1
|
de Lartigue C, Belda Marín C, Fitzpatrick V, Esposito A, Casale S, Landoulsi J, Guénin E, Egles C. Silk Foams with Metallic Nanoparticles as Scaffolds for Soft Tissue Regeneration. Int J Mol Sci 2024; 25:12377. [PMID: 39596442 PMCID: PMC11594453 DOI: 10.3390/ijms252212377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Tissue regeneration can be achieved by providing endogenous cells with a biomaterial scaffold that supports their adhesion and proliferation, as well as the synthesis and deposition of an extracellular matrix (ECM). In this work, silk fibroin protein foams were formed by lyophilization to generate tissue engineering scaffolds. Three types of medically relevant nanoparticles (NPs) (iron oxide, gold and silver) were added to this biomaterial to assess the ability of silk foams to be functionalized with these NPs. The structural and mechanical properties of the foams with and without the NPs were suitable for tissue support. The in vitro cytocompatibility of the scaffolds was confirmed according to the ISO 10993 guidelines. The biocompatibility of the scaffolds was investigated by assessing inflammation and endogenous cell colonization in a mouse subcutaneous model These in vivo experiments demonstrated a loss of acute inflammation and the absence of chronic inflammation in the grafted animals. The obtained results show that silk foams are good candidates for supporting soft tissue regeneration with the additional possibility of functionalization with NPs.
Collapse
Affiliation(s)
- Claire de Lartigue
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, Polymères Biopolymères Surfaces (PBS) UMR 6270, 55 Rue Saint-Germain, 27000 Évreux, France;
| | - Cristina Belda Marín
- Alliance Sorbonne Université, Université de Technologie de Compiègne (UTC), TIMR EA 4297 UTC/ESCOM, CS 60319, 60203 Compiègne, France; (C.B.M.); (E.G.)
- Laboratoire de Réactivité de Surface (UMR CNRS 7197), Sorbonne Université, 75252 Paris, France; (S.C.); (J.L.)
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
- Alliance Sorbonne Université, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomécanique et Bioingénierie (BMBI), Centre de Recherche Royallieu, CS 60319, 60203 Compiègne, France
| | - Antonella Esposito
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Groupe de Physique des Matériaux UMR 6634, 76000 Rouen, France;
| | - Sandra Casale
- Laboratoire de Réactivité de Surface (UMR CNRS 7197), Sorbonne Université, 75252 Paris, France; (S.C.); (J.L.)
| | - Jessem Landoulsi
- Laboratoire de Réactivité de Surface (UMR CNRS 7197), Sorbonne Université, 75252 Paris, France; (S.C.); (J.L.)
| | - Erwan Guénin
- Alliance Sorbonne Université, Université de Technologie de Compiègne (UTC), TIMR EA 4297 UTC/ESCOM, CS 60319, 60203 Compiègne, France; (C.B.M.); (E.G.)
| | - Christophe Egles
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, Polymères Biopolymères Surfaces (PBS) UMR 6270, 55 Rue Saint-Germain, 27000 Évreux, France;
| |
Collapse
|
2
|
Thombare VJ, Swarbrick JD, Azad MAK, Zhu Y, Lu J, Yu HY, Wickremasinghe H, He X, Bandiatmakur M, Li R, Bergen PJ, Velkov T, Wang J, Roberts KD, Li J, Patil NA. Exploring Structure-Activity Relationships and Modes of Action of Laterocidine. ACS CENTRAL SCIENCE 2024; 10:1703-1717. [PMID: 39345814 PMCID: PMC11428279 DOI: 10.1021/acscentsci.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 10/01/2024]
Abstract
A significant increase in life-threatening infections caused by Gram-negative "superbugs" is a serious threat to global health. With a dearth of new antibiotics in the developmental pipeline, antibiotics with novel mechanisms of action are urgently required to prevent a return to the preantibiotic era. A key strategy to develop novel anti-infective treatments is to discover new natural scaffolds with distinct mechanisms of action. Laterocidine is a unique cyclic lipodepsipeptide with activity against multiple problematic multidrug-resistant Gram-negative pathogens, including Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacterales. Here, we developed a total chemical synthesis methodology for laterocidine and undertook systematic structure-activity relationship studies with chemical biology and NMR. We discovered important structural features that drive the antimicrobial activity of laterocidine, leading to the discovery of an engineered peptide surpassing the efficacy of the original peptide. This engineered peptide demonstrated complete inhibition of the growth of a polymyxin-resistant strain of Pseudomonas aeruginosa in static time-kill experiments.
