1
|
Ochonma C, Francis VS, Biswas SK, Gavvalapalli N. Advancements in π-conjugated polymers: harnessing cycloalkyl straps for high-performance π-conjugated materials. Chem Commun (Camb) 2024. [PMID: 39492725 DOI: 10.1039/d4cc03799e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Pendant alkyl chains are widely used to successfully obtain a wide variety of soluble linear 1D π-conjugated polymers. Over the past several decades, a wide variety of π-conjugated polymers have been synthesized to realize the desired properties and improve the performance of organic electronic devices. However, this strategy is not suitable for generating soluble 2D-π-conjugated materials, including ladder polymers, nanoribbons, and 2D-π-conjugated polymers, due to strong van der Waals interactions between the ribbons and sheets. The drive to synthesize higher dimensional polymers and to enhance polymers' properties has spurred the exploration of a novel direction in materials chemistry-the synthesis of unconventional monomers and polymers. The Gavvalapalli research group has developed and used cycloalkyl straps containing aryl building blocks for the synthesis of conjugated polymers. These cycloalkyl straps, positioned either above or below the π-conjugation plane, have been shown to directly control the π-π interactions between the polymer chains. We have demonstrated that π-face masking cycloalkyl straps hinder interchain π-π interactions. The first part of this review article highlights the use of cycloalkyl straps for the synthesis of higher dimensional π-conjugated polymers. In this section, we discuss the synthesis of 2D-H-mers, dispersible hyperbranched π-conjugated polymers, and conjugated porous polymers without the pendant solubilizing chains. The second part of the feature article highlights how the cycloalkyl straps can be used to gain control over polymer-acceptor interactions, including the interaction strength and the location of the acceptor along the polymer backbone. We conclude the article with the future outlook on cycloalkyl strap-containing building blocks in the world of conjugated polymers.
Collapse
Affiliation(s)
- Charles Ochonma
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O St, NW, Washington DC, USA.
| | - Victor S Francis
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O St, NW, Washington DC, USA.
| | - Sayan Kumar Biswas
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O St, NW, Washington DC, USA.
| | - Nagarjuna Gavvalapalli
- Department of Chemistry and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O St, NW, Washington DC, USA.
| |
Collapse
|
2
|
Mohanan M, Ahmad H, Ajayan P, Pandey PK, Calvert BM, Zhang X, Chen F, Kim SJ, Kundu S, Gavvalapalli N. Using molecular straps to engineer conjugated porous polymer growth, chemical doping, and conductivity. Chem Sci 2023; 14:5510-5518. [PMID: 37234908 PMCID: PMC10207893 DOI: 10.1039/d3sc00983a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Controlling network growth and architecture of 3D-conjugated porous polymers (CPPs) is challenging and therefore has limited the ability to systematically tune the network architecture and study its impact on doping efficiency and conductivity. We have proposed that π-face masking straps mask the π-face of the polymer backbone and therefore help to control π-π interchain interactions in higher dimensional π-conjugated materials unlike the conventional linear alkyl pendant solubilizing chains that are incapable of masking the π-face. Herein, we used cycloaraliphane-based π-face masking strapped monomers and show that the strapped repeat units, unlike the conventional monomers, help to overcome the strong interchain π-π interactions, extend network residence time, tune network growth, and increase chemical doping and conductivity in 3D-conjugated porous polymers. The straps doubled the network crosslinking density, which resulted in 18 times higher chemical doping efficiency compared to the control non-strapped-CPP. The straps also provided synthetic tunability and generated CPPs of varying network size, crosslinking density, dispersibility limit, and chemical doping efficiency by changing the knot to strut ratio. For the first time, we have shown that the processability issue of CPPs can be overcome by blending them with insulating commodity polymers. The blending of CPPs with poly(methylmethacrylate) (PMMA) has enabled them to be processed into thin films for conductivity measurements. The conductivity of strapped-CPPs is three orders of magnitude higher than that of the poly(phenyleneethynylene) porous network.
