1
|
Hossain MS, Wang A, Anika S, Zhang Z, Mozhdehi D. Genetically Engineered Liposwitch-Based Nanomaterials. Biomacromolecules 2024; 25:8058-8068. [PMID: 39495202 PMCID: PMC11632658 DOI: 10.1021/acs.biomac.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Fusion of intrinsically disordered and globular proteins is a powerful strategy to create functional nanomaterials. However, the immutable nature of genetic encoding restricts the dynamic adaptability of nanostructures postexpression. To address this, we envisioned using a myristoyl switch, a protein that combines allostery and post-translational modifications─two strategies that modify protein properties without altering their sequence─to regulate intrinsically disordered protein (IDP)-driven nanoassembly. A typical myristoyl switch, allosterically activated by a stimulus, reveals a sequestered lipid for membrane association. We hypothesize that this conditional exposure of lipids can regulate the assembly of fusion proteins, a concept we term "liposwitching". We tested this by fusing recoverin, a calcium-dependent myristoyl switch, with elastin-like polypeptide, a thermoresponsive model IDP. Biophysical analyses confirmed recoverin's myristoyl-switch functionality, while dynamic light scattering and cryo-transmission electron microscopy showed distinct calcium- and lipidation-dependent phase separation and assembly. This study highlights liposwitching as a viable strategy for controlling DP-driven nanoassembly, enabling applications in synthetic biology and cellular engineering.
Collapse
Affiliation(s)
| | - Alex Wang
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Salma Anika
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| |
Collapse
|
2
|
Lu Y, Chen Y, Zhu Y, Zhao J, Ren K, Lu Z, Li J, Hao Z. Stimuli-Responsive Protein Hydrogels: Their Design, Properties, and Biomedical Applications. Polymers (Basel) 2023; 15:4652. [PMID: 38139904 PMCID: PMC10747532 DOI: 10.3390/polym15244652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Protein-based hydrogels are considered ideal biomaterials due to their high biocompatibility, diverse structure, and their improved bioactivity and biodegradability. However, it remains challenging to mimic the native extracellular matrices that can dynamically respond to environmental stimuli. The combination of stimuli-responsive functionalities with engineered protein hydrogels has facilitated the development of new smart hydrogels with tunable biomechanics and biological properties that are triggered by cyto-compatible stimuli. This review summarizes the recent advancements of responsive hydrogels prepared from engineered proteins and integrated with physical, chemical or biological responsive moieties. We underscore the design principles and fabrication approaches of responsive protein hydrogels, and their biomedical applications in disease treatment, drug delivery, and tissue engineering are briefly discussed. Finally, the current challenges and future perspectives in this field are highlighted.
Collapse
Affiliation(s)
- Yuxuan Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.L.); (Y.C.)
| | - Yuhe Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.L.); (Y.C.)
| | - Yuhan Zhu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Jingyi Zhao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Ketong Ren
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Zhao Lu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Jun Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Ziyang Hao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| |
Collapse
|
3
|
Nie J, Sun Y, Cheng X, Wen G, Liu X, Cheng M, Zhao J, Li W. Plant Protein-Peptide Supramolecular Polymers with Reliable Tissue Adhesion for Surgical Sealing. Adv Healthc Mater 2023; 12:e2203301. [PMID: 36960795 DOI: 10.1002/adhm.202203301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/08/2023] [Indexed: 03/25/2023]
Abstract
The fusion of protein science and peptide science opens up new frontiers in creating innovative biomaterials. Herein, a new kind of adhesive soft materials based on a natural occurring plant protein and short peptides via a simple co-assembly route are explored. The hydrophobic zein is supercharged by sodium dodecyl sulfate to form a stable protein colloid, which is intended to interact with charge-complementary short peptides via multivalent ionic and hydrogen bonds, forming adhesive materials at macroscopic level. The adhesion performance of the resulting soft materials can be fine-manipulated by customizing the peptide sequences. The adhesive materials can resist over 78 cmH2 O of bursting pressure, which is high enough to meet the sealing requirements of dural defect. Dural sealing and repairing capability of the protein-peptide biomaterials are further identified in rat and rabbit models. In vitro and in vivo assays demonstrate that the protein-peptide adhesive shows excellent anti-swelling property, low cell cytotoxicity, hemocompatibility, and inflammation response. In particular, the protein-peptide supramolecular biomaterials can in vivo dissociate and degrade within two weeks, which can well match with the time-window of the dural repairing. This work underscores the versatility and availability of the supramolecular toolbox in the easy-to-implement fabrication of protein-peptide biomaterials.
