1
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
2
|
Budny-Godlewski K, Piekarski DG, Justyniak I, Leszczyński MK, Nawrocki J, Kubas A, Lewiński J. Uncovering Factors Controlling Reactivity of Metal-TEMPO Reaction Systems in the Solid State and Solution. Chemistry 2024; 30:e202401968. [PMID: 38801170 DOI: 10.1002/chem.202401968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Nitroxides find application in various areas of chemistry, and a more in-depth understanding of factors controlling their reactivity with metal complexes is warranted to promote further developments. Here, we report on the effect of the metal centre Lewis acidity on both the distribution of the O- and N-centered spin density in 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and turning TEMPO from the O- to N-radical mode scavenger in metal-TEMPO systems. We use Et(Cl)Zn/TEMPO model reaction system with tuneable reactivity in the solid state and solution. Among various products, a unique Lewis acid-base adduct of Cl2Zn with the N-ethylated TEMPO was isolated and structurally characterised, and the so-called solid-state 'slow chemistry' reaction led to a higher yield of the N-alkylated product. The revealed structure-activity/selectivity correlations are exceptional yet are entirely rationalised by the mechanistic underpinning supported by theoretical calculations of studied model systems. This work lays a foundation and mechanistic blueprint for future metal/nitroxide systems exploration.
Collapse
Affiliation(s)
- Krzysztof Budny-Godlewski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Dariusz G Piekarski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Michał K Leszczyński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Jan Nawrocki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Janusz Lewiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
3
|
Kornowicz A, Pietrzak T, Korona K, Terlecki M, Justyniak I, Kubas A, Lewiński J. Fresh Impetus in the Chemistry of Calcium Peroxides. J Am Chem Soc 2024; 146:18938-18947. [PMID: 38847558 PMCID: PMC11258691 DOI: 10.1021/jacs.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/18/2024]
Abstract
Redox-inactive metal ions are essential in modulating the reactivity of various oxygen-containing metal complexes and metalloenzymes, including photosystem II (PSII). The heart of this unique membrane-protein complex comprises the Mn4CaO5 cluster, in which the Ca2+ ion acts as a critical cofactor in the splitting of water in PSII. However, there is still a lack of studies involving Ca-based reactive oxygen species (ROS) systems, and the exact nature of the interaction between the Ca2+ center and ROS in PSII still generates intense debate. Here, harnessing a novel Ca-TEMPO complex supported by the β-diketiminate ligand to control the activation of O2, we report the isolation and structural characterization of hitherto elusive Ca peroxides, a homometallic Ca hydroperoxide and a heterometallic Ca/K peroxide. Our studies indicate that the presence of K+ cations is a key factor controlling the outcome of the oxygenation reaction of the model Ca-TEMPO complex. Combining experimental observations with computational investigations, we also propose a mechanistic rationalization for the reaction outcomes. The designed approach demonstrates metal-TEMPO complexes as a versatile platform for O2 activation and advances the understanding of Ca/ROS systems.