Collapse
Affiliation(s)
- Manikandan Mohanan
- Department of Chemistry, Georgetown University Washington, D.C. USA
- Institute for Soft Matter Synthesis and Metrology, Georgetown University Washington, D.C. USA
| | - Humayun Ahmad
- Department of Physics, Georgetown University Washington, D.C. USA
| | - Pooja Ajayan
- Dave C. Swalm School of Chemical Engineering, Mississippi State University Mississippi USA
| | | | - Benjamin M Calvert
- Department of Chemistry, Georgetown University Washington, D.C. USA
- Institute for Soft Matter Synthesis and Metrology, Georgetown University Washington, D.C. USA
| | - Xinran Zhang
- Institute for Soft Matter Synthesis and Metrology, Georgetown University Washington, D.C. USA
- Department of Chemistry, University of California Riverside California USA
| | - Fu Chen
- Department of Chemistry, University of Maryland College Park Maryland USA
| | - Sung J Kim
- Department of Chemistry, Howard University Washington D.C. USA
| | - Santanu Kundu
- Department of Physics, Georgetown University Washington, D.C. USA
| | - Nagarjuna Gavvalapalli
- Department of Chemistry, Georgetown University Washington, D.C. USA
- Institute for Soft Matter Synthesis and Metrology, Georgetown University Washington, D.C. USA
| |
Collapse
|
3
|
Hameed F, Mohanan M, Ibrahim N, Ochonma C, Rodríguez-López J, Gavvalapalli N. Controlling π-Conjugated Polymer-Acceptor Interactions by Designing Polymers with a Mixture of π-Face Strapped and Nonstrapped Monomers. Macromolecules 2023; 56:3421-3429. [PMID: 38510570 PMCID: PMC10950295 DOI: 10.1021/acs.macromol.3c00175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Indexed: 03/22/2024]
Abstract
Controlling π-conjugated polymer-acceptor complex interaction, including the interaction strength and location along the polymer backbone, is central to organic electronics and energy applications. Straps in the strapped π-conjugated polymers mask the π-face of the polymer backbone and hence are useful to control the interactions of the π-face of the polymer backbone with other polymer chains and small molecules compared to the conventional pendant solubilizing chains. Herein, we have synthesized a series of strapped π-conjugated copolymers containing a mixture of strapped and nonstrapped comonomers to control the polymer-acceptor interactions. Simulations confirmed that the acceptor is directed toward the nonstrapped repeat unit. More importantly, strapped copolymers overcome a major drawback of homopolymers and display higher photoinduced photoluminescence (PL) quenching, which is a measure of electron transfer from the polymer to acceptor, compared to that of both the strapped homopolymer and the conventional polymer with pendant solubilizing chains. We have also shown that this strategy applies not only to strapped polymers, but also to the conventional polymers with pendant solubilizing chains. The increase in PL quenching is attributed to the absence of a steric sheath around the comonomers and their random location along the polymer backbone, which enhances the probability of non-neighbor acceptor binding events along the polymer backbone. Thus, by mixing insulated and noninsulated monomers along the polymer backbone, the location of the acceptor along the polymer backbone, polymer-acceptor interaction strength, and the efficiency of photoinduced charge transfer are controllable compared to the homopolymers.
Collapse
Affiliation(s)
- Fatima Hameed
- Department
of Chemistry, Georgetown University, Washington, D.C. 20057, United States
- Institute
for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Manikandan Mohanan
- Department
of Chemistry, Georgetown University, Washington, D.C. 20057, United States
- Institute
for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Nafisa Ibrahim
- Department
of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles Ochonma
- Department
of Chemistry, Georgetown University, Washington, D.C. 20057, United States
- Institute
for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Joaquín Rodríguez-López
- Department
of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nagarjuna Gavvalapalli
- Department
of Chemistry, Georgetown University, Washington, D.C. 20057, United States
- Institute
for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
4
|
Sartucci JL, Maity A, Mohanan M, Bertke J, Kertesz M, Gavvalapalli N. Molecular tetrominoes: selective masking of the donor π-face to control the configuration of donor-acceptor complexes. Org Biomol Chem 2022; 20:375-386. [PMID: 34904145 DOI: 10.1039/d1ob02293h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the doping mechanism in organic semiconductors and generating molecular design rules to control the doping process are crucial for improving the performance of organic electronics. Even though controlling the location and orientation of the dopant along the semiconductor backbone is an important step in the doping mechanism, studies in this direction are scarce as it is a challenging task. To address this, herein, we incorporated π-face masked (strapped) units in 1,4-bis(phenylethynylene)benzene (donor) to control the acceptor (dopant) location along the trimer, donor-acceptor binding strength, and acceptor ionization. Two strapped trimers, PCP and CPC, are synthesized with control over the location of the strapped repeat unit in the trimer. The trimers are complexed with the 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) acceptor in solution. DFT calculations show that DDQ residing on the non-strapped repeat unit (the percentage of this configuration is at least ca. 73%) has the highest binding energy for both PCP and CPC. The percentage of dopant ionization is higher in the case of strapped trimers (PCP and CPC) compared to that of linear control trimers (PLP and LPL) and the completely non-strapped (PPP) trimer. The percentage of dopant ionization increased by 15 and 59% in the case of PCP and CPC respectively compared to that of PPP.
Collapse
Affiliation(s)
- Jenna L Sartucci
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| | - Arindam Maity
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| | - Manikandan Mohanan
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| | - Jeffery Bertke
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA.
| | - Miklos Kertesz
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| | - Nagarjuna Gavvalapalli
- Department of Chemistry, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C., 20057, USA
| |
Collapse
|
5
|
Maust RL, Li P, Shao B, Zeitler SM, Sun PB, Reid HW, Zakharov LN, Golder MR, Jasti R. Controlled Polymerization of Norbornene Cycloparaphenylenes Expands Carbon Nanomaterials Design Space. ACS CENTRAL SCIENCE 2021; 7:1056-1065. [PMID: 34235266 PMCID: PMC8228593 DOI: 10.1021/acscentsci.1c00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 06/13/2023]
Abstract
Carbon-based materials-such as graphene nanoribbons, fullerenes, and carbon nanotubes-elicit significant excitement due to their wide-ranging properties and many possible applications. However, the lack of methods for precise synthesis, functionalization, and assembly of complex carbon materials has hindered efforts to define structure-property relationships and develop new carbon materials with unique properties. To overcome this challenge, we employed a combination of bottom-up organic synthesis and controlled polymer synthesis. We designed norbornene-functionalized cycloparaphenylenes (CPPs), a family of macrocycles that map onto armchair carbon nanotubes of varying diameters. Through ring-opening metathesis polymerization, we accessed homopolymers as well as block and statistical copolymers constructed from "carbon nanohoops" with a high degree of structural control. These soluble, sp2-carbon-dense polymers exhibit tunable fluorescence emission and supramolecular responses based on composition and sequence. This work represents an important advance toward bridging the gap between small molecules and functional carbon-based materials.
