1
|
Domitin S, Puff N, Pilot-Storck F, Tiret L, Joubert F. Role of cardiolipin in proton transmembrane flux and localization. Biophys J 2024:S0006-3495(24)04076-1. [PMID: 39674891 DOI: 10.1016/j.bpj.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/01/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
In eukaryotic cells, the phospholipid cardiolipin (CL) is a crucial component that influences the function and organization of the mitochondrial inner membrane. In this study, we examined its potential role in passive proton transmembrane flux using unilamellar vesicles composed of natural egg phosphatidylcholine (PC) alone or with the inclusion of 18 or 34 mol % CL. A membrane potential was induced by a potassium gradient, and oxonol VI dye was used to monitor membrane potential dissipation resulting from proton transmembrane efflux. Increasing the CL content led to a net increase in proton efflux, which was also dependent on the magnitude of the membrane potential. The same increase in proton efflux was measured in the presence of the equally negatively charged phosphatidylglycerol, indicating that the charge of CL plays a more important role than its structure in this mechanism. When varying the proton membrane permeability (pH) using the protonophore CCCP, we observed that unlike PC liposomes, where a small amount of CCCP was sufficient to achieve maximum flux, a significantly larger amount of protonophore was required in the presence of CL. Conversely, increasing the buffer capacity increased proton flux, indicating that proton availability, rather than membrane permeability, may be the limiting factor for proton leak. Our findings demonstrated that a higher proton content associated with the membrane was correlated with an increasing leak in the presence of CL. Additionally, smaller liposome diameters appeared to favor proton leak. Taken together, our results suggest that the presence of negatively charged CL in a membrane traps protons and increases their leakage, potentially in a manner dependent on membrane curvature. We discuss the possible mechanisms and implications of these findings for mitochondrial respiration function.
Collapse
Affiliation(s)
- Sylvain Domitin
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, Paris, France
| | - Nicolas Puff
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 925 Physics, Paris, France; Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS, Université Paris Cité, Paris, France
| | - Fanny Pilot-Storck
- University Paris-Est Créteil, INSERM, U955 IMRB, Team Relaix, Créteil, France; École nationale vétérinaire d'Alfort, U955 IMRB, Maisons-Alfort, France; EFS, U955 IMRB, Créteil, France
| | - Laurent Tiret
- University Paris-Est Créteil, INSERM, U955 IMRB, Team Relaix, Créteil, France; École nationale vétérinaire d'Alfort, U955 IMRB, Maisons-Alfort, France; EFS, U955 IMRB, Créteil, France
| | - Frederic Joubert
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, Paris, France.
| |
Collapse
|
2
|
Mandal P, Roy S, Karmakar M, Bhatta SR, Ghosh CC, Thakur A, Parui PP. Determination of divalent metal ion-regulated proton concentration and polarity at the interface of anionic phospholipid membranes. SOFT MATTER 2024; 20:7646-7656. [PMID: 39291663 DOI: 10.1039/d4sm00876f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
We studied the influence of trace quantities of divalent metal ions (M2+: Ca2+, Mg2+, and Zn2+) on proton concentration (-log[H+], designated as pH') and polarity at the interface of anionic PG-phospholipid membranes comprising saturated and unsaturated acrylic chains. A spiro-rhodamine-6G-gallic acid (RGG) pH-probe was synthesized to monitor the interfacial pH' of large unilamellar vesicles (LUVs) at a physiologically appropriate bulk pH (6.0-7.5). 1H-NMR spectroscopy and fluorescence microscopy showed that RGG interacted with the LUV interface. The pH-dependent equilibrium between the spiro-closed and spiro-open forms of RGG at the interface from the bulk phase was compared using fluorescence spectra to obtain interfacial pH'. Interfacial dielectric constant (κ) was estimated using a porphyrin-based polarity-probe (GPP) that exhibits a κ-induced equilibrium between monomeric and oligomeric forms. M2+ interaction decreased LUV interfacial κ from ∼67 to 61, regardless of lipid/M2+ types. Fluorescence spectral and microscopic analysis revealed that low Ca2+ and Mg2+ amounts (M2+/lipid = 1 : 20 for unsaturated DOPG and POPG and ∼1 : 10 for saturated DMPG lipids), but not Zn2+, decreased LUV interfacial acidity from pH' ∼3.8 to 4.4 at bulk pH 7.0. Although membrane surface charges are normally responsible for pH' deviation from the bulk to the interface, they cannot explain M2+-mediated interfacial pH' increase since there is little change in surface charges up to a low M2+/lipid ratio of <1/10. M2+-induced tight lipid headgroup packing and the resulting increased surface rigidity inhibit interfacial H+/H2O penetration, reducing interfacial acidity and polarity. Our findings revealed that in certain cases, essential M2+ ion-induced bio-membrane reactivity can be attributed to the influence of interfacial pH'/polarity.
