1
|
Ariai J, Ziegler M, Würtele C, Gellrich U. An N-Heterocyclic Quinodimethane: A Strong Organic Lewis Base Exhibiting Diradical Reactivity. Angew Chem Int Ed Engl 2024; 63:e202316720. [PMID: 38088219 DOI: 10.1002/anie.202316720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
We report the preparation of a new organic σ-donor with a C6H4-linker between an N-heterocyclic carbene (NHC) and an exocyclic methylidene group, which we term N-heterocyclic quinodimethane (NHQ). The aromatization of the C6H4-linker provides a decisive driving force for the reaction of the NHQ with an electrophile and renders the NHQ significantly more basic than analogous NHCs or N-heterocyclic olefins (NHOs), as shown by DFT computations and competition experiments. In solution, the NHQ undergoes an unprecedented dehydrogenative head-to-head dimerization by C-C coupling of the methylidene groups. DFT computations indicate that this reaction proceeds via an open-shell singlet pathway revealing the diradical character of the NHQ. The product of this dimerization can be described as conjugated N-heterocyclic bis-quinodimethane, which according to cyclic voltammetry is a strong organic reducing agent (E1/2=-1.71 V vs. Fc/Fc+) and exhibits a remarkable small singlet-triplet gap of ΔES→T=4.4 kcal mol-1.
Collapse
Affiliation(s)
- Jama Ariai
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
| | - Maya Ziegler
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
| | - Christian Würtele
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
| | - Urs Gellrich
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
| |
Collapse
|
2
|
Bens T, Kübler JA, Walter RRM, Beerhues J, Wenger OS, Sarkar B. Impact of Bidentate Pyridyl-Mesoionic Carbene Ligands: Structural, (Spectro)Electrochemical, Photophysical, and Theoretical Investigations on Ruthenium(II) Complexes. ACS ORGANIC & INORGANIC AU 2023; 3:184-198. [PMID: 37545659 PMCID: PMC10401885 DOI: 10.1021/acsorginorgau.3c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 08/08/2023]
Abstract
We present here new synthetic strategies for the isolation of a series of Ru(II) complexes with pyridyl-mesoionic carbene ligands (MIC) of the 1,2,3-triazole-5-ylidene type, in which the bpy ligands (bpy = 2,2'-bipyridine) of the archetypical [Ru(bpy)3]2+ have been successively replaced by one, two, or three pyridyl-MIC ligands. Three new complexes have been isolated and investigated via NMR spectroscopy and single-crystal X-ray diffraction analysis. The incorporation of one MIC unit shifts the potential of the metal-centered oxidation about 160 mV to more cathodic potential in cyclic voltammetry, demonstrating the extraordinary σ-donor ability of the pyridyl-MIC ligand, while the π-acceptor capacities are dominated by the bpy ligand, as indicated by electron paramagnetic resonance spectroelectrochemistry (EPR-SEC). The replacement of all bpy ligands by the pyridyl-MIC ligand results in an anoidic shift of the ligand-centered reduction by 390 mV compared to the well-established [Ru(bpy)3]2+ complex. In addition, UV/vis/NIR-SEC in combination with theoretical calculations provided detailed insights into the electronic structures of the respective redox states, taking into account the total number of pyridyl-MIC ligands incorporated in the Ru(II) complexes. The luminescence quantum yield and lifetimes were determined by time-resolved absorption and emission spectroscopy. An estimation of the excited state redox potentials conclusively showed that the pyridyl-MIC ligand can tune the photoredox activity of the isolated complexes to stronger photoreductants. These observations can provide new strategies for the design of photocatalysts and photosensitizers based on MICs.
