1
|
Ren LQ, Zhan B, Zhao J, Guo Y, Zu B, Li Y, He C. Modular enantioselective assembly of multi-substituted boron-stereogenic BODIPYs. Nat Chem 2024:10.1038/s41557-024-01649-z. [PMID: 39304724 DOI: 10.1038/s41557-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
Boron dipyrromethenes (BODIPYs) are some of the most popular and indispensable tetracoordinate boron compounds and have found widespread applications owing to their excellent spectroscopic and photophysical properties. BODIPYs possessing boron-stereogenic centres are scarce, and strategies for the synthesis of enantioenriched boron-stereogenic BODIPYs with structural diversity remain underdeveloped. In theory, the BODIPY core skeleton has several sites that could be decorated with different substituents. However, due to the lack of general and efficient asymmetric synthetic methods, this potential diversity of chiral BODIPYs has not been exploited. Here we demonstrate a modular enantioselective assembly of multi-substituted boron-stereogenic BODIPYs in high efficiency with excellent enantioselectivities. Key to the success is the Pd-catalysed desymmetric Suzuki cross-coupling, enabling the precise discrimination of the two α C-Cl bonds of the designed prochiral BODIPY scaffold, giving access to a wide range of highly functionalized boron-stereogenic BODIPYs. Derivatizations, photophysical properties and applications in chiral recognition of the obtained optical BODIPYs are further explored.
Collapse
Affiliation(s)
- Li-Qing Ren
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Baoquan Zhan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Jiayi Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Bing Zu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Yingzi Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Abdou-Mohamed A, Aupic C, Fournet C, Parrain JL, Chouraqui G, Chuzel O. Stereoselective formation of boron-stereogenic organoboron derivatives. Chem Soc Rev 2023. [PMID: 37325998 DOI: 10.1039/d3cs00163f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Four-coordinate organoboron derivatives present interesting chemical, physical, biological, electronical, and optical properties. Given the increasing demand for the synthesis of smart functional materials based on chiral organoboron compounds, the exploration of stereoselective synthesis of boron-stereogenic organo-derivatives is highly desirable. However, the stereoselective construction of organoboron compounds stereogenic at boron has been far less studied than other elements of the main group due to configurational stability concerns. Nowadays, these species are no longer elusive and configurationally stable compounds have been highlighted. The idea is to show the potential of the stereoselective building of the four-coordinate boron centre and encourage future endeavors and developments in the field.
Collapse
Affiliation(s)
| | - Clara Aupic
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Corentin Fournet
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Jean-Luc Parrain
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Gaëlle Chouraqui
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Olivier Chuzel
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|
3
|
Li X, Zhang G, Song Q. Recent advances in the construction of tetracoordinate boron compounds. Chem Commun (Camb) 2023; 59:3812-3820. [PMID: 36883254 DOI: 10.1039/d2cc06982b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Tetracoordinate boron compounds are a highly important class of molecules, which are the key intermediates in many organoboron-related chemical transformations and have unique luminescence properties. However, the synthesis of tetracoordinate boron compounds has never been reviewed. In this highlight, we summarize recent progress on the construction of racemic and chiral tetracoordinate borons, and hope to provide ideas for the assembly of them in more efficient ways, especially for the construction of boron-stereogenic compounds.
Collapse
Affiliation(s)
- Xue Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, China.
| | - Guan Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, China. .,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
4
|
Construction of boron-stereogenic compounds via enantioselective Cu-catalyzed desymmetric B-H bond insertion reaction. Nat Commun 2022; 13:2624. [PMID: 35552397 PMCID: PMC9098526 DOI: 10.1038/s41467-022-30287-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/21/2022] [Indexed: 01/15/2023] Open
Abstract
Compared with the well-developed carbon-stereogenic chemistry, the construction of boron-stereogenic compounds remains undeveloped and challenging. Herein, the previously elusive catalytic enantioselective construction of boron-stereogenic compounds has been achieved through enantioselective desymmetric B-H bond insertion reaction. The B-H bond insertion reaction of 2-arylpyridine-boranes with versatile diazo compounds under chiral copper catalyst can afford boron-stereogenic compounds with good to excellent enantioselectivity. Moreover, the synthetic utility of this reaction is demonstrated by the scalability and downstream transformations. DFT calculations provide insights into the reaction mechanism and the origin of stereoselectivity.