Collapse
Affiliation(s)
- Arkadiusz Kornowicz
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz Pietrzak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Krzesimir Korona
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Michał Terlecki
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Iwona Justyniak
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Adam Kubas
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz Lewiński
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
4
|
Kubota K, Endo T, Ito H. Solid-state mechanochemistry for the rapid and efficient synthesis of tris-cyclometalated iridium(iii) complexes. Chem Sci 2024; 15:3365-3371. [PMID: 38425515 PMCID: PMC10901499 DOI: 10.1039/d3sc05796h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Tris-cyclometalated iridium(iii) complexes have received widespread attention as attractive prospective materials for e.g., organic light-emitting diodes (OLEDs), photoredox catalysts, and bioimaging probes. However, their preparation usually requires prolonged reaction times, significant amounts of high-boiling solvents, multistep synthesis, and inert-gas-line techniques. Unfortunately, these requirements represent major drawbacks from both a production-cost and an environmental perspective. Herein, we show that a two-step mechanochemical protocol using ball milling enables the rapid and efficient synthesis of various tris-cyclometalated iridium(iii) complexes from relatively cheap iridium(iii) chloride hydrate without the use of significant amounts of organic solvent in air. Notably, a direct one-pot procedure is also demonstrated. The present solid-state approach can be expected to inspire the development of cost-effective and timely production methods for these valuable iridium-based complexes, as well as the discovery of new phosphorescent materials, sensors, and catalysts.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| | - Tsubura Endo
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| |
Collapse
|
5
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
6
|
Richard AJ, Ferguson M, Fiss BG, Titi HM, Valdez J, Provatas N, Friščić T, Moores A. In situ study of Au nanoparticle formation in a mechanochemical-aging-based method. NANOSCALE ADVANCES 2023; 5:2776-2784. [PMID: 37205288 PMCID: PMC10187004 DOI: 10.1039/d2na00759b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/14/2023] [Indexed: 05/21/2023]
Abstract
As we strive to perform chemical transformations in a more sustainable fashion, enabling solid-state reactions through mechanochemistry has emerged as a highly successful approach. Due to the wide-ranging applications of gold nanoparticles (AuNPs), mechanochemical strategies have already been employed for their synthesis. However, the underlying processes surrounding gold salt reduction, nucleation and growth of AuNPs in the solid state are yet to be understood. Here, we present a mechanically activated aging synthesis of AuNPs, through a solid-state Turkevich reaction. Solid reactants are only briefly exposed to input of mechanical energy before being aged statically over a period of six weeks at different temperatures. This system offers an excellent opportunity for an in situ analysis of both reduction and nanoparticle formation processes. During the aging period, the reaction was monitored using a combination of X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, powder X-ray diffraction and transmission electron microscopy, to gain meaningful insights into the mechanisms of solid-state formation of gold nanoparticles. The acquired data allowed for the establishment of the first kinetic model for solid-state nanoparticle formation.
Collapse
Affiliation(s)
- Austin J Richard
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Michael Ferguson
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Blaine G Fiss
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Hatem M Titi
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Jesus Valdez
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
- Facility for Electron Microscopy Research, McGill University 3640 University Street Montréal Québec H3A0C7 Canada
| | - Nikolas Provatas
- Department of Physics, McGill University 3600 University Street Montréal Québec H3A 2T8 Canada
- McGill High Performance Computing Centre, École de Technologie Supérieure (ETS) 1100 Notre Dame Street West Montréal Québec H3C 1K3 Canada
| | - Tomislav Friščić
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
- Department of Materials Engineering, McGill University 3610 University Street Montréal Québec H3A 0C5 Canada
| |
Collapse
|
7
|
Biswas A, Bhunia A, Mandal SK. Mechanochemical solid state single electron transfer from reduced organic hydrocarbon for catalytic aryl-halide bond activation. Chem Sci 2023; 14:2606-2615. [PMID: 36908958 PMCID: PMC9993847 DOI: 10.1039/d2sc06119h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
Solid-state radical generation is an attractive but underutilized methodology in the catalytic strong bond activation process, such as the aryl-halide bond. Traditionally, such a process of strong bond activation relied upon the use of transition metal complexes or strongly reducing photocatalysts in organic solvents. The generation of the aryl radical from aryl halides in the absence of transition-metal or external stimuli, such as light or cathodic current, remains an elusive process. In this study, we describe a reduced organic hydrocarbon, which can act as a super reductant in the solid state to activate strong bonds by solid-state single electron transfer (SSSET) under the influence of mechanical energy leading to a catalytic strategy based on the mechano-SSSET or mechanoredox process. Here, we investigate the solid-state synthesis of the super electron donor phenalenyl anion in a ball mill and its application as an active catalyst in strong bond (aryl halide) activation. Aryl radicals generated from aryl halides by employing this strategy are competent for various carbon-carbon bond-forming reactions under solvent-free and transition metal-free conditions. We illustrate this approach for partially soluble or insoluble polyaromatic arenes in accomplishing solid-solid C-C cross-coupling catalysis, which is otherwise difficult to achieve by traditional methods using solvents.