Collapse
Affiliation(s)
- Junlian Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Yingchuan Sun
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Xueliang Cheng
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Guang Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Meng Cheng
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Jianwu Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| |
Collapse
|
4
|
Knoff DS, Kim S, Fajardo Cortes KA, Rivera J, Cathey MVJ, Altamirano D, Camp C, Kim M. Non-Covalently Associated Streptavidin Multi-Arm Nanohubs Exhibit Mechanical and Thermal Stability in Cross-Linked Protein-Network Materials. Biomacromolecules 2022; 23:4130-4140. [PMID: 36149316 DOI: 10.1021/acs.biomac.2c00544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Constructing protein-network materials that exhibit physicochemical and mechanical properties of individual protein constituents requires molecular cross-linkers with specificity and stability. A well-known example involves specific chemical fusion of a four-arm polyethylene glycol (tetra-PEG) to desired proteins with secondary cross-linkers. However, it is necessary to investigate tetra-PEG-like biomolecular cross-linkers that are genetically fused to the proteins, simplifying synthesis by removing additional conjugation and purification steps. Non-covalently, self-associating, streptavidin homotetramer is a viable, biomolecular alternative to tetra-PEG. Here, a multi-arm streptavidin design is characterized as a protein-network material platform using various secondary, biomolecular cross-linkers, such as high-affinity physical (i.e., non-covalent), transient physical, spontaneous chemical (i.e., covalent), or stimuli-induced chemical cross-linkers. Stimuli-induced, chemical cross-linkers fused to multi-arm streptavidin nanohubs provide sufficient diffusion prior to initiating permanent covalent bonds, allowing proper characterization of streptavidin nanohubs. Surprisingly, non-covalently associated streptavidin nanohubs exhibit extreme stability, which translates into material properties that resemble hydrogels formed by chemical bonds even at high temperatures. Therefore, this study not only establishes that the streptavidin nanohub is an ideal multi-arm biopolymer precursor but also provides valuable guidance for designing self-assembling nanostructured molecular networks that can properly harness the extraordinary properties of protein-based building blocks.
Collapse
Affiliation(s)
- David S Knoff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Samuel Kim
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Kareen A Fajardo Cortes
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Jocelyne Rivera
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Marcus V J Cathey
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Dallas Altamirano
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher Camp
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Minkyu Kim
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States.,Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, United States.,BIO5 Institute, University of Arizona, Tucson, Arizona 85719, United States
| |
Collapse
|
5
|
Interdomain Linker Effect on the Mechanical Stability of Ig Domains in Titin. Int J Mol Sci 2022; 23:ijms23179836. [PMID: 36077234 PMCID: PMC9456048 DOI: 10.3390/ijms23179836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Titin is the largest protein in humans, composed of more than one hundred immunoglobulin (Ig) domains, and plays a critical role in muscle’s passive elasticity. Thus, the molecular design of this giant polyprotein is responsible for its mechanical function. Interestingly, most of these Ig domains are connected directly with very few interdomain residues/linker, which suggests such a design is necessary for its mechanical stability. To understand this design, we chose six representative Ig domains in titin and added nine glycine residues (9G) as an artificial interdomain linker between these Ig domains. We measured their mechanical stabilities using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) and compared them to the natural sequence. The AFM results showed that the linker affected the mechanical stability of Ig domains. The linker mostly reduces its mechanical stability to a moderate extent, but the opposite situation can happen. Thus, this effect is very complex and may depend on each particular domain’s property.