Collapse
|
5
|
Vileno B, Port-Lougarre Y, Giménez-Arnau E. Electron paramagnetic resonance and spin trapping to detect free radicals from allergenic hydroperoxides in contact with the skin: from the molecule to the tissue. Contact Dermatitis 2022; 86:241-253. [PMID: 34982482 DOI: 10.1111/cod.14037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
A major research topic consists of revealing the contribution of radical-mediated reactions in dermatological diseases related to xenobiotic-induced stress, to succeed risk assessment procedures protecting producers and consumers. Allergic contact dermatitis is the clinically relevant consequence of skin sensitization, one of the most critical occupational and environmental health issues related to xenobiotics exposure. The first key event identified for the skin sensitization process to a chemical is its aptitude to react with epidermal proteins and form antigenic structures that will further trigger the immune response. Many chemical sensitizers are suspected to react through mechanisms involving radical intermediates. This review focuses on recent progress we have accomplished over the last few years studying radical intermediates derived from skin sensitizing chemicals by electron paramagnetic resonance in combination with the spin trapping technique. Our work is carried out "from the molecule", performing studies in solution, "to the tissue", by the development of a methodology on a reconstructed human epidermis model, very close in terms of histology and metabolic/enzymatic activity to real human epidermis, that can be used as suitable biological tissue model. The benefits are to test chemicals under conditions close to human use and real-life sensitization exposures and benefit from the 3D microenvironment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bertrand Vileno
- POMAM Laboratory, CNRS, Institute of Chemistry UMR 7177, University of Strasbourg, Strasbourg, France
| | - Yannick Port-Lougarre
- Dermatochemistry Laboratory, CNRS, Institute of Chemistry UMR 7177, University of Strasbourg, Strasbourg, France
| | - Elena Giménez-Arnau
- Dermatochemistry Laboratory, CNRS, Institute of Chemistry UMR 7177, University of Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Yoshigoe Y, Hashizume K, Saito S. Synthesis and stereochemistry of chiral aza-boraspirobifluorenes with tetrahedral boron-stereogenic centers. Dalton Trans 2022; 51:17035-17039. [DOI: 10.1039/d2dt03303h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesized chiral aza-boraspirobifluorenes and evaluated their structural and photophysical properties.
Collapse
Affiliation(s)
- Yusuke Yoshigoe
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Keiichiro Hashizume
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Shinichi Saito
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
7
|
Fajardo AM, Queyraiux N, Camy A, Vendier L, Grellier M, Del Rosal I, Maron L, Bontemps S. A masked form of an O-borylated Breslow intermediate for the diastereoselective FLP-type activation of aldehydes. Chemistry 2021; 28:e202104122. [PMID: 34964516 DOI: 10.1002/chem.202104122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/07/2022]
Abstract
Breslow intermediates are very often elusive species whose application in Frustrated Lewis Pair chemistry is unprecedented. We describe herein the use of a masked form of an O-Borylated Breslow (OBB) intermediate that performs FLP-type activation of the carbonyl function of five different benzaldehyde derivatives with complete diastereoselectivity. The resulting compounds are characterised in solution by NMR spectroscopy (compounds 4 - 8 ) and in solid state by X-Ray diffraction analysis (compounds 4 - 6 ). A combined kinetic and theoretical investigation reveals the associative nature of the rate determining step and suggests that the OBB intermediate part is never released during the whole process.
Collapse
Affiliation(s)
| | | | - Aurèle Camy
- Laboratoire de Chimie de Coordination, chemistry, FRANCE
| | - Laure Vendier
- Laboratoire de Chimie de Coordination, chemistry, FRANCE
| | - Mary Grellier
- Laboratoire de Chimie de Coordination, chemistry, FRANCE
| | - Iker Del Rosal
- LPCNO: Laboratoire de physique et chimie des nano-objets, chemistry, FRANCE
| | - Laurent Maron
- LPCNO: Laboratoire de physique et chimie des nano-objets, chemistry, FRANCE
| | - Sébastien Bontemps
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 cedex 04, toulouse, FRANCE
| |
Collapse
|
8
|
Zu B, Guo Y, He C. Catalytic Enantioselective Construction of Chiroptical Boron-Stereogenic Compounds. J Am Chem Soc 2021; 143:16302-16310. [PMID: 34570969 DOI: 10.1021/jacs.1c08482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The construction of main group heteroatom-stereogenic compounds is of great importance due to their intriguing chemical, physical, biological, and stereoelectronic properties. Despite that organoboron compounds are widely used in organic chemistry, the creation of a tetrahedral boron-stereogenic center in one enantiomeric form remains highly challenging. Given the labile nature of ligands attached to the tetracoordinate boron atom, only a handful of enantioenriched boron-stereogenic compounds have been reported via resolution or a chiral substrate-induced diastereoselective approach. To date catalytic asymmetric synthesis of boron-stereogenic compounds has remained unknown. Here, we demonstrate the first catalytic enantioselective construction of boron-stereogenic compounds via an asymmetric copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. This enantioselective CuAAC reaction not only gives access to a wide range of novel highly functionalized boron-stereogenic heterocycles in high yields with good to excellent enantioselectivities but also produces optically active terminal alkyne and triazole moieties with various potential application prospects. Further transformation of the chiral tetracoordinate boron compounds delivers several complex heterocyclic entities bearing boron-stereogenic centers without the loss of enantiopurity. Moreover, the X-ray structure, the barrier to racemization, and the HOMO/LUMO gap of selected tetracoordinate boron compounds are investigated. Notably, these novel N,N π-conjugated boron-stereogenic compounds exhibit bright fluorescence. The optical properties, including circular dichroism, quantum yield, and circular polarized luminescence spectroscopies, are examined. These features expand the chemical space of the chiroptical boron-based dye platform, which could have great potential applications in chiral optoelectronic materials.