Collapse
Affiliation(s)
- Tobias Bens
- Institut
für Anorganische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Fabeckstraße
34-36, 14195 Berlin, Germany
| | - Jasmin A. Kübler
- Department
of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Robert R. M. Walter
- Institut
für Anorganische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Julia Beerhues
- Institut
für Anorganische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Fabeckstraße
34-36, 14195 Berlin, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Biprajit Sarkar
- Institut
für Anorganische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Fabeckstraße
34-36, 14195 Berlin, Germany
| |
Collapse
|
3
|
Sapronov AA, Artemjev AA, Burkin GM, Khrustalev VN, Kubasov AS, Nenajdenko VG, Gomila RM, Frontera A, Kritchenkov AS, Tskhovrebov AG. Robust Supramolecular Dimers Derived from Benzylic-Substituted 1,2,4-Selenodiazolium Salts Featuring Selenium⋯π Chalcogen Bonding. Int J Mol Sci 2022; 23:ijms232314973. [PMID: 36499302 PMCID: PMC9740427 DOI: 10.3390/ijms232314973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
The series of benzylic-substituted 1,2,4-selenodiazolium salts were prepared via cyclization reaction between 2-pyridylselenyl chlorides and nitriles and fully characterized. Substitution of the Cl anion by weakly binding anions promoted the formation supramolecular dimers featuring four center Se2N2 chalcogen bonding and two antiparallel selenium⋯π interactions. Chalcogen bonding interactions were studied using density functional theory calculations, molecular electrostatic potential (MEP) surfaces, the quantum theory of atoms-in-molecules (QTAIM), and the noncovalent interaction (NCI) plot. The investigations revealed fundamental role of the selenium⋯π contacts that are stronger than the Se⋯N interactions in supramolecular dimers. Importantly, described herein, the benzylic substitution approach can be utilized for reliable supramolecular dimerization of selenodiazolium cations in the solid state, which can be employed in supramolecular engineering.
Collapse
Affiliation(s)
- Alexander A. Sapronov
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Alexey A. Artemjev
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Gleb M. Burkin
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Victor N. Khrustalev
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119334 Moscow, Russia
| | - Alexey S. Kubasov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prosp., 119071 Moscow, Russia
| | - Valentine G. Nenajdenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russia
| | - Rosa M. Gomila
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Andreii S. Kritchenkov
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus
| | - Alexander G. Tskhovrebov
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Correspondence:
| |
Collapse
|
4
|
Osmanov VK, Chipinsky EV, Khrustalev VN, Novikov AS, Askerov RK, Chizhov AO, Borisova GN, Borisov AV, Grishina MM, Kurasova MN, Kirichuk AA, Peregudov AS, Kritchenkov AS, Tskhovrebov AG. Facile Access to 2-Selenoxo-1,2,3,4-tetrahydro-4-quinazolinone Scaffolds and Corresponding Diselenides via Cyclization between Methyl Anthranilate and Isoselenocyanates: Synthesis and Structural Features. Molecules 2022; 27:molecules27185799. [PMID: 36144534 PMCID: PMC9504104 DOI: 10.3390/molecules27185799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
A practical method for the synthesis of 2-selenoxo-1,2,3,4-tetrahydro-4-quinazolinone was reported. The latter compounds were found to undergo facile oxidation with H2O2 into corresponding diselenides. Novel organoselenium derivatives were characterized by the 1H, 77Se, and 13C NMR spectroscopies, high-resolution electrospray ionization mass spectrometry, IR, elemental analyses (C, H, N), and X-ray diffraction analysis for several of them. Novel heterocycles exhibited multiple remarkable chalcogen bonding (ChB) interactions in the solid state, which were studied theoretically.