Collapse
Affiliation(s)
- Pratima Mandal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Snigdha Roy
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Manisha Karmakar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | | | | | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | | |
Collapse
|
3
|
Zhao J, Zhao L, Xu W, Lu Z, Xu S. Fabrication of High-Negatively Charged Bicelle-Mediated Supported Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8083-8093. [PMID: 38572682 DOI: 10.1021/acs.langmuir.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Supported lipid bilayers (SLBs), two-dimensional lipid films formed on a solid-supporting substrate, serve as models for biomembranes and exhibit remarkable potential in chemistry, biology, and medicine. However, preparing SLBs with highly negatively charged contents on the negatively charged surface by overcoming electrostatic repulsion remains a challenge. Here, a creative bicelle-mediated and divalent cation-free SLB preparation method with the assistance of phosphate-buffered saline (PBS) solution was proposed, which can form the SLBs containing 50% DOPS or 30% CL on the silica surface monitored by a quartz crystal microbalance with dissipation (QCM-D). Results of molecular dynamics (MD) simulation indicate that electrostatic repulsion can be overcome by the increased number of hydrogen bonds caused by the adsorption of dihydrogen phosphate ions onto the headgroups of lipids. In addition, the negatively charged SLB formation was identified to be a three-step kinetic process, which differs from a two-step mechanism in the case of amphoteric SLB. The extra kinetic step can be attributed to the reduction in the number of intermolecular hydrogen bonds and the ordering of water molecules in the hydration layer. This investigation resolves the challenge of fabricating SLB over negatively charged surfaces and offers a fresh perspective on the SLB assembly methodology.
Collapse
Affiliation(s)
- Junyi Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Li Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, Changchun 130012, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, Hüttemann M, Song X. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ 2024; 31:387-404. [PMID: 38521844 PMCID: PMC11043370 DOI: 10.1038/s41418-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong J Lee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Martin WJ, McClelland LJ, Nold SM, Boshae KL, Bowler BE. Effect of proline content and histidine ligation on the dynamics of Ω-loop D and the peroxidase activity of iso-1-cytochrome c. J Inorg Biochem 2024; 252:112474. [PMID: 38176365 DOI: 10.1016/j.jinorgbio.2023.112474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
To study how proline residues affect the dynamics of Ω-loop D (residues 70 to 85) of cytochrome c, we prepared G83P and G83A variants of yeast iso-1-cytochrome c (iso-1-Cytc) in the presence and absence of a K73H mutation. Ω-loop D is important in controlling both the electron transfer function of Cytc and the peroxidase activity of Cytc used in apoptosis because it provides the Met80 heme ligand. The G83P and G83A mutations have no effect on the global stability of iso-1-Cytc in presence or absence of the K73H mutation. However, both mutations destabilize the His73-mediated alkaline conformer relative to the native state. pH jump stopped-flow experiments show that the dynamics of the His73-mediated alkaline transition are significantly enhanced by the G83P mutation. Gated electron transfer studies show that the enhanced dynamics result from an increased rate of return to the native state, whereas the rate of loss of Met80 ligation is unchanged by the G83P mutation. Thus, the G83P substitution does not stiffen the conformation of the native state. Because bis-His heme ligation occurs when Cytc binds to cardiolipin-containing membranes, we studied the effect of His73 ligation on the peroxidase activity of Cytc, which acts as an early signal in apoptosis by causing oxygenation of cardiolipin. We find that the His73 alkaline conformer suppresses the peroxidase activity of Cytc. Thus, the bis-His ligated state of Cytc formed upon binding to cardiolipin is a negative effector for the peroxidase activity of Cytc early in apoptosis.