Collapse
Affiliation(s)
- Bing Zu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China.,Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| |
Collapse
|
9
|
Sadek O, Galán LA, Gendron F, Baguenard B, Guy S, Bensalah-Ledoux A, Le Guennic B, Maury O, Perrin DM, Gras E. Chiral Benzothiazole Monofluoroborate Featuring Chiroptical and Oxygen-Sensitizing Properties: Synthesis and Photophysical Studies. J Org Chem 2021; 86:11482-11491. [PMID: 34324320 DOI: 10.1021/acs.joc.1c00995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advances in personalized medicine are prompting the development of multimodal agents, that is, molecules that combine properties promoting various diagnostic and therapeutic applications. General approaches exploit chemical conjugation of therapeutic agents with contrast agents or the design of multimodal nanoplatforms. Herein, we report the design of a single molecule that exhibits potential for different diagnostic modes as well as the ability to sensitize oxygen, thus offering potential for photodynamic therapy. Exceptionally, this work involves the synthesis and chiral resolution of an enantiomeric pair of chiral monofluoroborates that contain a stereogenic boron atom. Combining experimental and theoretical chiroptical studies allowed the unambiguous determination of their absolute configuration. Photophysical investigations established the ability of this compound to sensitize oxygen even in the absence of heavy atoms within its structure. The synthesis of a chiral benzothiazole monofluoroborate paves a way to multimodal diagnostic tools (fluorescence and nuclear imaging) while also featuring potential therapeutic applications owing to its ability to activate oxygen to its singlet state for use in photodynamic therapy.
Collapse
Affiliation(s)
- Omar Sadek
- LCC, CNRS UPR 8241, Université de Toulouse, UPS, INPT, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France.,Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Laura Abad Galán
- Université Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F-69342 Lyon, France
| | - Frédéric Gendron
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F-35000 Rennes, France
| | - Bruno Baguenard
- Université Lyon, Institut Lumière Matière, UMR 5306 CNRS - Université Claude Bernard Lyon 1, 10 rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - Stephan Guy
- Université Lyon, Institut Lumière Matière, UMR 5306 CNRS - Université Claude Bernard Lyon 1, 10 rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - Amina Bensalah-Ledoux
- Université Lyon, Institut Lumière Matière, UMR 5306 CNRS - Université Claude Bernard Lyon 1, 10 rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F-35000 Rennes, France
| | - Olivier Maury
- Université Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F-69342 Lyon, France
| | - David M Perrin
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Emmanuel Gras
- LCC, CNRS UPR 8241, Université de Toulouse, UPS, INPT, 205 route de Narbonne, 31077, Toulouse, Cedex 4, France.,ITAV, CNRS USR 3505, Université de Toulouse, UPS, 1 place Pierre Potier, 31106, Toulouse, Cedex 1, France
| |
Collapse
|
10
|
Taniguchi T. Correction: Advances in chemistry of N-heterocyclic carbene boryl radicals. Chem Soc Rev 2021; 50:9344. [PMID: 34341813 DOI: 10.1039/d1cs90070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correction for 'Advances in chemistry of N-heterocyclic carbene boryl radicals' by Tsuyoshi Taniguchi, Chem. Soc. Rev., 2021, DOI: .
Collapse
Affiliation(s)
- Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
11
|
Ayyappan R, Coppel Y, Vendier L, Ghosh S, Sabo-Etienne S, Bontemps S. Synthesis and reactivity of phosphine borohydride compounds. Chem Commun (Camb) 2021; 57:375-378. [PMID: 33325466 DOI: 10.1039/d0cc07072f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four lithium phosphine borohydride compounds featuring phenyl and naphthyl linkers have been synthesized. In-depth NMR analysis affords evidence for non-bonded through space P-B coupling. Reactivity towards CO2 leads to LiH transfer and to the quantitative formation of the corresponding ambiphilic phosphine-borane products.