Collapse
Affiliation(s)
- Vladimir K. Osmanov
- Department of Chemistry, R.E. Alekseev Nizhny Novgorod State Technical University, Minin St., 24, 603155 Nizhny Novgorod, Russia
| | - Evgeniy V. Chipinsky
- Department of Chemistry, R.E. Alekseev Nizhny Novgorod State Technical University, Minin St., 24, 603155 Nizhny Novgorod, Russia
| | - Victor N. Khrustalev
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, Miklukho-Maklaya St., 6, 117198 Moscow, Russia
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, 119334 Moscow, Russia
| | - Alexander S. Novikov
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, Miklukho-Maklaya St., 6, 117198 Moscow, Russia
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia
| | | | - Alexander O. Chizhov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, 119334 Moscow, Russia
| | - Galina N. Borisova
- Department of Chemistry, R.E. Alekseev Nizhny Novgorod State Technical University, Minin St., 24, 603155 Nizhny Novgorod, Russia
| | - Alexander V. Borisov
- Department of Chemistry, R.E. Alekseev Nizhny Novgorod State Technical University, Minin St., 24, 603155 Nizhny Novgorod, Russia
| | - Maria M. Grishina
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| | - Margarita N. Kurasova
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| | - Anatoly A. Kirichuk
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| | - Alexander S. Peregudov
- Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilov St., 28, 119991 Moscow, Russia
| | - Andreii S. Kritchenkov
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| | - Alexander G. Tskhovrebov
- Research Institute of Chemistry, Peoples’ Friendship University of Russia, Miklukho-Maklaya St., 6, 117198 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ul. Kosygina, 4, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
5
|
Towards Anion Recognition and Precipitation with Water-Soluble 1,2,4-Selenodiazolium Salts: Combined Structural and Theoretical Study. Int J Mol Sci 2022; 23:ijms23126372. [PMID: 35742815 PMCID: PMC9224156 DOI: 10.3390/ijms23126372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The synthesis and structural characterization of a series of supramolecular complexes of bicyclic cationic pyridine-fused 1,2,4-selenodiazoles with various anions is reported. The binding of trifluoroacetate, tetrachloroaurate, tetraphenylborate, perrhenate, and pertechnetate anions in the solid state is regarded. All the anions interact with selenodiazolium cations exclusively via a pair of “chelating” Se⋯O and H⋯O non-covalent interactions, which make them an attractive, novel, non-classical supramolecular recognition unit or a synthon. Trifluoroacetate salts were conveniently generated via novel oxidation reaction of 2,2′-dipyridyl diselenide with bis(trifluoroacetoxy)iodo)benzene in the presence of corresponding nitriles. Isolation and structural characterization of transient 2-pyridylselenyl trifluoroacetate was achieved. X-ray analysis has demonstrated that the latter forms dimers in the solid state featuring very short and strong Se⋯O and Se⋯N ChB contacts. 1,2,4-Selenodiazolium trifluoroacetates or halides show good solubility in water. In contrast, (AuCl4)−, (ReO4)−, or (TcO4)− derivatives immediately precipitate from aqueous solutions. Structural features of these supramolecular complexes in the solid state are discussed. The nature and energies of the non-covalent interactions in novel assembles were studied by the theoretical methods. To the best of our knowledge, this is the first study that regards perrhenate and pertechnetate as acceptors in ChB interactions. The results presented here will be useful for further developments in anion recognition and precipitation involving cationic 1,2,4-selenodiazoles.
Collapse
|
6
|
Triarylazoimidazole-ZnII, CdII, and HgII Complexes: Structures, Photophysics, and Antibacterial Properties. CRYSTALS 2022. [DOI: 10.3390/cryst12050680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Novel triarylazoimidazoles containing strong electron donors (p-NEt2) or acceptors (p-NO2) by the azoaryl group, and their group 12 metal complexes were synthesized and fully characterized, including X-ray analysis for several complexes. Novel complexes exhibit red photo-luminescence emission (Φ up to 0.21) in a solution. Moreover, the antibacterial activity of complexes was tested against Gram-positive microorganism S. aureus and Gram-negative microorganism E. coli.