Collapse
Affiliation(s)
- Varsha J Thombare
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - James D Swarbrick
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Mohammad A K Azad
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jing Lu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Heidi Y Yu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Hasini Wickremasinghe
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Xiaoji He
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Mahimna Bandiatmakur
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Rong Li
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Tony Velkov
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jiping Wang
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Kade D Roberts
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Nitin A Patil
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
3
|
Huang YZ, Yang R, Zhang L, Chen ZN. Phosphorescent metallaknots of Au(I)-bis(acetylide) strands directed by Cu(I) π-coordination. Proc Natl Acad Sci U S A 2024; 121:e2403721121. [PMID: 39298486 PMCID: PMC11441568 DOI: 10.1073/pnas.2403721121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/25/2024] [Indexed: 09/21/2024] Open
Abstract
Knots containing metal atoms as part of their continuous strand backbone are termed as metallaknots. While several metallaknots have been synthesized through one-pot self-assembly, the designed synthesis of metallaknots by controlling the arrangement of entanglements and strands connectivity remains unexplored. Here, we report the synthesis of metallaknots composed with Au(I)-bis(acetylide) linkages and templated by Cu(I) ions. Varying the ratio of the building blocks results in the switchable formation of two trefoil knots with different stoichiometries and symmetries (C2 or D3) and an entangled metalla-complex. While the entangled complex formed serendipitously, the strand ends can be subsequently linked through coordinative closure to generate a 41 metallaknot in a highly designable fashion. The comparable structural characteristics of resulting metalla-complexes allow us to probe the correlations between their topologies and photophysical properties, showing the backbone rigidity of knots endows complexes with excellent phosphorescent properties. This strategy, in conjunction with the coordinative closure approach, provides a straightforward route for the formation of highly phosphorescent metallaknots that were previously challenging to access.
Collapse
Affiliation(s)
- Ya-Zi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Beijing100039, P. R. China
| | - Raorao Yang
- Frontiers Science Center of Molecular Intelligent Synthesis, East China Normal University, Shanghai200062, P. R. China
| | - Liang Zhang
- Frontiers Science Center of Molecular Intelligent Synthesis, East China Normal University, Shanghai200062, P. R. China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Beijing100039, P. R. China
| |
Collapse
|
4
|
Zhou Q, Dong X, Chi G, Cao XY, Zhang N, Wu S, Ma Y, Zhang ZH, Zhang L. Cinquefoil Knot Possessing Dynamic and Tunable Metal Coordination. J Am Chem Soc 2024; 146:22405-22412. [PMID: 39099103 DOI: 10.1021/jacs.4c05376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
While the majority of knots are made from the metal-template approach, the use of entangled, constrained knotted loops to modulate the coordination of the metal ions remains inadequately elucidated. Here, we report on the coordination chemistry of a 140-atom-long cinquefoil knotted strand comprising five tridentate and five bidentate chelating vacancies. The knotted loop is prepared through the self-assembly of asymmetric "3 + 2" dentate ligands with copper(II) ions that favor five-coordination geometry. The formation of the copper(II) pentameric helicate is confirmed by X-ray crystallography, while the corresponding copper(II) knot is characterized by XPS and LR-/HR ESI-MS. Upon removal of the original template, the knotted ligand facilitates zinc(II) ions, which typically form four- or six-coordination geometries, resulting in the formation of an otherwise inaccessible zinc(II) metallic knot with coordinatively unsaturated metal centers. The coordination numbers and geometries of the zinc(II) cations are undoubtedly determined by X-ray crystallography. Despite the kinetically labile nature and high reversibility of the zinc(II) complex preventing the detection of 5-to-6 coordination equilibrium in solution, the effects on metal-ion coordination induced by knotting hold promise for fine-tuning the coordination of metal complexes.
Collapse
Affiliation(s)
- Qi Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xue Dong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Guanyu Chi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Yu Cao
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Ningjin Zhang
- Instrumental Analytical Center of Shanghai Jiao Tong University, Shanghai 201100, P. R. China
| | - Shitao Wu
- School of Physical Science and Technology and Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yanhang Ma
- School of Physical Science and Technology and Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Liang Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
5
|
Lei J, Liu Y, Yin M, Li S, Wang Z, Chen Y. Coordination environment dependence of anticancer activity in cyclometalated bismuth(III) complexes with C,O-chelating ligands. J Inorg Biochem 2024; 256:112571. [PMID: 38669912 DOI: 10.1016/j.jinorgbio.2024.112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
In this paper, a series of cyclometalated bismuth(III) complexes bearing C,O-bidentate ligands were synthesized and characterized by techniques such as UV-vis, NMR, HRMS, and single crystal X-ray diffraction. Meanwhile, their cytotoxicities against various human cell lines, including colon cancer cells (HCT-116), breast cancer cells (MDA-MB-231), lung cancer cells (A549), gastric cancer cells (SGC-7901), and normal embryonic kidney cells (HEK-293) were assessed in vitro. Compared with the clinical cisplatin, most of the synthesized complexes possessed significantly higher degrees of anticancer activity and selectivity, giving a selectivity index of up to 71.3. The structure-activity relationship study revealed that the anticancer performance of these bismuth(III) species depends on the factors of coordination environment surrounding the metal center, such as coordination number, coordination bonding strength, lone 6s2 electron pair stereoactivity. The Annexin V-FITC/PI double staining assay results suggested that the coordination environment-dependent cytotoxicity is ascribable to apoptosis. Western blot analysis confirmed the proposal, as evidenced by the down-regulating level of Bcl-2 and the activation of caspase-3. Furthermore, the representative complexes Bi1, Bi4, Bi6, and Bi8 exhibited relatively lower inhibitory efficiency on human ovarian cancer cells (A2780) than on its cisplatin-resistant daughter cells (A2780/cis), thus demonstrating that such compounds are capable of circumventing the cisplatin-induced resistance. This investigation elucidated the excellent anticancer performance of C,O-coordinated bismuth(III) complexes and established the correlation between cytotoxic activity and coordination chemistry, which provides a practical basis for in-depth designing and developing bismuth-based chemotherapeutics.