Collapse
Affiliation(s)
- William J Martin
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Levi J McClelland
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Shiloh M Nold
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Kassandra L Boshae
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Bruce E Bowler
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
6
|
Chahar D, Jha I, Arumugam J, Venkatesu P. Impact of Choline Hydroxide-Supported Magnetic Nanoparticles on Peroxidase Activity and Conformational Stability of Cytochrome c. ACS APPLIED BIO MATERIALS 2024; 7:1135-1145. [PMID: 38262058 DOI: 10.1021/acsabm.3c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nanotechnology has advanced significantly; however, little is known about the potential implications on human health-related issues, particularly blood carrying enzymes. Ionic liquids are also well-recognized for maintaining the structure and activity of enzymes. In this regard, we delineate a facile synthetic approach of preparation of Fe3O4 nanoparticles (NPs) as well as choline hydroxide [CH][OH] ionic liquid (IL)-supported Fe3O4 NPs (Fe3O4-CHOH). This approach of combining magnetic nanoparticles (MNPs) with IL results in distinctive properties, which may offer enormous utility in the field of biomedical research due to the effortless separation of MNPs by an external magnetic field. Detailed characterization of MNPs including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) was carried out. The biomolecular interactions of Fe3O4 and Fe3O4-CHOH NPs with cytochrome c (Cyt c) were studied in detail using various spectroscopic and microscopic techniques. From spectroscopic studies, it can be concluded that the secondary structure of Cyt c is more stable in the presence of Fe3O4-CHOH NPs than Fe3O4 NPs. The binding constant of Cyt c in the presence of MNPs was also calculated using the Benesi-Hildebrand equation. Furthermore, dynamic light scattering (DLS), ζ-potential, and microscopic studies were performed to study the interaction of Cyt c with MNPs. These studies provided evidence favoring the formation of bionanoconjugates of Cyt c with MNPs. Moreover, the enzymatic activity of Cyt c increases in the presence of both MNPs. The peroxidase activity of Cyt c in MNPs explicitly elucidates that the enzyme is preserved for a long time in the presence of Fe3O4-CHOH NPs. Later on, TEM and field emission scanning electron microscopy (FESEM) were also performed to gather more information regarding the morphology of Cyt c in the presence of MNPs.
Collapse
Affiliation(s)
- Deepak Chahar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Indrani Jha
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Jayamani Arumugam
- Department of Chemistry, University of Delhi, Delhi 110 007, India
- Department of Sciences Program Chemistry, Manav Rachna University, Faridabad 121004, India
| | | |
Collapse
|
7
|
Gurusaran M, Erlandsen BS, Davies OR. The crystal structure of SUN1-KASH6 reveals an asymmetric LINC complex architecture compatible with nuclear membrane insertion. Commun Biol 2024; 7:138. [PMID: 38291267 PMCID: PMC10827754 DOI: 10.1038/s42003-024-05794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The LINC complex transmits cytoskeletal forces into the nucleus to control the structure and movement of nuclear contents. It is formed of nuclear SUN and cytoplasmic KASH proteins, which interact within the nuclear lumen, immediately below the outer nuclear membrane. However, the symmetrical location of KASH molecules within SUN-KASH complexes in previous crystal structures has been difficult to reconcile with the steric requirements for insertion of their immediately upstream transmembrane helices into the outer nuclear membrane. Here, we report the crystal structure of the SUN-KASH complex between SUN1 and JAW1/LRMP (KASH6) in an asymmetric 9:6 configuration. This intertwined assembly involves two distinct KASH conformations such that all six KASH molecules emerge on the same molecular surface. Hence, they are ideally positioned for insertion of upstream sequences into the outer nuclear membrane. Thus, we report a SUN-KASH complex architecture that appears to be directly compatible with its biological role.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Benedikte S Erlandsen
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
8
|
Li YY, Long SS, Yu L, Liu AK, Gao SQ, Tan X, Lin YW. Effects of naturally occurring S47F/A mutations on the structure and function of human cytochrome c. J Inorg Biochem 2023; 246:112296. [PMID: 37356378 DOI: 10.1016/j.jinorgbio.2023.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
The sequence and structure of human cytochrome c (hCyt c) exhibit evolutionary conservations, with only a limited number of naturally occurring mutations in humans. Herein, we investigated the effects of the naturally occurring S47F/A mutations on the structure and function of hCyt c in the oxidized form. Although the naturally occurring S47F/A mutations did not largely alter the protein structure, the S47F and S47A variants exhibited a small fraction of high-spin species. Kinetic studies showed that the peroxidase activity of the variants was enhanced by ∼2.5-fold under neutral pH conditions, as well as for the rate in reaction with H2O2, when compared to those of wild-type hCyt c. In addition, we evaluated the interaction between hCyt c and human neuroglobin (hNgb) by isothermal titration calorimetry (ITC) studies, which revealed that the binding constant was reduced by ∼8-fold as result of the mutation of the hydrophilic Ser to the hydrophobic Phe/Ala. These findings provide valuable insights into the role of Ser47 in Ω-loop C in sustaining the structure and function of hCyt c.