Collapse
|
7
|
Exploring Supramolecular Assembly Space of Cationic 1,2,4-Selenodiazoles: Effect of the Substituent at the Carbon Atom and Anions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031029. [PMID: 35164294 PMCID: PMC8839610 DOI: 10.3390/molecules27031029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/15/2022] [Accepted: 01/27/2022] [Indexed: 12/23/2022]
Abstract
Chalcogenodiazoles have been intensively studied in recent years in the context of their supramolecular chemistry. In contrast, the newly discovered cationic 1,2,4-selenodiazole supramolecular building blocks, which can be obtained via coupling between 2-pyridylselenyl halides and nitriles, are virtually unexplored. A significant advantage of the latter is their facile structural tunability via the variation of nitriles, which could allow a fine tuning of their self-assembly in the solid state. Here, we explore the influence of the substituent (which derives from the nitrile) and counterions on the supramolecular assembly of cationic 1,2,4-selenodiazoles via chalcogen bonding.
Collapse
|
8
|
Maity R, Sarkar B. Chemistry of Compounds Based on 1,2,3-Triazolylidene-Type Mesoionic Carbenes. JACS AU 2022; 2:22-57. [PMID: 35098220 PMCID: PMC8790748 DOI: 10.1021/jacsau.1c00338] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 05/04/2023]
Abstract
Mesoionic carbenes (MICs) of the 1,2,3-triazolylidene type have established themselves as a popular class of compounds over the past decade. Primary reasons for this popularity are their modular synthesis and their strong donor properties. While such MICs have mostly been used in combination with transition metals, the past few years have also seen their utility together with main group elements. In this paper, we present an overview of the recent developments on this class of compounds that include, among others, (i) cationic and anionic MIC ligands, (ii) the donor/acceptor properties of these ligands with a focus on the several methods that are known for estimating such donor/acceptor properties, (iii) a detailed overview of 3d metal complexes and main group compounds with these MIC ligands, (iv) results on the redox and photophysical properties of compounds based on MIC ligands, and (v) an overview on electrocatalysis, redox-switchable catalysis, and small-molecule activation to highlight the applications of compounds based on MIC ligands in contemporary chemistry. By discussing several aspects from the synthetic, spectroscopic, and application point of view of these classes of compounds, we highlight the state of the art of compounds containing MICs and present a perspective for future research in this field.
Collapse
Affiliation(s)
- Ramananda Maity
- Dr.
R. Maity Department of Chemistry, University
of Calcutta, 92, A. P.
C. Road, Kolkata 700009, India
| | - Biprajit Sarkar
- Prof.
Dr. B. Sarkar Lehrstuhl für Anorganische Koordinationschemie,
Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
9
|
Przydacz A, Topolska A, Skrzyńska A, Albrecht Ł. NHC‐catalyzed 1,4‐elimination in the dearomative activation of 3‐furaldehydes towards (4+2)‐cycloadditions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
2-Pyridylselenenyl versus 2-Pyridyltellurenyl Halides: Symmetrical Chalcogen Bonding in the Solid State and Reactivity towards Nitriles. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The synthesis of 2-pyridyltellurenyl bromide via Br2 oxidative cleavage of the Te–Te bond of dipyridylditelluride is reported. Single-crystal X-ray diffraction analysis of 2-pyridyltellurenyl bromide demonstrated that the Te atom of 2-pyridyltellurenyl bromide was involved in four different noncovalent contacts: Te⋯Te interactions, two Te⋯Br ChB, and one Te⋯N ChB contact forming 3D supramolecular symmetrical framework. In contrast to 2-pyridylselenenyl halides, the Te congener does not react with nitriles furnishing cyclization products. 2-Pyridylselenenyl chloride was demonstrated to easily form the corresponding adduct with benzonitrile. The cyclization product was studied by the single-crystal X-ray diffraction analysis, which revealed that in contrast to earlier studied cationic 1,2,4-selenadiazoles, here we observed that the adduct with benzonitrile formed supramolecular dimers via Se⋯Se interactions in the solid state, which were never observed before for 1,2,4-selenadiazoles.