Collapse
Affiliation(s)
- Ramaraj Ayyappan
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 04, France.
| | | | | | | | | | | |
Collapse
|
12
|
Kundu G, Pahar S, Tothadi S, Sen SS. Stepwise Nucleophilic Substitution to Access Saturated N-heterocyclic Carbene Haloboranes with Boron–Methyl Bonds. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gargi Kundu
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjukta Pahar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srinu Tothadi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sakya S. Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Kilic A, Beyazsakal L, Işık M, Türkeş C, Necip A, Takım K, Beydemir Ş. Mannich reaction derived novel boron complexes with amine-bis(phenolate) ligands: Synthesis, spectroscopy and in vitro/in silico biological studies. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Qu W, Wang P, Gao M, Hasegawa JY, Shen Z, Wang Q, Li R, Zhang D. Delocalization Effect Promoted the Indoor Air Purification via Directly Unlocking the Ring-Opening Pathway of Toluene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9693-9701. [PMID: 32600034 DOI: 10.1021/acs.est.0c02906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ring-opening process was generally considered as the rate-determining step for aromatic volatile organic compound photocatalytic degradation. A sophisticated and intensive degradation pathway is critical to the poor removal efficiency and low mineralization. In the present contribution, we successfully tailored and identified the ring-opening pathway of toluene elimination by electron delocalization in a borocarbonitride photocatalyst. By means of modulation of the dopant coordination configuration and electron geometry in the catalyst, the lone electrons of carbon transform into delocalized counterparts, sequentially elevating the interaction between the toluene molecules and photocatalyst. The aromatic ring of toluene can be attacked directly in the effect of electron delocalization without engendering additional intermediate species, significantly facilitating the removal and mineralization of toluene. This unprecedented route-control strategy alters the aromatic-ring-based reaction behavior from toluene to CO2 and paves a way to purify the refractory pollutants from the top design.
Collapse
Affiliation(s)
- Wenqiang Qu
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Min Gao
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Jun-Ya Hasegawa
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Zhi Shen
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Qing Wang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ruomei Li
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
15
|
Frogneux X, Hippolyte L, Mercier D, Portehault D, Chanéac C, Sanchez C, Marcus P, Ribot F, Fensterbank L, Carenco S. Direct Synthesis of N-Heterocyclic Carbene-Stabilized Copper Nanoparticles from an N-Heterocyclic Carbene-Borane. Chemistry 2019; 25:11481-11485. [PMID: 31206813 DOI: 10.1002/chem.201901534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/07/2019] [Indexed: 11/10/2022]
Abstract
N-Heterocyclic carbene (NHC)-stabilized copper nanoparticles (NPs) were synthesized from an NHC-borane adduct and mesitylcopper(I) under thermal conditions (refluxing toluene for 2.5 h). NPs with a size distribution of 11.6±1.8 nm were obtained. The interaction between Cu NPs and NHC ligands was probed by X-ray photoelectron spectroscopy, which showed covalent binding of the NHC to the surface of the NPs. Mechanistic studies suggested that NHC-borane plays two roles: contributing to the reduction of [CuMes]2 to release Cu0 species and providing NHC ligands to stabilize the copper NPs.
Collapse
Affiliation(s)
- Xavier Frogneux
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005, Paris, France.,Collège de France, PSL University, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 11 Place Marcelin Berthelot, 75005, Paris, France
| | - Laura Hippolyte
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005, Paris, France.,Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75252, Paris cedex 05, France
| | - Dimitri Mercier
- ChimieParisTech, CNRS, PSL Research University, Institut de, Recherche de Chimie Paris, Physical Chemistry of Surfaces Group, 75005, Paris, France
| | - David Portehault
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005, Paris, France
| | - Corinne Chanéac
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005, Paris, France
| | - Clément Sanchez
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005, Paris, France.,Collège de France, PSL University, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 11 Place Marcelin Berthelot, 75005, Paris, France
| | - Philippe Marcus
- ChimieParisTech, CNRS, PSL Research University, Institut de, Recherche de Chimie Paris, Physical Chemistry of Surfaces Group, 75005, Paris, France
| | - François Ribot
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005, Paris, France
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75252, Paris cedex 05, France
| | - Sophie Carenco
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
16
|
Nava P, Toure M, Abdou Mohamed A, Parrain JL, Chuzel O. Investigation of the rhodium-catalyzed hydroboration of NHC-boranes: the role of alkene coordination and the origin of enantioselectivity. Dalton Trans 2019; 48:17605-17611. [DOI: 10.1039/c9dt03660a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of the intramolecular enantioselective rhodium(i)-catalyzed hydroboration of NHC-boranes is investigated by experiments and calculations, using Density Functional Theory and Random Phase Approximation methods.
Collapse
Affiliation(s)
- Paola Nava
- Aix Marseille University
- CNRS
- Marseille
- France
| | | | | | | | | |
Collapse
|