Collapse
Affiliation(s)
- Amit Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| | - Anup Bhunia
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| |
Collapse
|
8
|
Dhanwant K, Saini A, Chivers T, Thirumoorthi R. Temperature-Assisted Generation of Arylmethyl Radicals from Bis(arylmethyl)tin Dichlorides: Efficient Reagents for C s p 3 ${{{\bf C}}_{{{\bf s p}}^{3}}}$ - C s p 2 ${{{\bf C}}_{{{\bf s p}}^{2}}}$ Bond-Forming Reactions. Chemistry 2023; 29:e202202844. [PMID: 36512637 DOI: 10.1002/chem.202202844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
The oxidative-addition reaction between an arylmethyl chloride (RCH2 Cl; R=1-C10 H7 , 2,4,6-Me3 C6 H2 , 4-MeC6 H4 , 3-MeC6 H4 , C6 H5 , 4-ClC6 H4 ) and tin powder in boiling toluene produces bis(arylmethyl)tin dichlorides, [(RCH2 )2 SnCl2 ] in good yields. At 160 °C in mesitylene bis(1-naphthylmethyl)tin dichloride undergoes Sn-C homolytic cleavage to generate two 1-naphthylmethyl radicals (1-C10 H7 CH2 ⋅) which were trapped by TEMPO (C9 H8 NO⋅). Subsequently, the radicals (RCH2 ⋅) produced in this manner were utilized for efficient substitution reactions with electron-rich arenes (R'H; R'=2,4,6-Me3 C6 H2 , 1,2,4,5-Me4 C6 H, 1,2,3,4,5-Me5 C6 ) to obtain a variety of unsymmetrical diarylmethanes (RR'CH2 ). The addition of one equivalent of iodine (I2 ) to the reaction mixture resulted in a significant increase in the yields of coupled products.
Collapse
Affiliation(s)
- Kisturi Dhanwant
- Department of Chemistry, Central University of Rajasthan, NH8, Bandarsindri, Ajmer, 305817, India
| | - Aarti Saini
- Department of Chemistry, Central University of Rajasthan, NH8, Bandarsindri, Ajmer, 305817, India
| | - Tristram Chivers
- Department of Chemistry, University of Calgary, Calgary, AB, T2 N 1 N4, Canada
| | - Ramalingam Thirumoorthi
- Department of Chemistry, Central University of Rajasthan, NH8, Bandarsindri, Ajmer, 305817, India
| |
Collapse
|
9
|
Ferguson M, Richard AJ, Valdez J, Fiss BG, Titi HM, Provatas N, Friščić T, Moores A. Direct observation by high resolution transmission electron microscopy of gold(III) particle transformation during aging reduction reaction. Faraday Discuss 2023; 241:278-288. [PMID: 36218357 DOI: 10.1039/d2fd00126h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We use a gold nanoparticle synthesis as a model system to study the morphological and compositional changes in gold(III) precursor particles, while reduction is taking place during aging after mechanical activation. Scanning transmission electron microscopy coupled with a high-angle annular dark field detector revealed the nanoscale changes in particle morphology, while electron energy loss spectroscopy mapped the changes in the chemical landscape during the reduction process. Tracking a specific region of interest on the sample grid allowed for comparisons to be made of the same particles across a two day monitoring period. High-angle annular dark field images permitted the visualization of particle size reduction of the gold salt while electron energy loss spectroscopy captured the surprising mobility of the lighter chlorine and sodium ions in a solid matrix during the reduction process. This system offers unique insight into precursor particle reactivity in the solid phase, which is relevant for many mechanochemical and aging-based reactions.