Collapse
Affiliation(s)
- Yan-Yan Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Shuang-Shuang Long
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Ao-Kun Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China.
| |
Collapse
|
9
|
The oxidative nuclease activity of human cytochrome c with mutations in Ω-loop C/D. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140897. [PMID: 36642204 DOI: 10.1016/j.bbapap.2023.140897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Natural and artificial nucleases have extensive applications in biotechnology and biomedicine. The exploration of protein with potential DNA cleavage activity also inspires the design of artificial nuclease and helps to understand the physiological process of DNA damage. In this study, we engineered four human cytochrome c (Cyt c) mutants (N52S, N52A, I81N, and I81D Cyt c), which showed enhanced DNA cleavage activity and degradation in comparison with WT Cyt c, especially under acidic conditions. The mechanism assays revealed that the superoxide (O2•-) plays an important role in the nuclease reaction. The kinetic assays showed that the peroxidase activity of the I81D Cyt c mutant enhanced up to 9-fold at pH 5. This study suggests that the mutations of Ile81 and Asn52 in Ω-loop C/D are critical for the nuclease activity of Cyt c, which may have physiological significance in DNA damage and potential applications in biomedicine.
Collapse
|
10
|
Zhang M, Tai H, Yanagisawa S, Yamanaka M, Ogura T, Hirota S. Resonance Raman Studies on Heme Ligand Stretching Modes in Methionine80-Depleted Cytochrome c: Fe-His, Fe-O 2, and O-O Stretching Modes. J Phys Chem B 2023; 127:2441-2449. [PMID: 36919258 PMCID: PMC10041640 DOI: 10.1021/acs.jpcb.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The peroxidase activity of cytochrome (cyt) c increases when Met80 dissociates from the heme iron, which is related to the initial cyt c membrane permeation step of apoptosis. Met80-dissociated cyt c can form an oxygenated species. Herein, resonance Raman spectra of Met80-depleted horse cyt c (M80A cyt c) were analyzed to elucidate the heme ligand properties of Met80-dissociated cyt c. The Fe-His stretching (νFe-His) mode of ferrous M80A cyt c was observed at 236 cm-1, and this frequency decreased by 1.5 cm-1 for the 15N-labeled protein. The higher νFe-His frequency of M80A cyt c than of other His-ligated heme proteins indicates strong heme coordination and the imidazolate character of His18. Peaks attributed to the Fe-O2 stretching (νFe-O2) and O-O stretching (νO-O) modes of the oxygenated species of M80A cyt c were observed at 576 and 1148 cm-1, respectively, under an 16O2 atmosphere, whereas the frequencies decreased to 544 and 1077 cm-1, respectively, under an 18O2 atmosphere. The νFe-O2 mode of Hydrogenobacter thermophilus (HT) M59A cyt c552 was observed at 580 cm-1 under an 16O2 atmosphere, whereas the frequency decreased to 553 cm-1 under an 18O2 atmosphere, indicating that relatively high νFe-O2 frequencies are characteristic of c-type cyt proteins. By comparison of the simultaneously observed νFe-O2 and νO-O frequencies of oxygenated cyt c and other oxygenated His-ligated heme proteins, the frequencies tend to have a positive linear relationship; the νFe-O2 frequency increases when the νO-O frequency increases. The imidazolate character of the heme-coordinated His and strong Fe-O and O-O bonds are characteristic of cyt c and apparently related to the peroxidase activity when Met80 dissociates from the heme iron.