Collapse
Affiliation(s)
- Jian Lei
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory for Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yongping Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Mingming Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Shan Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory for Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Zixiu Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory for Tissue Engineering of Jiangxi Province, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Yi Chen
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China.
| |
Collapse
|
6
|
Nivetha S, Srivalli T, Sathya PM, Mohan H, Karthi N, Muralidharan K, Ramalingam V. Nickel-doped vanadium pentoxide (Ni@V 2O 5) nanocomposite induces apoptosis targeting PI3K/AKT/mTOR signaling pathway in skin cancer: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2024; 234:113763. [PMID: 38262106 DOI: 10.1016/j.colsurfb.2024.113763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
In the present study, the vanadium pentoxide (V2O5) nickel-doped vanadium pentoxide (Ni@V2O5) was prepared and determined for in vitro anticancer activity. The structural characterization of the prepared V2O5 and Ni@V2O5 was determined using diverse morphological and spectroscopic analyses. The DRS-UV analysis displayed the absorbance at 215 nm for V2O5 and 331 nm for Ni@V2O5 as the primary validation of the synthesis of V2O5 and Ni@V2O5. The EDS spectra exhibited the presence of 30% of O, 69% of V, and 1% of Ni and the EDS mapping showed the constant dispersion. The FE-SEM and FE-TEM analysis showed the V2O5 nanoparticles are rectangle-shaped and nanocomposites have excellent interfaces between nickel and V2O5. The X-ray photoelectron spectroscopy (XPS) investigation of Ni@V2O5 nanocomposite endorses the occurrence of elements V, O, and Ni. The in vitro MTT assay clearly showed that the V2O5 and Ni@V2O5 have significantly inhibited the proliferation of B16F10 skin cancer cells. In addition, the nanocomposite produces the endogenous reactive oxygen species in the mitochondria, causes the mitochondrial membrane and nuclear damage, and consequently induces apoptosis by caspase 9/3 enzymatic activity in skin cancer cells. Also, the western blot analysis showed that the nanocomposite suppresses the oncogenic marker proteins such as PI3K, Akt, and mTOR in the skin cancer cells. Together, the results showed that Ni@V2O5 can be used as an auspicious anticancer agent against skin cancer.
Collapse
Affiliation(s)
- Selvaraju Nivetha
- Department of Biotechnology, Dhanalakshmi Srinivasan College of Arts and Science for Women, Perambalur 621212, Tamil Nadu, India
| | - Thimmarayan Srivalli
- PG and Research Department of Biochemistry, Sacred Heart College (Autonomous), Tirupattur-635601, Affiliated to Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Pavithra Muthukumar Sathya
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Jeonbuk, South Korea
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Jeonbuk, South Korea
| | - Natesan Karthi
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea; School of Allied Health Sciences, REVA University, Kattigenahalli, Bengaluru - 560064, Karnataka, India
| | - Kathirvel Muralidharan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Gutierrez-Romero L, Blanco-González E, Montes-Bayón M. Single-Cell ICP-MS in Combination with Fluorescence-Activated Cell Sorting for Investigating the Effects of Nanotransported Cisplatin(IV) Prodrugs. Anal Chem 2023; 95:11874-11878. [PMID: 37535006 PMCID: PMC10862375 DOI: 10.1021/acs.analchem.3c02506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
The combined use of fluorescence-activated cell sorting (FACS) and single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS) is reported, for the first time, in this work. It is applied to evaluate the differences between the cellular uptake of ultrasmall iron oxide nanoparticles (FeNPs) loaded with cisplatin(IV) prodrug (FeNPs-Pt(IV)) and cisplatin regarding cell viability. For this aim, FACS is applied to separate viable, apoptotic, and necrotic A2780 ovarian cancer cells after exposing them to the nanotransported prodrug and cisplatin, respectively. The different sorted cell populations are individually analyzed using quantitative SC-ICP-MS to address the intracellular amount of Pt. The highest Pt intracellular content occurs in the apoptotic cell population (about 2.1 fg Pt/cell) with a narrow intercellular distribution when using FeNPs-Pt(IV) nanoprodrug and containing the largest number of cells (75% of the total). In the case of the cisplatin-treated cells, the highest Pt content (about 1.6 fg Pt/cell) could be determined in the viable sorted cell population. The combined methodology, never explored before, permits a more accurate picture of the effect of the intracellular drug content together with the cell death mechanisms associated with the free drug and the nanotransported prodrug, respectively, and opens the door to many possible single-cell experiments in sorted cell populations.