Collapse
|
11
|
Landman IR, Fadaei-Tirani F, Severin K. Nitrous oxide as a diazo transfer reagent: the synthesis of triazolopyridines. Chem Commun (Camb) 2021; 57:11537-11540. [PMID: 34664049 DOI: 10.1039/d1cc04907k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitrous oxide is a potential diazo transfer reagent, but its applications in organic chemistry are scarce. Here, we show that triazolopyridines and triazoloquinolines are formed in the reactions of metallated 2-alkylpyridines or 2-alkylquinolines with N2O. The reactions can be performed under mild conditions and give synthetically interesting triazoles in moderate to good yields.
Collapse
Affiliation(s)
- Iris R Landman
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
12
|
Hosseinzadeh E, Heydari A. An in-depth DFT insight into the mechanism of NHC-catalyzed generation of p-quinodimethanes: Investigation the role of NHC and different substituents on ε-functionalization. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Shikhaliyev NG, Maharramov AM, Suleymanova GT, Babazade AA, Nenajdenko VG, Khrustalev VN, Novikov AS, Tskhovrebov AG. Arylhydrazones of α-keto esters via methanolysis of dichlorodiazabutadienes: synthesis and structural study. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Azoimidazole gold(III) complexes: Synthesis, structural characterization and self-assembly in the solid state. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Mono‐ and Di‐Mesoionic Carbene‐Boranes: Synthesis, Structures and Utility as Reducing Agents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Khrustalev VN, Savchenko AO, Zhukova AI, Chernikova NY, Kurykin MA, Novikov AS, Tskhovrebov AG. Attractive fluorine···fluorine interactions between perfluorinated alkyl chains: a case of perfluorinated Cu(II) diiminate Cu[C2F5–C(NH)–CF=C(NH)–CF3]2. Z KRIST-CRYST MATER 2021. [DOI: 10.1515/zkri-2021-2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
A synthesis of the perfluorinated copper diiminate complex Cu[C2F5–C(NH)–CF=C(NH)–CF3]2 (3) and its self-assembly into infinite 1D chains in the crystal via Type II C(sp3)–F···F–C(sp3) contacts between perfluoroethyl substituents is reported. Rare Type II F···F interactions were studied by DFT calculations and topological analysis of the electron density distribution within the formalism of Bader’s theory (QTAIM method). This is the first report which discusses Type II contacts between perfuoroalkyl chains.
Collapse
Affiliation(s)
- Victor N. Khrustalev
- Peoples’ Friendship University of Russia , 6 Miklukho-Maklaya Street , Moscow , 117198 , Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , 47 Leninsky Prosp. , Moscow , Russian Federation
| | - Anna O. Savchenko
- Peoples’ Friendship University of Russia , 6 Miklukho-Maklaya Street , Moscow , 117198 , Russian Federation
| | - Anna I. Zhukova
- Peoples’ Friendship University of Russia , 6 Miklukho-Maklaya Street , Moscow , 117198 , Russian Federation
| | - Natalia Yu. Chernikova
- Peoples’ Friendship University of Russia , 6 Miklukho-Maklaya Street , Moscow , 117198 , Russian Federation
| | - Michael A. Kurykin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Moscow , Russian Federation
| | - Alexander S. Novikov
- Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Alexander G. Tskhovrebov
- Peoples’ Friendship University of Russia , 6 Miklukho-Maklaya Street , Moscow , 117198 , Russian Federation
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences , Ul. Kosygina 4 , Moscow , Russian Federation
| |
Collapse
|
17
|
Astafiev AA, Repina OV, Tupertsev BS, Nazarov AA, Gonchar MR, Vologzhanina AV, Nenajdenko VG, Kritchenkov AS, Khrustalev VN, Nadtochenko VN, Tskhovrebov AG. Unprecedented Coordination-Induced Bright Red Emission from Group 12 Metal-Bound Triarylazoimidazoles. Molecules 2021; 26:molecules26061739. [PMID: 33804616 PMCID: PMC8003801 DOI: 10.3390/molecules26061739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Arylazoimidazoles are important dyes which were intensively studied in the past. In contrast, triarylazoimidazoles (derivatives which carry aryl substituents at the imidazole core) received almost no attention in the scientific literature. Here, we report a new family of simple and easily accessible triarylazoimidazole-group 12 metal complexes, which feature highly efficient photo-luminescence emission (Φ up to 0.44). Novel compounds exhibit bright red emission in solution, which could be excited with a visible light.