Collapse
Affiliation(s)
- Michael Ferguson
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| | - Austin J Richard
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| | - Jesus Valdez
- Facility for Electron Microscopy Research, McGill University, 3640 University Street, Montréal, Québec H3A 0C7, Canada
| | - Blaine G Fiss
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| | - Hatem M Titi
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| | - Nikolas Provatas
- Department of Physics, McGill University, 3600 University Street, Montréal, Québec H3A 2T8, Canada.,McGill High Performance Computing Centre, École de Technologie Supérieure (ETS), 1100 Notre Dame Street West, Montréal, Québec H3C 1K3, Canada
| | - Tomislav Friščić
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada. .,Department of Materials Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| |
Collapse
|
10
|
Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. Mechanochemistry: New Tools to Navigate the Uncharted Territory of "Impossible" Reactions. CHEMSUSCHEM 2022; 15:e202200362. [PMID: 35867602 PMCID: PMC9542358 DOI: 10.1002/cssc.202200362] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Indexed: 05/10/2023]
Abstract
Mechanochemical transformations have made chemists enter unknown territories, forcing a different chemistry perspective. While questioning or revisiting familiar concepts belonging to solution chemistry, mechanochemistry has broken new ground, especially in the panorama of organic synthesis. Not only does it foster new "thinking outside the box", but it also has opened new reaction paths, allowing to overcome the weaknesses of traditional chemistry exactly where the use of well-established solution-based methodologies rules out progress. In this Review, the reader is introduced to an intriguing research subject not yet fully explored and waiting for improved understanding. Indeed, the study is mainly focused on organic transformations that, although impossible in solution, become possible under mechanochemical processing conditions, simultaneously entailing innovation and expanding the chemical space.
Collapse
Affiliation(s)
- Federico Cuccu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Lidia De Luca
- Dipartimento di Chimica e FarmaciaUniversità degli Studi di Sassarivia Vienna 207100SassariItaly
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità degli Studi di CagliariVia Marengo 209123CagliariItaly
| | | | - Niclas Solin
- Department of PhysicsChemistry and Biology (IFM)Electronic and Photonic Materials (EFM)Building Fysikhuset, Room M319, CampusVallaSweden
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| |
Collapse
|
11
|
Leszczyński M, Kornacki D, Terlecki M, Justyniak I, Miletić GI, Halasz I, Bernatowicz P, Szejko V, Lewiński J. Mechanochemical vs Wet Approach for Directing CO 2 Capture toward Various Carbonate and Bicarbonate Networks. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:4374-4380. [PMID: 35433136 PMCID: PMC9006257 DOI: 10.1021/acssuschemeng.1c08402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The distinct research areas related to CO2 capture and mechanochemistry are both highly attractive in the context of green chemistry. However, merger of these two areas, i.e., mechanochemical CO2 capture, is still in an early stage of development. Here, the application of biguanidine as an active species for CO2 capture is investigated using both solution-based and liquid-assisted mechanochemical approaches, which lead to a variety of biguanidinium carbonate and bicarbonate hydrogen-bonded networks. We demonstrate that in solution, the formation of the carbonate vs bicarbonate networks can be directed by the organic solvent, while, remarkably, in the liquid-assisted mechanochemical synthesis employing the same solvents as additives, the selectivity in network formation is inversed. In general, our findings support the view of mechanochemistry not only as a sustainable alternative but rather as a complementary strategy to solution-based synthesis.
Collapse
Affiliation(s)
- Michał
K. Leszczyński
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dawid Kornacki
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Terlecki
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Iwona Justyniak
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Ivan Halasz
- Ruđ̵er
Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Piotr Bernatowicz
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Vadim Szejko
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Janusz Lewiński
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
12
|
Tulewicz A, Szejko V, Justyniak I, Wolska M, Lewinski J. Exploring the reactivity of homoleptic organozincs towards SO 2: Synthesis and structure of a homologous series of organozinc sulfinates. Dalton Trans 2022; 51:7241-7247. [DOI: 10.1039/d2dt00577h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Studies on the reactivity of zinc alkyl compounds towards SO2 are relatively less explored than either the oxygenation or hydrolysis reactions. We report on environmentally friendly and efficient syntheses of...