Collapse
Affiliation(s)
- Lucia Gutierrez-Romero
- Department
of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
- Health
Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Elisa Blanco-González
- Department
of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
- Health
Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Maria Montes-Bayón
- Department
of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
- Health
Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
8
|
|
9
|
Zhang ZH, Zhou Q, Li Z, Zhang N, Zhang L. Completely stereospecific synthesis of a molecular cinquefoil (51) knot. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Ashbridge Z, Fielden SDP, Leigh DA, Pirvu L, Schaufelberger F, Zhang L. Knotting matters: orderly molecular entanglements. Chem Soc Rev 2022; 51:7779-7809. [PMID: 35979715 PMCID: PMC9486172 DOI: 10.1039/d2cs00323f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| | - Lucian Pirvu
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - Liang Zhang
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| |
Collapse
|
11
|
Ashbridge Z, Knapp OM, Kreidt E, Leigh DA, Pirvu L, Schaufelberger F. Social Self-Sorting Synthesis of Molecular Knots. J Am Chem Soc 2022; 144:17232-17240. [PMID: 36067448 PMCID: PMC9501921 DOI: 10.1021/jacs.2c07682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We report the synthesis of molecular prime and composite
knots
by social self-sorting of 2,6-pyridinedicarboxamide (pdc) ligands
of differing topicity and stereochemistry. Upon mixing achiral monotopic
and ditopic pdc-ligand strands in a 1:1:1 ratio with Lu(III), a well-defined
heteromeric complex featuring one of each ligand strand and the metal
ion is selectively formed. Introducing point-chiral centers into the
ligands leads to single-sense helical stereochemistry of the resulting
coordination complex. Covalent capture of the entangled structure
by ring-closing olefin metathesis then gives a socially self-sorted
trefoil knot of single topological handedness. In a related manner,
a heteromeric molecular granny knot (a six-crossing composite knot
featuring two trefoil tangles of the same handedness) was assembled
from social self-sorting of ditopic and tetratopic multi-pdc strands.
A molecular square knot (a six-crossing composite knot of two trefoil
tangles of opposite handedness) was assembled by social self-sorting
of a ditopic pdc strand with four (S)-centers and
a tetratopic strand with two (S)- and six (R)-centers. Each of the entangled structures was characterized
by 1H and 13C NMR spectroscopy, mass spectrometry,
and circular dichroism spectroscopy. The precise control of composition
and topological chirality through social self-sorting enables the
rapid assembly of well-defined sequences of entanglements for molecular
knots.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Olivia M Knapp
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Elisabeth Kreidt
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lucian Pirvu
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | | |
Collapse
|
12
|
Guo F, Wu J, Yang Z, Li K, Zhang L. Penetration of linear chains into semiflexible knotted rings in linear-ring blends. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Xu GT, Chang XY, Low KH, Wu LL, Wan Q, Shu HX, To WP, Huang JS, Che CM. Self-Assembly of Molecular Trefoil Knots Featuring Pentadecanuclear Homoleptic Au I -, Au I /Ag I -, or Au I /Cu I -Alkynyl Coordination. Angew Chem Int Ed Engl 2022; 61:e202200748. [PMID: 35183066 DOI: 10.1002/anie.202200748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 12/17/2022]
Abstract
Metal-free and metal-containing molecular trefoil knots are fascinating ensembles that are usually covalently assembled, the latter requiring the rational design of di- or multidentate/multipodal ligands as connectors. In this work, we describe the self-assembly of pentadecanuclear AuI trefoil knots [Au15 (C≡CR)15 ] from monoalkynes HC≡CR (R=9,9-X2 -fluorenyl with X=nBu, n-hexyl) and [AuI (THT)Cl]. Hetero-bimetallic counterparts [Au9 M6 (C≡CR)15 ] (M=Cu/Ag) were self-assembled by reactions of [Au15 (C≡CR)15 ] with [Cu(MeCN)4 ]+ /AgNO3 and HC≡CR. The type of pentadecanuclear trefoil knots described herein is characterized by X-ray crystallography, 2D NMR and HR-ESI-MS. [Au9 Cu6 (C≡CR)15 ] is relatively stable in hexane; its excited state properties were investigated. DFT calculations revealed that non-covalent metal-metal and metal-ligand interactions, together with longer alkyl chain-strengthened inter-ligand dispersion interactions, govern the stability of the trefoil knot structures.
Collapse
Affiliation(s)
- Guang-Tao Xu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Kam-Hung Low
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Qingyun Wan
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Hui-Xing Shu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
14
|
Au-Yeung HY, Deng Y. Distinctive features and challenges in catenane chemistry. Chem Sci 2022; 13:3315-3334. [PMID: 35432874 PMCID: PMC8943846 DOI: 10.1039/d1sc05391d] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
From being an aesthetic molecular object to a building block for the construction of molecular machines, catenanes and related mechanically interlocked molecules (MIMs) continue to attract immense interest in many research areas. Catenane chemistry is closely tied to that of rotaxanes and knots, and involves concepts like mechanical bonds, chemical topology and co-conformation that are unique to these molecules. Yet, because of their different topological structures and mechanical bond properties, there are some fundamental differences between the chemistry of catenanes and that of rotaxanes and knots although the boundary is sometimes blurred. Clearly distinguishing these differences, in aspects of bonding, structure, synthesis and properties, between catenanes and other MIMs is therefore of fundamental importance to understand their chemistry and explore the new opportunities from mechanical bonds.