Collapse
Affiliation(s)
- Artyom A. Astafiev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina 4, 119991 Moscow, Russia; (A.A.A.); (O.V.R.); (B.S.T.); (V.N.N.)
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, 119991 Moscow, Russia; (A.A.N.); (M.R.G.); (V.G.N.)
| | - Olga V. Repina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina 4, 119991 Moscow, Russia; (A.A.A.); (O.V.R.); (B.S.T.); (V.N.N.)
- Peoples’ Friendship University of Russia, Miklukho-Maklaya Street 6, 117198 Moscow, Russia; (A.S.K.); (V.N.K.)
| | - Boris S. Tupertsev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina 4, 119991 Moscow, Russia; (A.A.A.); (O.V.R.); (B.S.T.); (V.N.N.)
- Peoples’ Friendship University of Russia, Miklukho-Maklaya Street 6, 117198 Moscow, Russia; (A.S.K.); (V.N.K.)
| | - Alexey A. Nazarov
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, 119991 Moscow, Russia; (A.A.N.); (M.R.G.); (V.G.N.)
| | - Maria R. Gonchar
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, 119991 Moscow, Russia; (A.A.N.); (M.R.G.); (V.G.N.)
| | - Anna V. Vologzhanina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia;
| | - Valentine G. Nenajdenko
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, 119991 Moscow, Russia; (A.A.N.); (M.R.G.); (V.G.N.)
| | - Andreii S. Kritchenkov
- Peoples’ Friendship University of Russia, Miklukho-Maklaya Street 6, 117198 Moscow, Russia; (A.S.K.); (V.N.K.)
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia, Miklukho-Maklaya Street 6, 117198 Moscow, Russia; (A.S.K.); (V.N.K.)
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119334 Moscow, Russia
| | - Victor N. Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina 4, 119991 Moscow, Russia; (A.A.A.); (O.V.R.); (B.S.T.); (V.N.N.)
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, 119991 Moscow, Russia; (A.A.N.); (M.R.G.); (V.G.N.)
| | - Alexander G. Tskhovrebov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina 4, 119991 Moscow, Russia; (A.A.A.); (O.V.R.); (B.S.T.); (V.N.N.)
- Peoples’ Friendship University of Russia, Miklukho-Maklaya Street 6, 117198 Moscow, Russia; (A.S.K.); (V.N.K.)
- Correspondence:
| |
Collapse
|
18
|
Liu C, Guo Z, Feng H, Lin L, Cui Y, Li Y, Tian H. Synthesis of Copolymers Polyethyleneimine-co-Polyphenylalanine as Gene and Drug Codelivery Carrier. Macromol Biosci 2021; 21:e2100033. [PMID: 33689218 DOI: 10.1002/mabi.202100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Indexed: 12/26/2022]
Abstract
In this study, a series of hyperbranched copolymers polyethyleneimine-co-polyphenylalanine (PEI-co-PPhe) are synthesized by ring-opening polymerization with phenylalanine-N-carboxyanhydride as monomer and PEI-25k as initiator, using as a gene and drug codelivery carrier. Among them, PEI-co-PPhe (1:170) is selected out from transfection efficiency and cytotoxicity tests. Then, doxorubicin-cis-aconitic anhydride (CAD) and BCl2-shRNA (as a therapeutic gene) are coloaded into the PEI-co-PPhe carrier to form PEI-co-PPhe/Bcl2-shRNA/CAD complexes as a codeliver system. When the mass ratio of PEI-co-PPhe:Bcl2-shRNA:CAD is 5:1:1, the codeliver system has the most obvious synergistic therapeutic effect against B16F10 cells. Confirmed by confocal laser scanning microscope and flow cytometry, compared with drug and gene alone, the codeliver complexes can be endocytosed into B16F10 cells efficiently. As a result, the appropriate length of PPhe grafted on PEI will improve the gene transfer efficiency and decrease cytotoxicity, as well as effective codelivery of gene and drug into cancer cells to be a promising codelivery carrier for cancer therapy.