Collapse
|
6
|
Wang R, Liu M, Wang H, Xia J, Li H. GB Tags: Small Covalent Peptide Tags Based on Protein Fragment Reconstitution. Bioconjug Chem 2021; 32:1926-1934. [PMID: 34329559 DOI: 10.1021/acs.bioconjchem.1c00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing peptide tags that can bind target proteins covalently under mild conditions is of great importance for a myriad of applications, ranging from chemical biology to biotechnology. Here we report the development of a small covalent peptide tag system, termed as GB tags, that can covalently label the target protein with high specificity and high yield under oxidizing conditions. The GB tags consist of a pair of short peptides, GN and GC (GN contains 45 residues and GC contains 19 residues). GN and GC, which are split from a parent protein GB1, can undergo protein fragment reconstitution to reconstitute the folded structure of the parent protein spontaneously. The engineered cysteines in GN and GC can readily form a disulfide bond oxidized by air oxygen after protein reconstitution. Using thermally stable variants of GB1, we identified two pairs of GB tags that display improved thermodynamic stability and binding affinity. They can serve as efficient covalent peptide tags for various applications, including specific labeling of mammalian cell surface receptors. We anticipate that these new GB tags will find applications in biochemical labeling as well as biomaterials, such as protein hydrogels.
Collapse
Affiliation(s)
- Ruidi Wang
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Miao Liu
- Department of Chemistry, Chinese University of Hong Kong, Hong Kong SRC, P. R. China
| | - Han Wang
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jiang Xia
- Department of Chemistry, Chinese University of Hong Kong, Hong Kong SRC, P. R. China
| | - Hongbin Li
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
7
|
Li H. There Is Plenty of Room in The Folded Globular Proteins: Tandem Modular Elastomeric Proteins Offer New Opportunities in Engineering Protein‐Based Biomaterials. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hongbin Li
- Department of Chemistry University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
8
|
Liu Z, Yang Z, Chen X, Tan R, Li G, Gan Z, Shao Y, He J, Zhang Z, Li W, Zhang WB, Dong XH. Discrete Giant Polymeric Chains Based on Nanosized Monomers. JACS AU 2021; 1:79-86. [PMID: 34467271 PMCID: PMC8395638 DOI: 10.1021/jacsau.0c00014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 06/13/2023]
Abstract
As size-amplified analogues of canonical macromolecules, polymeric chains built up by "giant" monomers represent an experimental realization of the "beads-on-a-string" model at larger length scales, which could provide insights into fundamental principles of polymer science. In this work, we modularly constructed discrete giant polymeric chains using nanosized building blocks (polyhedral oligomeric silsesquioxane, POSS) as basic repeat units through an efficient and robust iterative exponential growth approach, with precise control on molecular parameters, including size, composition, regioconfiguration, and surface functionalities. Their chemical structures were fully characterized by nuclear magnetic resonance spectroscopy, size-exclusion chromatography, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. With elaborately designed amphiphilic block POSS chains and their analogues made of conventional monomers, the size effects were delicately studied and highlighted. Interesting assembly behaviors emerge as a result of distinct interactions and molecular dynamics. This category of molecules shares general self-assembly characteristics as the conventional counterparts in terms of phase transition and evolution. Meanwhile, it turns out that the monomer size has profound impacts on phase stability, as a trade-off between entropic and enthalpic contributions. It may open up a door for modular and programmable design of interesting materials with complex structures and diverse functions.