Collapse
Affiliation(s)
- Mohan Zhang
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Hulin Tai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Takashi Ogura
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
11
|
Proskurnin MA, Proskurnina EV, Galimova VR, Alekseev AV, Mikheev IV, Vladimirov YA. Composition of the Cytochrome c Complex with Cardiolipin by Thermal Lens Spectrometry. Molecules 2023; 28:molecules28062692. [PMID: 36985664 PMCID: PMC10057424 DOI: 10.3390/molecules28062692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Thermal lens spectrometry along with spectrophotometric titration were used to assess the composition of the complex of oxidized cytochrome c (ferricytochrome c) with 1,1′,2,2′-tetraoleyl cardiolipin, which plays a key role in the initiation of apoptosis. Spectrophotometric titration was carried out for micromolar concentrations at which the complex is mainly insoluble, to assess the residual concentration in the solution and to estimate the solubility of the complex. Thermal lens spectrometry was used as a method of molecular absorption spectroscopy, which has two advantages over conventional optical transmission spectroscopy: the higher sensitivity of absorbance measurements and the possibility of studying the light absorption by chromophores and heat transfer in complex systems, such as living cells or tissues. Thermal lens measurements were carried out at nanomolar concentrations, where the complex is mainly in solution, i.e., under the conditions of its direct measurements. From the thermal lens measurements, the ratios of cytochrome c and cardiolipin in the complex were 50 at pH 7.4; 30 at pH 6.8; and 10 at pH 5.5, which fit well to the spectrophotometric data. The molecular solubility of the complex at pH 6.8–7.4 was estimated as 30 µmol/L.
Collapse
Affiliation(s)
- Mikhail A. Proskurnin
- Analytical Chemistry Division, Chemistry Department, M.V. Lomonosov Moscow State University, d. 1, Str. 3, Lenin Hills, GSP-1 V-234, 119991 Moscow, Russia;
- Correspondence: (M.A.P.); (I.V.M.); Tel.: +7-495-939-15-68 (I.V.M.)
| | - Elena V. Proskurnina
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St, 115522 Moscow, Russia;
| | - Viktoriya R. Galimova
- Analytical Chemistry Division, Chemistry Department, M.V. Lomonosov Moscow State University, d. 1, Str. 3, Lenin Hills, GSP-1 V-234, 119991 Moscow, Russia;
| | - Andrei V. Alekseev
- Russian Research Institute of Aviation Materials, ul. Radio 17, 105005 Moscow, Russia;
| | - Ivan V. Mikheev
- Analytical Chemistry Division, Chemistry Department, M.V. Lomonosov Moscow State University, d. 1, Str. 3, Lenin Hills, GSP-1 V-234, 119991 Moscow, Russia;
- Correspondence: (M.A.P.); (I.V.M.); Tel.: +7-495-939-15-68 (I.V.M.)
| | - Yuri A. Vladimirov
- Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Leninskie Gory, A, 119991 Moscow, Russia;
| |
Collapse
|
12
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
13
|
Feng Y, Liu XC, Li L, Gao SQ, Wen GB, Lin YW. Naturally Occurring I81N Mutation in Human Cytochrome c Regulates Both Inherent Peroxidase Activity and Interactions with Neuroglobin. ACS OMEGA 2022; 7:11510-11518. [PMID: 35415373 PMCID: PMC8992277 DOI: 10.1021/acsomega.2c01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 05/24/2023]
Abstract
Human cytochrome c (hCyt c) is a crucial heme protein and plays an indispensable role in energy conversion and intrinsic apoptosis pathways. The sequence and structure of Cyt c were evolutionarily conserved and only a few naturally occurring mutants were detected in humans. Among those variable sites, position 81 was proposed to act as a peroxidase switch in the initiation stages of apoptosis. In this study, we show that Ile81 not only suppresses the intrinsic peroxidase activity but also is essential for Cyt c to interact with neuroglobin (Ngb), a potential protein partner. The kinetic assays showed that the peroxidase activity of the naturally occurring variant I81N was enhanced up to threefold under pH 5. The local stability of the Ω-loop D (residues 70-85) in the I81N variant was decreased. Moreover, the Alphafold2 program predicted that Ile81 forms stable contact with human Ngb. Meanwhile, the Ile81 to Asn81 missense mutation abolishes the interaction interface, resulting in a ∼40-fold decrease in binding affinity. These observations provide an insight into the structure-function relationship of the conserved Ile81 in vertebrate Cyt c.