Collapse
Affiliation(s)
- Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
15
|
Ashbridge Z, Kreidt E, Pirvu L, Schaufelberger F, Stenlid JH, Abild-Pedersen F, Leigh DA. Vernier template synthesis of molecular knots. Science 2022; 375:1035-1041. [PMID: 35239374 DOI: 10.1126/science.abm9247] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecular knots are often prepared using metal helicates to cross the strands. We found that coordinatively mismatching oligodentate ligands and metal ions provides a more effective way to synthesize larger knots using Vernier templating. Strands composed of different numbers of tridentate 2,6-pyridinedicarboxamide groups fold around nine-coordinate lanthanide (III) ions to generate strand-entangled complexes with the lowest common multiple of coordination sites for the ligand strands and metal ions. Ring-closing olefin metathesis then completes the knots. A 3:2 (ditopic strand:metal) Vernier assembly produces +31#+31 and -31#-31 granny knots. Vernier complexes of 3:4 (tetratopic strand:metal) stoichiometry selectively form a 378-atom-long trefoil-of-trefoils triskelion knot with 12 alternating strand crossings or, by using opposing stereochemistry at the terminus of the strand, an inverted-core triskelion knot with six alternating and six nonalternating strand crossings.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Elisabeth Kreidt
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Lucian Pirvu
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | - Joakim Halldin Stenlid
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
16
|
Xu GT, Chang XY, Low KH, Wu LL, Wan Q, Shu HX, To WP, Huang JS, Che CM. Self‐Assembly of Molecular Trefoil Knots Featuring Pentadecanuclear Homoleptic AuI‐, AuI/AgI‐, or AuI/CuI‐Alkynyl Coordination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Xiao-Yong Chang
- Southern University of Science and Technology Chemistry CHINA
| | | | | | - Qingyun Wan
- The University of Hong Kong Chemistry HONG KONG
| | | | - Wai-Pong To
- The University of Hong Kong Chemistry HONG KONG
| | | | - Chi-Ming Che
- The University of Hong Kong Pokfulam Road - Hong Kong HONG KONG
| |
Collapse
|
17
|
|
18
|
Brady KG, Liu B, Li X, Isaacs L. Self Assembled Cages with Mechanically Interlocked Cucurbiturils. Supramol Chem 2021; 33:8-32. [PMID: 34366642 PMCID: PMC8340875 DOI: 10.1080/10610278.2021.1908546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
We report preparation of (bis)aniline ligand 4 which contains a central viologen binding domain and its subcomponent self-assembly with aldehyde 5 and Fe(OTf)2 in CH3CN to yield tetrahedral assembly 6. Complexation of ligand 4 with CB[7] in the form of CB[7]•4•2PF6 allows the preparation of assembly 7 which contains an average of 1.95 (range 1-3) mechanically interlocked CB[7] units. Assemblies 6 and 7 are hydrolytically unstable in water due to their imine linkages. Redesign of our system with water stable 2,2'-bipyridine end groups was realized in the form of ligands 11 and 16 which also contain a central viologen binding domain. Self-assembly of 11 with Fe(NTf2)2 gave tetrahedral MOP 12 as evidenced by 1H NMR, DOSY, and mass spectrometric analysis. In contrast, isomeric ligand 16 underwent self-assembly with Fe(OTf)2 to give cubic assembly 17. Precomplexation of ligands 11 and 16 with CB[7] gave the acetonitrile soluble CB[7]•11•2PF6 and CB[7]•16•2PF6 complexes. Self-assembly of CB[7]•11•2PF6 with Fe(OTf)2 gave tetrahedron 13 which contains on average 1.8 mechanically interlocked CB[7] units as determined by 1H NMR, DOSY, and ESI-MS analysis. Self-assembly of CB[7]•16•2PF6 with Fe(OTf)2 gave cube 13 which contains 6.59 mechanically interlocked CB[7] units as determined by 1H NMR and DOSY measurements.
Collapse
Affiliation(s)
- Kimberly G. Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Bingqing Liu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
19
|
Zhang L. New synthetic strategies hold promise for the future of molecular nanotopology. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Leigh DA, Danon JJ, Fielden SDP, Lemonnier JF, Whitehead GFS, Woltering SL. A molecular endless (7 4) knot. Nat Chem 2021; 13:117-122. [PMID: 33318672 DOI: 10.1038/s41557-020-00594-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
Current strategies for the synthesis of molecular knots focus on twisting, folding and/or threading molecular building blocks. Here we report that Zn(II) or Fe(II) ions can be used to weave ligand strands to form a woven 3 × 3 molecular grid. We found that the process requires tetrafluoroborate anions to template the assembly of the interwoven grid by binding within the square cavities formed between the metal-coordinated criss-crossed ligands. The strand ends of the grid can subsequently be joined through within-grid alkene metathesis reactions to form a topologically trivial macrocycle (unknot), a doubly interlocked [2]catenane (Solomon link) and a knot with seven crossings in a 258-atom-long closed loop. This 74 knot topology corresponds to that of an endless knot, which is a basic motif of Celtic interlace, the smallest Chinese knot and one of the eight auspicious symbols of Buddhism and Hinduism. The weaving of molecular strands within a discrete layer by anion-template metal-ion coordination opens the way for the synthesis of other molecular knot topologies and to woven polymer materials.
Collapse
Affiliation(s)
- David A Leigh
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China. .,Department of Chemistry, University of Manchester, Manchester, UK.