Collapse
Affiliation(s)
- Chong Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Huimin Feng
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuan Cui
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Yanhui Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
19
|
Supramolecular organic frameworks derived from bromoaryl-substituted dichlorodiazabutadienes via Cl···Br halogen bonding. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Temesgen A, Tskhovrebov AG, Vologzhanina AV, Le TA, Khrustalev VN. Crystal structure of 2-[( E)-2-(4-bromo-phen-yl)diazen-1-yl]-4,5-bis-(4-meth-oxy-phen-yl)-1 H-imidazole: the first example of a structurally characterized tri-aryl-azo-imid-azole. Acta Crystallogr E Crystallogr Commun 2021; 77:305-308. [PMID: 33953956 PMCID: PMC8061115 DOI: 10.1107/s2056989021002024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/20/2021] [Indexed: 11/10/2022]
Abstract
The title compound, C23H19BrN4O2, is a product of an azo coupling reaction between 3,4-bis-(4-meth-oxy-phen-yl)imidazole and 4-bromo-phenyl-diazo-nium tetra-fluoro-borate. Its crystal structure was determined using data collected at 120 K. The mol-ecule adopts a trans configuration with respect to the N=N double bond. The imidazole and aryl rings attached to the azo linkage are coplanar within 12.73 (14)°, which indicates significant electron delocalization within the mol-ecule. In the crystal, the mol-ecules form centrosymmetric dimers via pairs of N-H⋯O hydrogen bonds.
Collapse
Affiliation(s)
- Ayalew Temesgen
- Chemistry Department, College of Natural and Computational Sciences, University of Gondar, 196 Gondar, Ethiopia
| | - Alexander G. Tskhovrebov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ul. Kosygina 4, Moscow, Russian Federation
- Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Anna V. Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Vavilova str., 28, Russian Federation
| | - Tuan A. Le
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 100000, Vietnam
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
21
|
Werr M, Kaifer E, Himmel H. Hetero Diels-Alder Reactions with a Dicationic Urea Azine Derived Azo Dienophile and Their Use for the Synthesis of an Electron-Rich Pentacene. Chemistry 2020; 26:12328-12332. [PMID: 32201982 PMCID: PMC7589293 DOI: 10.1002/chem.202001342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 11/19/2022]
Abstract
Herein, the first hetero Diels-Alder (DA) reactions with a stable, dicationic urea azine derived azo dienophile, synthesized by two-electron oxidation of a neutral urea azine are reported. Several charged DA products were synthesized in good yield and fully characterized. The DA adduct of anthracene is in thermal equilibrium with the reactants at room temperature, and the reaction enthalpy and entropy were determined from the temperature-dependent equilibrium constant. Furthermore, base addition to solutions of the pentacene DA product led to deprotonation, cleavage of the N-N bond, and formation of an electron-rich 6,13-bisguanidinyl-substituted pentacene. The redox and optical properties of this new pentacene derivative were studied. Furthermore, the dication resulting from its two-electron oxidation was synthesized and fully characterized. The results disclose a new elegant route to electron-rich pentacene derivatives.