Collapse
Affiliation(s)
- Yu Feng
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xi-Chun Liu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Lianzhi Li
- School
of Chemistry and Chemical Engineering, Liaocheng
University, Liaocheng 252059, China
| | - Shu-Qin Gao
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
14
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
15
|
Yang Y, Guo Z, Ye J, Gao CY, Liu J, Duan L. Sulfonate substituted rhodamine hydrophilic fluorescent probes: Application to specific detection of Fe 3+ and imaging in living fish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119238. [PMID: 33307348 DOI: 10.1016/j.saa.2020.119238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/01/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Two Sulfonate substituted rhodamine hydrophilic fluorescent probes RbS1 and RbS2 were designed and synthesized for specific detection of Fe3+. It was found that the probe RbS2 was stronger than RbS1 in the water solubility test. Both of them displayed responses to Fe3+ with a apparent fluorescence enhancement at 585 nm, accompanied with a distinct fluorescence change to pink. Upon addition of Fe3+ ions (0-16 μM), the emission intensity of RbS1 and RbS2 increased to 40 and 70 fold, which exhibited a good linear relationship with the concentration of Fe3+. The detection limits of RbS1 and RbS2 for sensing Fe3+ were 0.64 μM and 0.56 μM, respectively. The binding ratios of the RbS1 and RbS2 to Fe3+ were 1:1 and the recycling ability for Fe3+ was reasonable. RbS1 and RbS2 have been successfully applied to the determination of Fe3+ in real water samples with satisfactory recovery and accuracy. In further living fish imaging test, the probe RbS2 was distributed into abdomen, which exhibited better fluorescence imaging ability than that of RbS1.
Collapse
Affiliation(s)
- Yang Yang
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China.
| | - Zhenli Guo
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China
| | - Jinting Ye
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China
| | - Chao-Ying Gao
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China
| | - Jinglin Liu
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China.
| | - Limei Duan
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China
| |
Collapse
|
16
|
Hirota S, Nagao S. New Aspects of Cytochromec: 3D Domain Swapping, Membrane Interaction, Peroxidase Activity, and Met80 Sulfoxide Modification. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
17
|
Sun SC, Huang HW, Lo YT, Chuang MC, Hsu YHH. Unraveling cardiolipin-induced conformational change of cytochrome c through H/D exchange mass spectrometry and quartz crystal microbalance. Sci Rep 2021; 11:1090. [PMID: 33441668 PMCID: PMC7806790 DOI: 10.1038/s41598-020-79905-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/04/2020] [Indexed: 11/21/2022] Open
Abstract
Cardiolipin (CL), a crucial component in inner mitochondrial membranes, interacts with cytochrome c (cyt c) to form a peroxidase complex for the catalysis of CL oxidation. Such interaction is pivotal to the mitochondrial regulation of apoptosis and is affected by the redox state of cyt c. In the present study, the redox-dependent interaction of cyt c with CL was investigated through amide hydrogen/deuterium exchange coupled with mass spectrometry (HDXMS) and quartz crystal microbalance with dissipation monitoring (QCM-D). Ferrous cyt c exhibited a more compact conformation compared with its ferric form, which was supported by the lower number of deuterons accumulated and the greater amplitude reduction on dissipation. Upon association with CL, ferrous cyt c resulted in a moderate increase in deuteration, whereas the ferric form caused a drastic increase of deuteration, which indicated that CL-bound ferric cyt c formed an extended conformation. These results were consistent with those of the frequency (f) − dissipation (D) experiments, which revealed that ferric cyt c yielded greater values of |ΔD/Δf| within the first minute. Further fragmentation analysis based on HDXMS indicated that the effect of CL binding was considerably different on ferric and ferrous cyt c in the C-helix and the Loop 9–24. In ferric cyt c, CL binding affected Met80 and destabilized His18 interaction with heme, which was not observed with ferrous cyt c. An interaction model was proposed to explain the aforementioned results.