| | - Jonathan J Danon
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
21
|
Song Y, Schaufelberger F, Ashbridge Z, Pirvu L, Vitorica-Yrezabal IJ, Leigh DA. Effects of turn-structure on folding and entanglement in artificial molecular overhand knots. Chem Sci 2020; 12:1826-1833. [PMID: 34163946 PMCID: PMC8179330 DOI: 10.1039/d0sc05897a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The length and constitution of spacers linking three 2,6-pyridinedicarboxamide units in a molecular strand influence the tightness of the resulting overhand (open-trefoil) knot that the strand folds into in the presence of lanthanide(iii) ions. The use of β-hairpin forming motifs as linkers enables a metal-coordinated pseudopeptide with a knotted tertiary structure to be generated. The resulting pseudopeptide knot has one of the highest backbone-to-crossing ratios (BCR)—a measure of knot tightness (a high value corresponding to looseness)—for a synthetic molecular knot to date. Preorganization in the crossing-free turn section of the knot affects aromatic stacking interactions close to the crossing region. The metal-coordinated pseudopeptide knot is compared to overhand knots with other linkers of varying tightness and turn preorganization, and the entangled architectures characterized by NMR spectroscopy, ESI-MS, CD spectroscopy and, in one case, X-ray crystallography. The results show how it is possible to program specific conformational properties into different key regions of synthetic molecular knots, opening the way to systems where knotting can be systematically incorporated into peptide-like chains through design. Spacers linking 2,6-pyridinedicarboxamide units influence the tightness of the corresponding lanthanide-coordinated overhand knot. β-Hairpin forming motifs generate a metal-coordinated pseudopeptide with a knotted tertiary structure.![]()
Collapse
Affiliation(s)
- Yiwei Song
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 PR China
| | | | - Zoe Ashbridge
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Lucian Pirvu
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - David A Leigh
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 PR China .,Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
22
|
|
23
|
Belda Marín C, Fitzpatrick V, Kaplan DL, Landoulsi J, Guénin E, Egles C. Silk Polymers and Nanoparticles: A Powerful Combination for the Design of Versatile Biomaterials. Front Chem 2020; 8:604398. [PMID: 33335889 PMCID: PMC7736416 DOI: 10.3389/fchem.2020.604398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Silk fibroin (SF) is a natural protein largely used in the textile industry but also in biomedicine, catalysis, and other materials applications. SF is biocompatible, biodegradable, and possesses high tensile strength. Moreover, it is a versatile compound that can be formed into different materials at the macro, micro- and nano-scales, such as nanofibers, nanoparticles, hydrogels, microspheres, and other formats. Silk can be further integrated into emerging and promising additive manufacturing techniques like bioprinting, stereolithography or digital light processing 3D printing. As such, the development of methodologies for the functionalization of silk materials provide added value. Inorganic nanoparticles (INPs) have interesting and unexpected properties differing from bulk materials. These properties include better catalysis efficiency (better surface/volume ratio and consequently decreased quantify of catalyst), antibacterial activity, fluorescence properties, and UV-radiation protection or superparamagnetic behavior depending on the metal used. Given the promising results and performance of INPs, their use in many different procedures has been growing. Therefore, combining the useful properties of silk fibroin materials with those from INPs is increasingly relevant in many applications. Two main methodologies have been used in the literature to form silk-based bionanocomposites: in situ synthesis of INPs in silk materials, or the addition of preformed INPs to silk materials. This work presents an overview of current silk nanocomposites developed by these two main methodologies. An evaluation of overall INP characteristics and their distribution within the material is presented for each approach. Finally, an outlook is provided about the potential applications of these resultant nanocomposite materials.
Collapse
Affiliation(s)
- Cristina Belda Marín
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Jessem Landoulsi
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Erwann Guénin
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
| | - Christophe Egles
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Compiègne, France
| |
Collapse
|
24
|
August D, Borsley S, Cockroft SL, della Sala F, Leigh DA, Webb SJ. Transmembrane Ion Channels Formed by a Star of David [2]Catenane and a Molecular Pentafoil Knot. J Am Chem Soc 2020; 142:18859-18865. [PMID: 33084320 PMCID: PMC7745878 DOI: 10.1021/jacs.0c07977] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/19/2022]
Abstract
A (FeII)6-coordinated triply interlocked ("Star of David") [2]catenane (612 link) and a (FeII)5-coordinated pentafoil (51) knot are found to selectively transport anions across phospholipid bilayers. Allostery, topology, and building block stoichiometry all play important roles in the efficacy of the ionophoric activity. Multiple FeII cation coordination by the interlocked molecules is crucial: the demetalated catenane exhibits no anion binding in solution nor any transmembrane ion transport properties. However, the topologically trivial, Lehn-type cyclic hexameric FeII helicates-which have similar anion binding affinities to the metalated Star of David catenane in solution-also display no ion transport properties. The unanticipated difference in behavior between the open- and closed-loop structures may arise from conformational restrictions in the linking groups that likely enhances the rigidity of the channel-forming topologically complex molecules. The (FeII)6-coordinated Star of David catenane, derived from a hexameric cyclic helicate, is 2 orders of magnitude more potent in terms of ion transport than the (FeII)5-coordinated pentafoil knot, derived from a cyclic pentamer of the same building block. The reduced efficacy is reminiscent of multisubunit protein ion channels assembled with incorrect monomer stoichiometries.