Collapse
Affiliation(s)
- Zhongguo Liu
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Molecular Science and Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Ze Yang
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Molecular Science and Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Xin Chen
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Molecular Science and Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Rui Tan
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Molecular Science and Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Gang Li
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Molecular Science and Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Molecular Science and Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Yu Shao
- Key
Laboratory of Polymer Chemistry & Physics of Ministry of Education,
Center for Soft Matter Science and Engineering, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jinlin He
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengbiao Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weihua Li
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Wen-Bin Zhang
- Key
Laboratory of Polymer Chemistry & Physics of Ministry of Education,
Center for Soft Matter Science and Engineering, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xue-Hui Dong
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Molecular Science and Engineering, South
China University of Technology, Guangzhou 510640, China
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Aufderhorst-Roberts A, Hughes MDG, Hare A, Head DA, Kapur N, Brockwell DJ, Dougan L. Reaction Rate Governs the Viscoelasticity and Nanostructure of Folded Protein Hydrogels. Biomacromolecules 2020; 21:4253-4260. [PMID: 32870660 DOI: 10.1021/acs.biomac.0c01044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hydrogels constructed from folded protein domains are of increasing interest as resilient and responsive biomaterials, but their optimization for applications requires time-consuming and costly molecular design. Here, we explore a complementary approach to control their properties by examining the influence of crosslinking rate on the structure and viscoelastic response of a model hydrogel constructed from photochemically crosslinked bovine serum albumin (BSA). Gelation is observed to follow a heterogeneous nucleation pathway in which BSA monomers crosslink into compact nuclei that grow into fractal percolated networks. Both the viscoelastic response probed by shear rheology and the nanostructure probed by small-angle X-ray scattering (SAXS) are shown to depend on the photochemical crosslinking reaction rate, with increased reaction rates corresponding to higher viscoelastic moduli, lower fractal dimension, and higher fractal cluster size. Reaction rate-dependent changes are shown to be consistent with a transition between diffusion- and rate-limited assembly, and the corresponding changes to viscoelastic response are proposed to arise from the presence of nonfractal depletion regions, as confirmed by SAXS. This controllable nanostructure and viscoelasticity constitute a potential route for the precise control of hydrogel properties, without the need for molecular modification.
Collapse
Affiliation(s)
| | - Matt D G Hughes
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Andrew Hare
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - David A Head
- School of Computing, University of Leeds, Leeds LS2 9JT, U.K
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - David J Brockwell
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
10
|
Zhao L, Zhang X, Luo Q, Hou C, Xu J, Liu J. Engineering Nonmechanical Protein-Based Hydrogels with Highly Mechanical Properties: Comparison with Natural Muscles. Biomacromolecules 2020; 21:4212-4219. [PMID: 32886490 DOI: 10.1021/acs.biomac.0c01002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The elegant elasticity and toughness of muscles that are controlled by myofilament sliding, highly elastic springlike properties of titin, and Ca2+-induced conformational change of the troponin complex have been a source of inspiration to develop advanced materials for simulating elastic muscle motion. Herein, a highly stretchable protein hydrogel is developed to mimic the structure and motion of muscles through the combination of protein folding-unfolding and molecular sliding. It has been shown that the protein bovine serum albumin is covalently cross-linked, together penetrated with alginate chains to construct polyprotein-based hydrogels, where polyproteins can act as the elastic spring titin via protein folding-unfolding and also achieve tunable sliding facilitated by alginate due to their reversible noncovalent interactions, thus providing desired mechanical properties such as stretchability, resilience, and strength. Notably, these biomaterials can achieve the breaking strain of up to 1200% and show massive energy dissipation. A pronounced expansion-contraction phenomenon is also observed on the macroscopic scale, and the Ca2+-induced contraction process may help to improve our understanding of muscle movement. Overall, these excellent properties are comparable to or even better than those of natural muscles, making the polyprotein-based hydrogels represent a new type of muscle-mimetic biomaterial. Significantly, the prominent biocompatibility of the designed biomaterials further enables them to hold potential applications in the biomedical field and tissue engineering.
Collapse
Affiliation(s)
- Linlu Zhao
- The First Affiliated Hospital of Hainan Medical University, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xin Zhang
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, No. 3050, Kaixuan Road, Changchun 130052, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
11
|
Pacheco MR, Jacinto JP, Penas D, Calmeiro T, Almeida AV, Colaço M, Fortunato E, Jones NC, Hoffmann SV, Pereira MMA, Tavares P, Pereira AS. Supramolecular protein polymers using mini-ferritin Dps as the building block. Org Biomol Chem 2020; 18:9300-9307. [DOI: 10.1039/d0ob01702g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Production of long polymer chains with iron oxidation and storage activity, built from protein nanocages using a click chemistry approach.
Collapse
|