Collapse
Affiliation(s)
- Ruth L. Maust
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Penghao Li
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Baihao Shao
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Sarah M. Zeitler
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Peiguan B. Sun
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Harrison W. Reid
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Lev N. Zakharov
- CAMCOR
− Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, Oregon 97403, United States
| | - Matthew R. Golder
- Department
of Chemistry, Molecular Engineering and Science Institute, University of Washington, Seattle, Washington 98195, United States
| | - Ramesh Jasti
- Department
of Chemistry and Biochemistry and Materials Science Institute and
Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
6
|
Lillis R, Thomas MR, Mohanan M, Gavvalapalli N. Enhancing Insulated Conjugated Polymer Fluorescence Quenching by Incorporating Dithia[3.3]paracyclophanes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryan Lillis
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C. 20057, United States
| | - Maximillian R. Thomas
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C. 20057, United States
| | - Manikandan Mohanan
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C. 20057, United States
| | - Nagarjuna Gavvalapalli
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St NW, Washington, D.C. 20057, United States
| |
Collapse
|
7
|
Affiliation(s)
- Jeroen Royakkers
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Hugo Bronstein
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Yin G, Kandapal S, Liu C, Wang H, Huang J, Jiang S, Ji T, Yan Y, Khalife S, Zhou R, Ye L, Xu B, Yang H, Nieh M, Li X. Metallo‐Helicoid with Double Rims: Polymerization Followed by Folding by Intramolecular Coordination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Guang‐Qiang Yin
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Sneha Kandapal
- Single Molecule Study Laboratory College of Engineering and Nanoscale Science and Engineering Center University of Georgia Athens GA 30602 USA
| | - Chung‐Hao Liu
- Department of Chemical and Biomolecular Engineering University of Connecticut Storrs CT 06269 USA
| | - Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Jianxiang Huang
- Institute of Quantitative Biology Zhejiang University Hangzhou Zhejiang 310027 China
| | - Shu‐Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Tan Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Yu Yan
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Sandra Khalife
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Ruhong Zhou
- Institute of Quantitative Biology Zhejiang University Hangzhou Zhejiang 310027 China
| | - Libin Ye
- Department of Cell Biology, Microbiology and Molecular Biology University of South Florida Tampa FL 33620 USA
| | - Bingqian Xu
- Single Molecule Study Laboratory College of Engineering and Nanoscale Science and Engineering Center University of Georgia Athens GA 30602 USA
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Mu‐Ping Nieh
- Department of Chemical and Biomolecular Engineering University of Connecticut Storrs CT 06269 USA
- Polymer Program Institute of Material Science University of Connecticut Storrs CT 06269 USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| |
Collapse
|
9
|
Yin GQ, Kandapal S, Liu CH, Wang H, Huang J, Jiang ST, Ji T, Yan Y, Khalife S, Zhou R, Ye L, Xu B, Yang HB, Nieh MP, Li X. Metallo-Helicoid with Double Rims: Polymerization Followed by Folding by Intramolecular Coordination. Angew Chem Int Ed Engl 2020; 60:1281-1289. [PMID: 33009693 DOI: 10.1002/anie.202010696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Indexed: 11/08/2022]
Abstract
In this study, we established a feasible strategy to construct a new type of metallo-polymer with helicoidal structure through the combination of covalent polymerization and intramolecular coordination-driven self-assembly. In the design, a tetratopic monomer (M) was prepared with two terminal alkynes in the outer rim for polymerization, and two terpyridines (TPYs) in the inner rim for subsequent folding by selective intramolecular coordination. Then, the linear covalent polymer (P) was synthesized by polymerization of M via Glaser-Hay homocoupling reaction. Finally, intramolecular coordination interactions between TPYs and Zn(II) folded the backbone of P into a right- or left-handed metallo-helicoid (H) with double rims. Owing to multiple positive charges on the inner rim of helicoid, double-stranded DNA molecules (dsDNA) could interact with H through electrostatic interactions. Remarkably, dsDNA allowed exclusive formation of H with right handedness by means of chiral induction.
Collapse
Affiliation(s)
- Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Sneha Kandapal
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Chung-Hao Liu
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Jianxiang Huang
- Institute of Quantitative Biology, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Shu-Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Tan Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Yu Yan
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Sandra Khalife
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Ruhong Zhou
- Institute of Quantitative Biology, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Libin Ye
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Mu-Ping Nieh
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.,Polymer Program, Institute of Material Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
10
|
|