Collapse
|
13
|
Budny-Godlewski K, Leszczyński MK, Tulewicz A, Justyniak I, Pinkowicz D, Sieklucka B, Kruczała K, Sojka Z, Lewiński J. A Case Study on the Desired Selectivity in Solid-State Mechano- and Slow-Chemistry, Melt, and Solution Methodologies. CHEMSUSCHEM 2021; 14:3887-3894. [PMID: 34289248 DOI: 10.1002/cssc.202101269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Solution-based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid-state mechano- and slow-chemistry synthesis, melted phase, and solution protocols, and the impact of the employed solvent-free solid-state versus liquid-phase synthetic approaches was highlighted on a pool of products. A moderately exothermic model reaction system was chosen based on bis(pentafluorophenyl)zinc, (C6 F5 )2 Zn, and 2,2,6,6-tetramethylpiperidinyl oxide (TEMPO) as a stable nitroxyl radical, anticipating that these reagents may offer a unique landscape for addressing kinetic and thermodynamic aspects of wet and solvent-free solid-state processes. In a toluene solution two distinct paramagnetic Lewis acid-base adducts (C6 F5 )2 Zn(η1 -TEMPO) (1) and (C6 F5 )2 Zn(η1 -TEMPO)2 (2) equilibrated, but only 2 was affordable by crystallization. In turn, crystallization from the melt was the only method yielding single crystals of 1. Moreover, the solid-state approaches were stoichiometry sensitive and allowed for the selective synthesis of both adducts by simple stoichiometric control over the substrates. Density functional theory (DFT) calculations were carried out to examine selected structural and thermodynamic features of the adducts 1 and 2. Compound 2 is a unique non-redox active metal complex supported by two nitroxide radicals, and the magnetic studies revealed weak-to-moderate intramolecular antiferromagnetic interactions between the two coordinated TEMPO molecules.
Collapse
Affiliation(s)
- Krzysztof Budny-Godlewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Michał K Leszczyński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Tulewicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Krzysztof Kruczała
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Zbigniew Sojka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Janusz Lewiński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
14
|
Zelga K, Pietrzak T, Han T, Justyniak I, Chwojnowska E, Sobota P, Lewiński J. Effectiveness of the Oxygenation over Classical Protonolysis Reactions: A Case of Alkylzinc Complexes Incorporating an Aminoalcoholate Ligand. Chemistry 2021; 27:14234-14239. [PMID: 34346529 DOI: 10.1002/chem.202102172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 11/06/2022]
Abstract
Alkylzinc aminoalcoholates have emerged as powerful catalysts in organic synthesis and polymerization processes. Despite extensive research, difficulties in the rational design of these catalytic systems and in-depth understanding of their modes of action have hitherto been encountered. Most of the major obstacles stem largely from the relatively limited knowledge of the structure-activity relationship of zinc catalysts. In fact, the key active species are often generated in situ via the protonolysis of the alkylzinc precursors, which precludes their isolation and detailed characterization. Herein, the effectiveness of the oxygenation over the classical protonolysis in the synthesis of zinc alkylperoxides stabilized by an aminoalcoholate ligand is demonstrated. The controlled oxygenation of a tert-butylzinc complex incorporating a pridinolum (prinol) ligand leads to well-defined a dinuclear adduct of a (prinol)ZnOOtBu moiety with the parent tBuZn(prinol) complex and a novel dimer [tBuOOZn(prinol)]2 with terminal alkylperoxide groups. The observed reaction outcomes strongly depend on the reaction conditions. Although sparse examples of heteroleptic adducts of the [RZn(L)]x [ROOZn(L)]y -type are known, the herein reported homoleptic [ROOZn(L)]x aggregate is unprecedented. Strikingly, comparative studies involving reactions between tBuZn(prinol) and tert-butylhydroperoxide or ethanol revealed that the respective seemingly simple zinc alkylperoxides, or zinc alkoxides, respectively, are not accessible via the classical alcoholysis. We believe that these game-changing results concerning multifaceted chemistry of organozinc aminoalcoholates should pave the way for more rational development of various Zn-based catalytic systems.