Collapse
Affiliation(s)
- David
P. August
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Stefan Borsley
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Scott L. Cockroft
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh EH9 3FJ, United Kingdom
| | - Flavio della Sala
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David A. Leigh
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Simon J. Webb
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
25
|
Delaney P, Ramdas Nair A, Palmer C, Khan N, Sadler KC. Arsenic induced redox imbalance triggers the unfolded protein response in the liver of zebrafish. Toxicol Appl Pharmacol 2020; 409:115307. [PMID: 33147493 DOI: 10.1016/j.taap.2020.115307] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Inorganic arsenic (iAs) is one of the most endemic toxicants worldwide and oxidative stress is a key cellular pathway underlying iAs toxicity. Other cellular stress response pathways, such as the unfolded protein response (UPR), are also impacted by iAs exposure, however it is not known how these pathways intersect to cause disease. We optimized the use of zebrafish larvae to identify the relationship between these cellular stress response pathways and arsenic toxicity. We found that the window of iAs susceptibility during zebrafish development corresponds with the development of the liver, and that even a 24-h exposure can cause lethality if administered to mature larvae, but not to early embryos. Acute exposure of larvae to iAs generates reactive oxygen species (ROS), an antioxidant response, endoplasmic reticulum (ER) stress and UPR activation in the liver. An in vivo assay using transgenic larvae expressing a GFP-tagged secreted glycoprotein in hepatocytes (Tg(fabp10a:Gc-EGFP)) revealed acute iAs exposure selectively decreased expression of Gc-EGFP, indicating that iAs impairs secretory protein folding in the liver. The transcriptional output of UPR activation is preceded by ROS production and activation of genes involved in the oxidative stress response. These studies implicate redox imbalance as the mechanism of iAs-induced ER stress and suggest that crosstalk between these pathways underlie iAs-induced hepatic toxicity.
Collapse
Affiliation(s)
- Patrice Delaney
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Anjana Ramdas Nair
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Catherine Palmer
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Nouf Khan
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates.
| |
Collapse
|
26
|
Benyettou F, Das G, Nair AR, Prakasam T, Shinde DB, Sharma SK, Whelan J, Lalatonne Y, Traboulsi H, Pasricha R, Abdullah O, Jagannathan R, Lai Z, Motte L, Gándara F, Sadler KC, Trabolsi A. Covalent Organic Framework Embedded with Magnetic Nanoparticles for MRI and Chemo-Thermotherapy. J Am Chem Soc 2020; 142:18782-18794. [PMID: 33090806 DOI: 10.1021/jacs.0c05381] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites.
Collapse
Affiliation(s)
- Farah Benyettou
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Gobinda Das
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Anjana Ramdas Nair
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | | | - Digambar B Shinde
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Sudhir Kumar Sharma
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Jamie Whelan
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Yoann Lalatonne
- Inserm, U1148, Laboratory for Vascular Translational Science, Université Sorbonne Paris Nord, Sorbonne Paris Cité, F-93017 Bobigny, France.,Services de Biochimie et Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France
| | - Hassan Traboulsi
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Renu Pasricha
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Osama Abdullah
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ramesh Jagannathan
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Laurence Motte
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, France
| | - Felipe Gándara
- Materials Science Institute of Madrid-CSIC, 28049 Madrid, Spain
| | - Kirsten C Sadler
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ali Trabolsi
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
27
|
Affiliation(s)
- J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai Districts, Tianjin 300072, P. R. China
| |
Collapse
|
28
|
Katsonis N, Lancia F, Leigh DA, Pirvu L, Ryabchun A, Schaufelberger F. Knotting a molecular strand can invert macroscopic effects of chirality. Nat Chem 2020; 12:939-944. [DOI: 10.1038/s41557-020-0517-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 06/25/2020] [Indexed: 11/10/2022]
|
29
|
|
30
|
Abstract
Since the discovery and structural characterization of metal organic polygons and polyhedra (MOPs), scientists have explored their potential in various applications like catalysis, separation, storage, and sensing. In recent years, scientists have explored the potential of supramolecular MOPs in biomedical application. Pioneering works by Ehrlich, Rosenberg, Lippard, Stang and others have demonstrated that MOPs have great potential as a novel class of metallo-therapeutics that can deliver cargoes (drugs and dyes) selectively. In this article, we document the progress made over the past two decades on the biomedical applications of MOPs and discuss the future prospects of this emerging field.
Collapse
Affiliation(s)
- Soumen K Samanta
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 United States
- School of Chemistry, University of Bristol, Cantock's Close, United Kingdom, BS8 1TS
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 United States
| |
Collapse
|
31
|
Benyettou F, Ramdas Nair A, Dho Y, Prakasam T, Pasricha R, Whelan J, Traboulsi H, Mazher J, Sadler KC, Trabolsi A. Aqueous Synthesis of Triphenylphosphine‐Modified Gold Nanoparticles for Synergistic In Vitro and In Vivo Photothermal Chemotherapy. Chemistry 2020; 26:5270-5279. [DOI: 10.1002/chem.202000216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Farah Benyettou
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| | - Anjana Ramdas Nair
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| | - Yaereen Dho
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| | - Thirumurugan Prakasam
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| | - Renu Pasricha
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| | - Jamie Whelan
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| | - Hassan Traboulsi
- Department of ChemistryKing Faisal University Al-Ahsa 31982 Kingdom of Saudi Arabia
| | - Javed Mazher
- Department of PhysicsKing Faisal University Al-Ahsa 31982 Kingdom of Saudi Arabia
| | - Kirsten C. Sadler
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| | - Ali Trabolsi
- New York University Abu Dhabi PO Box 129188, Saadiyat Island Abu Dhabi United Arab Emirates
| |
Collapse
|
32
|
Sharma S, Al Hosani S, Kalmouni M, Nair AR, Palanikumar L, Pasricha R, Sadler KC, Magzoub M, Jagannathan R. Supercritical CO 2 Processing Generates Aqueous Cisplatin Solutions with Enhanced Cancer Specificity. ACS OMEGA 2020; 5:4558-4567. [PMID: 32175502 PMCID: PMC7066560 DOI: 10.1021/acsomega.9b03917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Cisplatin is a highly toxic material used clinically as a potent chemotherapeutic. While effective against some cancers, toxicity limits widespread use and low solubility confounds delivery. To formulate a better tolerated and more water-soluble form of cisplatin, we designed a rapid expansion of supercritical solutions (RESS) technique with supercritical carbon dioxide (sc-CO2) to collect nanoclusters of cisplatin embedded in dry ice, in a dual-stage collection vessel cooled to liquid nitrogen temperature. These nanoclusters were solubilized in deionized water and further concentrated (up to 51.3 mM) by a Rotovap process, yielding stable cisplatin solutions with solubility up to 15 × (w/w) greater than that of normal cisplatin. Extensive material characterizations of the solutions were carried out to determine any chemical and/or structural changes of the RESS-processed cisplatin. In vitro cytotoxicity studies of these aqueous solutions showed increased cell viability and early apoptosis compared to equivalent concentrations of standard cisplatin solutions. In vivo studies using zebrafish embryos revealed that standard cisplatin solutions were acutely toxic and caused death of rapidly proliferating cells compared to RESS-processed cisplatin, which were better tolerated with reduced general cell death. Increased water solubility and matched chemical identity of RESS-processed aqueous cisplatin solutions indicate the potential to open up novel drug-delivery routes, which is beneficial for new pharmaceutical design and development.