Collapse
Affiliation(s)
- Sin-Cih Sun
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Hung-Wei Huang
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Yi-Ting Lo
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Min-Chieh Chuang
- Department of Chemistry, Tunghai University, Taichung, Taiwan. .,Department of Environmental Science and Engineering, Taichung, Taiwan.
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, Taichung, Taiwan. .,Biological Science Center, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
18
|
Roy S, Das S, Ray A, Parui PP. An inquisitive fluorescence method for the real-time detection of trace moisture in polar aprotic solvents with the application of water rancidity in foodstuffs. NEW J CHEM 2021. [DOI: 10.1039/d0nj06046a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple fluorometric approach to quantify atmospheric moisture incorporation in polar aprotic solvents with application for moisture sensitive oil-based foods is reported.
Collapse
Affiliation(s)
- Snigdha Roy
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Sanju Das
- Department of Chemistry
- Maulana Azad College
- Kolkata 700013
- India
| | - Ambarish Ray
- Department of Chemistry
- Barasat Govt. College
- Kolkata 700124
- India
| | | |
Collapse
|
19
|
Lou D, Liu XC, Wang XJ, Gao SQ, Wen GB, Lin YW. The importance of Asn52 in the structure-function relationship of human cytochrome c. RSC Adv 2020; 10:44768-44772. [PMID: 35516242 PMCID: PMC9058552 DOI: 10.1039/d0ra09961a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 01/30/2023] Open
Abstract
The function of the highly conserved residue Asn52 in human cytochrome c (H-Cyt c) is not fully understood. Herein, we show that the naturally occurring variant N52S H-Cyt c has a perturbed secondary structure, with a small fraction of high-spin species. Remarkably, it exhibits an enhanced peroxidase activity by 3-8-fold at neutral pH, as well as self-oxidation in reaction with H2O2. This study suggests that the H-bond network mediated by Asn52 is essential to suppress the apoptotic activity of H-Cyt c under physiological conditions.
Collapse
Affiliation(s)
- Dan Lou
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Xi-Chun Liu
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China .,Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| |
Collapse
|
20
|
Mohanan G, Nair KS, Nampoothiri KM, Bajaj H. Engineering bio-mimicking functional vesicles with multiple compartments for quantifying molecular transport. Chem Sci 2020; 11:4669-4679. [PMID: 34122921 PMCID: PMC8159255 DOI: 10.1039/d0sc00084a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Controlled design of giant unilamellar vesicles under defined conditions has vast applications in the field of membrane and synthetic biology. Here, we bio-engineer bacterial-membrane mimicking models of controlled size under defined salt conditions over a range of pH. A complex bacterial lipid extract is used for construction of physiologically relevant Gram-negative membrane mimicking vesicles whereas a ternary mixture of charged lipids (DOPG, cardiolipin and lysyl-PG) is used for building Gram-positive bacterial-membrane vesicles. Furthermore, we construct stable multi-compartment biomimicking vesicles using the gel-assisted swelling method. Importantly, we validate the bio-application of the bacterial vesicle models by quantifying diffusion of chemically synthetic amphoteric antibiotics. The transport rate is pH-responsive and depends on the lipid composition, based on which a permeation model is proposed. The permeability properties of antimicrobial peptides reveal pH dependent pore-forming activity in the model vesicles. Finally, we demonstrate the functionality of the vesicles by quantifying the uptake of membrane-impermeable molecules facilitated by embedded pore-forming proteins. We suggest that the bacterial vesicle models developed here can be used to understand fundamental biological processes like the peptide assembly mechanism or bacterial cell division and will have a multitude of applications in the bottom-up assembly of a protocell. Giant vesicle functional models mimicking a bacterial membrane under physiological conditions are constructed.![]()
Collapse
Affiliation(s)
- Gayathri Mohanan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| | - Karthika S Nair
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| |
Collapse
|
21
|