Collapse
Affiliation(s)
- Marco Werr
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
22
|
Maiti A, Stubbe J, Neuman NI, Kalita P, Duari P, Schulzke C, Chandrasekhar V, Sarkar B, Jana A. CAAC‐Based Thiele and Schlenk Hydrocarbons. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Avijit Maiti
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
| | - Jessica Stubbe
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität Berlin Fabeckstraße 34–36 14195 Berlin Germany
| | - Nicolás I. Neuman
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität Berlin Fabeckstraße 34–36 14195 Berlin Germany
- Instituto de Desarrollo Tecnológico para laIndustria Química, CCT Santa Fe CONICET-UNL Colectora Ruta Nacional 168, Km 472, Paraje El Pozo 3000 Santa Fe Argentina
| | - Pankaj Kalita
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
| | - Prakash Duari
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
| | - Carola Schulzke
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Biprajit Sarkar
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität Berlin Fabeckstraße 34–36 14195 Berlin Germany
- Institut für Anorganische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
| |
Collapse
|
23
|
Maiti A, Stubbe J, Neuman NI, Kalita P, Duari P, Schulzke C, Chandrasekhar V, Sarkar B, Jana A. CAAC-Based Thiele and Schlenk Hydrocarbons. Angew Chem Int Ed Engl 2020; 59:6729-6734. [PMID: 31960562 PMCID: PMC7187164 DOI: 10.1002/anie.201915802] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 01/17/2023]
Abstract
Diradicals have been of tremendous interest for over a century ever since the first reports of p- and m-phenylene-bridged diphenylmethylradicals in 1904 by Thiele and 1915 by Schlenk. Reported here are the first examples of cyclic(alkyl)(amino)carbene (CAAC) analogues of Thiele's hydrocarbon, a Kekulé diradical, and Schlenk's hydrocarbon, a non-Kekulé diradical, without using CAAC as a precursor. The CAAC analogue of Thiele's hydrocarbon has a singlet ground state, whereas the CAAC analogue of Schlenk's hydrocarbon contains two unpaired electrons. The latter forms a dimer, by an intermolecular double head-to-tail dimerization. This straightforward synthetic methodology is modular and can be extended for the generation of redox-active organic compounds.
Collapse
Affiliation(s)
- Avijit Maiti
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India
| | - Jessica Stubbe
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Nicolás I Neuman
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany.,Instituto de Desarrollo Tecnológico para la, Industria Química, CCT Santa Fe CONICET-UNL, Colectora Ruta Nacional 168, Km 472, Paraje El Pozo, 3000, Santa Fe, Argentina
| | - Pankaj Kalita
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India
| | - Prakash Duari
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany.,Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India
| |
Collapse
|
24
|
Dai L, Ye S. NHC-Catalyzed ε-Umpolung via p-Quinodimethanes and Its Nucleophilic Addition to Ketones. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Phan NM, Choy EPKL, Zakharov LN, Johnson DW. Self-sorting in dynamic disulfide assembly: new biphenyl-bridged "nanohoops" and unsymmetrical cyclophanes. Chem Commun (Camb) 2019; 55:11840-11843. [PMID: 31517340 DOI: 10.1039/c9cc06503b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We expand on our approach combining dynamic covalent self-assembly and sulfur extrusion to synthesize new biphenyl-linked disulfide and thioether macrocycles, which are variants of the venerable phenyl-bridged paracyclophanes. We then advance this strategy further to use two different thiols in tandem to provide new, elusive unsymmetrical disulfides which can also be trapped as unsymmetrical thioether "nanohoops". This approach enables substantial amplification of two unsymmetrical trimers out of a library of at least 21 possible macrocycles of various sizes.
Collapse
Affiliation(s)
- Ngoc-Minh Phan
- Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon, 97403-1253, USA.
| | - Emma P K L Choy
- Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon, 97403-1253, USA.
| | - Lev N Zakharov
- CAMCOR - Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, OR 97403-1443, USA
| | - Darren W Johnson
- Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon, 97403-1253, USA.
| |
Collapse
|