydrogen electrode.
Collapse
Affiliation(s)
- Chandran Balamurugan
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seungjin Song
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeonjeong Jo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Junhyeok Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
16
|
Lourenço AA, Silva VD, da Silva R, Silva U, Chesman C, Salvador C, Simões TA, Macedo DA, da Silva FF. Metal-organic frameworks as template for synthesis of Mn3+/Mn4+ mixed valence manganese cobaltites electrocatalysts for oxygen evolution reaction. J Colloid Interface Sci 2021; 582:124-136. [DOI: 10.1016/j.jcis.2020.08.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/17/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
|
17
|
Majee R, Islam QA, Mondal S, Bhattacharyya S. An electrochemically reversible lattice with redox active A-sites of double perovskite oxide nanosheets to reinforce oxygen electrocatalysis. Chem Sci 2020; 11:10180-10189. [PMID: 34094282 PMCID: PMC8162365 DOI: 10.1039/d0sc01323d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/06/2020] [Indexed: 01/01/2023] Open
Abstract
The catalyst surface undergoes reversible structural changes while influencing the rate of redox reactions, the atomistic structural details of which are often overlooked when the key focus is to enhance the catalytic activity and reaction yield. We achieve chemical synthesis of ∼5 unit cell thick double perovskite oxide nanosheets (NSs) and demonstrate their precise structural reversibility while catalyzing the successive oxygen evolution and reduction reactions (OER/ORR). 4.1 nm thick A-site ordered BaPrMn1.75Co0.25O5+δ (δ = 0.06-0.17) NSs with oxygen deficient PrO x terminated layers have flexible oxygen coordination of Pr3+ ions, which promotes the redox processes. When subjected to systematic oxidation and reduction cycles by cyclic voltammetry under small electrochemical bias, the PrO1.8 phase appears and disappears alternately at the NS surface, due to the intake and release of oxygen, respectively. The structural reversibility is attributed to the two-dimensional morphology and the A-site terminated surface with flexible anion stoichiometry. Although the underlying B-site cations are well-known active sites, this is the first demonstration of A(Pr3+)-site cations influencing the activity by reversibly altering their oxygen coordination. Higher Co-doping thwarts the NS formation, affecting the catalytic performance. The facile OER/ORR activity of the thickness-tunable NSs has larger implications as a bifunctional air-electrode material for metal-air batteries and fuel cells.
Collapse
Affiliation(s)
- Rahul Majee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur - 741246 India
| | - Quazi Arif Islam
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur - 741246 India
| | - Surajit Mondal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur - 741246 India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur - 741246 India
| |
Collapse
|
18
|
Weng B, Song Z, Zhu R, Yan Q, Sun Q, Grice CG, Yan Y, Yin WJ. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts. Nat Commun 2020; 11:3513. [PMID: 32665539 PMCID: PMC7360597 DOI: 10.1038/s41467-020-17263-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/16/2020] [Indexed: 11/08/2022] Open
Abstract
Symbolic regression (SR) is an approach of interpretable machine learning for building mathematical formulas that best fit certain datasets. In this work, SR is used to guide the design of new oxide perovskite catalysts with improved oxygen evolution reaction (OER) activities. A simple descriptor, μ/t, where μ and t are the octahedral and tolerance factors, respectively, is identified, which accelerates the discovery of a series of new oxide perovskite catalysts with improved OER activity. We successfully synthesise five new oxide perovskites and characterise their OER activities. Remarkably, four of them, Cs0.4La0.6Mn0.25Co0.75O3, Cs0.3La0.7NiO3, SrNi0.75Co0.25O3, and Sr0.25Ba0.75NiO3, are among the oxide perovskite catalysts with the highest intrinsic activities. Our results demonstrate the potential of SR for accelerating the data-driven design and discovery of new materials with improved properties.
Collapse
Affiliation(s)
- Baicheng Weng
- Department of Physics & Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH, 43606, USA
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), and Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, 215006, Suzhou, China
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Zhilong Song
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), and Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, 215006, Suzhou, China
| | - Rilong Zhu
- College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, China
| | - Qingyu Yan
- College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, China
| | - Qingde Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), and Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, 215006, Suzhou, China
| | - Corey G Grice
- Department of Physics & Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH, 43606, USA
| | - Yanfa Yan
- Department of Physics & Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH, 43606, USA.
| | - Wan-Jian Yin
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), and Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, 215006, Suzhou, China.
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, 215006, Suzhou, China.
| |
Collapse
|
19
|
Cao X, Cai J, Luo W, Li Q, Sun C, Wu C. Enhanced activity of mesoporous SrCo0.8Fe0.1Nb0.1O3-δ perovskite electrocatalyst by H2O2 treatment for oxygen evolution reaction. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Zhang J, Zhou Q, Tang Y, Zhang L, Li Y. Zinc-air batteries: are they ready for prime time? Chem Sci 2019; 10:8924-8929. [PMID: 32055303 PMCID: PMC6984393 DOI: 10.1039/c9sc04221k] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Zn-air batteries are under revival. They have large theoretical energy density and potentially very low manufacturing cost compared to the existing Li-ion technology. However, their full potential has not been fulfilled due to challenges associated with air cathodes and Zn anodes. In this minireview, we present the current status and technical hurdles of Zn-air batteries and discuss the possible direction of their future improvements. We show that in contrast to tremendous efforts on the design and development of efficient cathode electrocatalysts over recent years, the pursuit of stable and cyclable Zn anodes is equally important but receives far less attention than deserved. We therefore call for a shift of future research focus from cathode electrocatalysts to Zn anodes in order to make this century old technology a truly commercial reality.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM) , Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China . ;
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Qixing Zhou
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries , Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Liang Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM) , Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China . ;
| | - Yanguang Li
- Institute of Functional Nano and Soft Materials (FUNSOM) , Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China . ;
| |
Collapse
|
21
|
Guerin S, Hayden BE. ABO 3 and A 1-xC xB 1-yD y(O 1-zE z) 3: review of experimental optimisation of thin film perovskites by high-throughput evaporative physical vapour deposition. Chem Commun (Camb) 2019; 55:10047-10055. [PMID: 31364997 DOI: 10.1039/c9cc03518d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of functional perovskites for future technologies can be achieved though the combinatorial synthetic method of evaporative physical vapour deposition (HT-ePVD) which provides a direct low temperature route to anion stoichiometric materials. When combined with the ability to control and vary precisely the composition of thin film libraries of materials, high-throughput methods of screening and characterisation provides a rapid experimental determination of the structure/function relationship. This review of the use of HT-ePVD shows that controlled cationic substitutions in A and/or B sites can easily be explored, as can the effect of anionic substitution. This is exemplified in using this approach for a wide range of perovskite systems, where the tuning of the functional properties through cation substitution has application in a broad range of technologies.
Collapse
Affiliation(s)
- Samuel Guerin
- Ilika Technologies Ltd, Kenneth Dibben House, Enterprise Road, University of Southampton Science Park, Chilworth, SO16 7NS, UK.
| | | |
Collapse
|