Sarkar Y, Roy S, Majumder R, Das S, Bhalani DV, Ray A, Jewrajka SK, Parui PP. Protonation-induced pH increase at the triblock copolymer micelle interface for transient membrane permeability at neutral pH. SOFT MATTER 2020; 16:798-809. [PMID: 31834342 DOI: 10.1039/c9sm01002e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Achieving controlled membrane permeability using pH-responsive block copolymers is crucial for selective intercellular uptake. We have shown that the pH at the triblock-copolymer micelle interface as compared to its bulk pH can help regulate membrane permeability. The pH-dependent acid/base equilibriums of two different interface-interacting pH probes were determined in order to measure the interfacial pH for a pH-responsive triblock copolymer (TBP) micelle under a wide range of bulk pH (4.5-9.0). According to 1H NMR studies, both pH probes provided interfacial pH at a similar interfacial depth. We revealed that the protonation of the amine moiety at the micelle interface and the subsequent formation of a positive charge caused the interface to become relatively less acidic than that of the bulk as well as an increase in the bulk-to-interfacial pH deviation (ΔpH) from ∼0.9 to 1.9 with bulk pH reducing from 8.0 to 4.5. From the ΔpH vs. interface and bulk pH plots, the apparent and intrinsic protonations or positive charge formation pKa values for the micelle were estimated to be ∼7.3 and 6.0, respectively. When the TBP micelle interacted with an anionic large unilamellar vesicle (LUV) of a binary lipid (neutral and anionic) system at the bulk pH of 7.0, fluorescence leakage studies revealed that the pH increase at the micelle interface from that of the LUV interface (pH ∼ 5.5) made the micelle interface partially protonated/cationic, thereby exhibiting transient membrane permeability. Although the increasing interface protonation causes the interface to become relatively less acidic than the bulk at any bulk pH below 6.5, the pH increase at the micelle interface may not be sufficiently large to maintain the threshold for the amine-protonated condition for effecting transient leakage and therefore, a continuous leakage was observed due to the slow disruption of the lipid bilayer.
Collapse
Affiliation(s)
- Yeasmin Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Majumder R, Roy S, Okamoto K, Nagao S, Matsuo T, Parui PP. Porphyrin-Based Probe for Simultaneous Detection of Interface Acidity and Polarity during Lipid-Phase Transition of Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:426-434. [PMID: 31820997 DOI: 10.1021/acs.langmuir.9b02781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biochemical activities at a membrane interface are affected by local pH/polarity related to membrane lipid properties including lipid dynamics. pH and polarity at the interface are two highly interdependent parameters, depending on various locations from the water-exposed outer surface to the less polar inner surface. The optical response of common pH or polarity probes is affected by both the local pH and polarity; therefore, estimation of these values using two separate probes localized at different interface depths can be erroneous. To estimate interface pH and polarity at an identical interface depth, we synthesized a glucose-pendant porphyrin (GPP) molecule for simultaneous pH and polarity detection by a single optical probe. pH-induced protonation equilibrium and polarity-dependent π-π stacking aggregation for GPP are exploited to measure pH and polarity changes at the 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) membrane interface during DMPG phase transition. An NMR study confirmed that GPP is located at the interface Stern layer of DMPG large unilamellar vesicle (LUV). Using UV-vis absorption studies with an adapted analysis protocol, we estimated interface pH, or its deviation from the bulk phase value (ΔpH), and the interface polarity simultaneously using the same spectra for sodium dodecyl sulfate micelle and DMPG LUV. During temperature-dependent gel to liquid-crystalline phase transition of DMPG, there was ∼0.5 unit increase in ΔpH from approximately -0.6 to -1.1, with a small increase in the interface dielectric constant from ∼60 to 63. A series of spectroscopic data indicate the utility of GPP for evaluation of local pH/polarity change during lipid phase transition of vesicles.
Collapse
Affiliation(s)
- Rini Majumder
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India
| | - Snigdha Roy
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India
| | - Kentaro Okamoto
- Division of Materials Science, Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , 8916-5 Takayama-cho , Ikoma , Nara 630-0192 , Japan
| | - Satoshi Nagao
- Division of Materials Science, Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , 8916-5 Takayama-cho , Ikoma , Nara 630-0192 , Japan
| | - Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology , Nara Institute of Science and Technology (NAIST) , 8916-5 Takayama-cho , Ikoma , Nara 630-0192 , Japan
| | | |
Collapse
|