Collapse
Affiliation(s)
| | | | - Mona Kalmouni
- Program
in Biology, New York University, Abu Dhabi, UAE
| | | | | | - Renu Pasricha
- Core
Technology Platform, New York University, Abu Dhabi, UAE
| | | | - Mazin Magzoub
- Program
in Biology, New York University, Abu Dhabi, UAE
| | | |
Collapse
|
33
|
Li S, Zhao J, Yuan B, Wang X, Zhang J, Yue L, Hou H, Hu J, Chen S. Crystal structure, DNA interaction and in vitro anticancer activity of Cu(II) and Pt(II) compounds based on benzimidazole-quinoline derivative. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Caprice K, Aster A, Cougnon FBL, Kumpulainen T. Untying the Photophysics of Quinolinium-Based Molecular Knots and Links. Chemistry 2020; 26:1576-1587. [PMID: 31670851 DOI: 10.1002/chem.201904456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Indexed: 01/08/2023]
Abstract
Complex molecular knots and links are still difficult to synthesize and the properties arising from their topology are mostly unknown. Here, we report on a comparative photophysical study carried out on a family of closely related quinolinium-based knots and links to determine the impact exerted by topology on the molecular backbone. Our results indicate that topology has a negligible influence on the behavior of loosely braided molecules, which mostly behave like their unbraided equivalents. On the other hand, tightly braided molecules display distinct features. Their higher packing density results in a pronounced ability to resist deformation, a significant reduction in the solvent-accessible surface area and favors close-range π-π interactions between the quinolinium units and neighboring aromatics. Finally, the sharp alteration in behavior between loosely and tightly braided molecules sheds light on the factors contributing to braiding tightness.
Collapse
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Alexander Aster
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Fabien B L Cougnon
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Tatu Kumpulainen
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| |
Collapse
|
35
|
Zhong J, Zhang L, August DP, Whitehead GFS, Leigh DA. Self-Sorting Assembly of Molecular Trefoil Knots of Single Handedness. J Am Chem Soc 2019; 141:14249-14256. [PMID: 31389229 DOI: 10.1021/jacs.9b06127] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on the stereoselective synthesis of trefoil knots of single topological handedness in up to 90% yield (over two steps) through the formation of trimeric circular helicates from ligand strands containing either imine or, unexpectedly, amide chelating units and metal ion templates of the appropriate coordination character (zinc(II) for imines; cobalt(III) for amides). The coordination stereochemistry of the octahedral metal complexes is determined by asymmetric carbon centers in the strands, ultimately translating into trefoil knots that are a single enantiomer, both physically and in terms of their fundamental topology. Both the imine-zinc and amide-cobalt systems display self-sorting behavior, with racemic ligands forming knots that individually contain only building blocks of the same chirality. The knots and the corresponding trimeric circular helicate intermediates (Zn(II)3 complex for the imine ligands; Co(III)3 complex for the amide ligands) were characterized by nuclear magnetic resonance spectroscopy, mass spectrometry, and X-ray crystallography. The latter confirms the trefoil knots as 84-membered macrocycles, with each of the metal ions sited at a crossing point for three regions of the strand. The stereochemistry of the octahedral coordination centers imparts alternating crossings of the same handedness within each circular helicate. The expression of chirality of the knotted molecules was probed by circular dichroism: The topological handedness of the demetalated knots was found to have a greater effect on the CD response than the Euclidean chirality of an individual chiral center.
Collapse
Affiliation(s)
- Jiankang Zhong
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Liang Zhang
- School of Chemistry and Molecular Engineering , East China Normal University , 200062 Shanghai , China.,School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - David P August
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - George F S Whitehead
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - David A Leigh
- School of Chemistry and Molecular Engineering , East China Normal University , 200062 Shanghai , China.,School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| |
Collapse
|