Collapse
Affiliation(s)
- Karolina Zelga
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Tomasz Pietrzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Tomasz Han
- Faculty of Chemistry, University of Wrocław Polish Academy of Science, F. Joliot-Curie '4, 50-383, Wrocław, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Elżbieta Chwojnowska
- Institute of Physical Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Piotr Sobota
- Faculty of Chemistry, University of Wrocław Polish Academy of Science, F. Joliot-Curie '4, 50-383, Wrocław, Poland
| | - Janusz Lewiński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.,Institute of Physical Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
15
|
Koby RF, Doerr AM, Rightmire NR, Schley ND, Long BK, Hanusa TP. An η
3
‐Bound Allyl Ligand on Magnesium in a Mechanochemically Generated Mg/K Allyl Complex. Angew Chem Int Ed Engl 2020; 59:9542-9548. [DOI: 10.1002/anie.201916410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/07/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Ross F. Koby
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| | - Alicia M. Doerr
- Department of Chemistry University of Tennessee Knoxville TN 37996-1600 USA
| | | | - Nathan D. Schley
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| | - Brian K. Long
- Department of Chemistry University of Tennessee Knoxville TN 37996-1600 USA
| | - Timothy P. Hanusa
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| |
Collapse
|
16
|
Koby RF, Doerr AM, Rightmire NR, Schley ND, Long BK, Hanusa TP. An η
3
‐Bound Allyl Ligand on Magnesium in a Mechanochemically Generated Mg/K Allyl Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ross F. Koby
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| | - Alicia M. Doerr
- Department of Chemistry University of Tennessee Knoxville TN 37996-1600 USA
| | | | - Nathan D. Schley
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| | - Brian K. Long
- Department of Chemistry University of Tennessee Knoxville TN 37996-1600 USA
| | - Timothy P. Hanusa
- Department of Chemistry Vanderbilt University Nashville TN 37235 USA
| |
Collapse
|
17
|
Prochowicz D, Saski M, Yadav P, Grätzel M, Lewiński J. Mechanoperovskites for Photovoltaic Applications: Preparation, Characterization, and Device Fabrication. Acc Chem Res 2019; 52:3233-3243. [PMID: 31702124 DOI: 10.1021/acs.accounts.9b00454] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hybrid organic-inorganic metal halide perovskites (MHPs) have emerged as excellent absorber materials for next generation solar cells owing to their simple solution-processed synthesis and high efficiency. This breakthrough in photovoltaics along with an accompanying impact in light-emitting applications prompted a renaissance of interest in the broad family of MHPs. Notably, the optoelectronic properties and the photovoltaic parameters of MHPs are highly sensitive to the adopted synthetic strategy. The preparation of MHPs has commonly relied on solution-based methods requiring elevated temperatures for homogeneity of reaction mixtures. While the solution-based approach is relatively versatile, it faces challenges such as limitations in compositional engineering of MHPs or their long-term storage among others. Therefore, there is a continuous great challenge to develop efficient synthetic strategies affording various high-quality MHP materials for numerous technological optoelectronic applications. In the past decade, mechanochemistry has appeared as a green alternative to traditional synthesis. This solid-state, re-emerging efficient synthetic methodology mediated by direct absorption of mechanical energy is growing explosively across organic and inorganic chemistry and materials science. In this Account, we describe our shared interest in the productive use of mechanical force in chemistry of MHPs, as well as assembly of the respective solar cell devices. We highlight the milestones achieved by our groups along with the seminal contributions by other groups. In particular, we demonstrate that mechanochemistry efficiently allows the formation of various phase pure hybrid lead and lead-free halide perovskite compositions (called hereafter "mechanoperovskites"). The progress in solvent-free solid-state synthesis is greatly enhanced by the integration of advanced methods of solid-state analysis like powder X-ray diffraction (pXRD), solid-state nuclear magnetic resonance (ss-NMR) and UV-vis spectroscopies, and we aim to illustrate this ongoing integration through appropriate examples. Furthermore, we show that thin films based on mechanoperovskites have the advantage of providing a higher degree of control of the stoichiometry and higher reproducibility, stability, and material phase purity. The impact of using powdered mechanoperovskite as a precursor for thin film formation on the electrochemical and photovoltaic properties of the solar cells is also discussed. Finally, our view of current challenges and future directions in this emerging interdisciplinary area of research is provided.
Collapse
Affiliation(s)
- Daniel Prochowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marcin Saski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Pankaj Yadav
- Department of Solar Energy, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, 382 007 Gujarat, India
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Janusz Lewiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|