1
|
Zhang S, Hu Y, Li M, Xie Y. Reductive Amination of Aldehyde and Ketone with Ammonia and H 2 by an In Situ-Generated Cobalt Catalyst under Mild Conditions. Org Lett 2024; 26:7122-7127. [PMID: 39166977 DOI: 10.1021/acs.orglett.4c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Herein, we present the simplest approach for the synthesis of primary amines via reductive amination using H2 as a reductant and aqueous ammonia as a nitrogen source, catalyzed by amorphous Co particles. The highly active Co particles were prepared in situ by simply mixing commercially available CoCl2 and NaBH4/NaHBEt3 without any ligand or support. This reaction system features mild conditions (80 °C, 1-10 bar), high selectivity (99%), a wide substrate scope, simple operation, and easy separation of the catalyst. The successful large-scale application of this reaction in the production of primary amines suggests its potential industrial interest.
Collapse
Affiliation(s)
- Shiyun Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yue Hu
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Meichao Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yinjun Xie
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
2
|
Zhang M, Qi Z, Xie M, Qu Y. Employing Ammonia for the Synthesis of Primary Amines: Recent Achievements over Heterogeneous Catalysts. CHEMSUSCHEM 2024:e202401550. [PMID: 39189946 DOI: 10.1002/cssc.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 08/28/2024]
Abstract
Primary amines represent highly privileged chemicals for synthesis of polymers, pharmaceuticals, agrochemicals, coatings, etc. Consequently, the development of efficient and green methodologies for the production of primary amines are of great importance in chemical industry. Owing to the advantages of low cost and ease in availability, ammonia is considered as a feasible nitrogen source for synthesis of N-containing compounds. Thus, the efficient transformation of ammonia into primary amines has received much attention. In this review, the commonly applied synthetic routes to produce primary amines from ammonia were summarized, including the reductive amination of carbonyl compounds, the hydrogen transfer amination of alcohols, the hydroamination of olefins and the arylation with ammonia, in which the catalytic performance of the recent heterogeneous catalysts is discussed. Additionally, various strategies to modulate the surface properties of catalysts are outlined in conjunction with the analysis of reaction mechanism. Particularly, the amination of the biomass-derived substrates is highlighted, which could provide competitive advantages in chemical industry and stimulate the development of sustainable catalysis in the future. Ultimately, perspectives into the challenges and opportunities for synthesis of primary amines with ammonia as N-resource are discussed.
Collapse
Affiliation(s)
- Mingkai Zhang
- School of Science, Xi'an University of Technology, Xi'an, 710048, China
| | - Zening Qi
- Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an, 710072, China
| | - Min Xie
- Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an, 710072, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
3
|
Paul R, Das R, Das N, Chakraborty S, Pao CW, Thang Trinh Q, Kalhara Gunasooriya GTK, Mondal J, Peter SC. Tweaking Photo CO 2 Reduction by Altering Lewis Acidic Sites in Metalated-Porous Organic Polymer for Adjustable H 2 /CO Ratio in Syngas Production. Angew Chem Int Ed Engl 2023; 62:e202311304. [PMID: 37872849 DOI: 10.1002/anie.202311304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Herein, we have specifically designed two metalated porous organic polymers (Zn-POP and Co-POP) for syngas (CO+H2 ) production from gaseous CO2 . The variable H2 /CO ratio of syngas with the highest efficiency was produced in water medium (without an organic hole scavenger and photosensitizer) by utilizing the basic principle of Lewis acid/base chemistry. Also, we observed the formation of entirely different major products during photocatalytic CO2 reduction and water splitting with the help of the two catalysts, where CO (145.65 μmol g-1 h-1 ) and H2 (434.7 μmol g-1 h-1 ) production were preferentially obtained over Co-POP & Zn-POP, respectively. The higher electron density/better Lewis basic nature of Co-POP was investigated further using XPS, XANES, and NH3 -TPD studies, which considerably improve CO2 activation capacity. Moreover, the structure-activity relationship was confirmed via in situ DRIFTS and DFT studies, which demonstrated the formation of COOH* intermediate along with the thermodynamic feasibility of CO2 reduction over Co-POP while water splitting occurred preferentially over Zn-POP.
Collapse
Affiliation(s)
- Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Risov Das
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - Nitumani Das
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subhajit Chakraborty
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Centre, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Quang Thang Trinh
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, 4111, Australia
| | | | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sebastian C Peter
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre forAdvanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
4
|
Zhang M, Zhang S, Ma Y. In-situ reconstruction of CoBO x enables formation of Co for synthesis of benzylamine through reductive amination. Front Chem 2023; 10:1104844. [PMID: 36688037 PMCID: PMC9845621 DOI: 10.3389/fchem.2022.1104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Cobalt (Co) as a substitute of noble-metal catalysts shows high catalytic capability for production of the widely used primary amines through the reductive amination. However, the synthesis of Co catalysts usually involves the introduction of organic compounds and the high-temperature pyrolysis, which is complicated and difficult for large-scale applications. Herein, we demonstrated a facile and efficient strategy for the preparation of Co catalysts through the in situ reconstruction of cobalt borate (CoBOx) during the reductive amination, delivering a high catalytic activity for production of benzylamine from benzaldehyde and ammonia. Initially, CoBOx was transformed into Co(OH)2 through the interaction with ammonia and subsequently reduced to Co nanoparticles by H2 under the reaction environments. The in situ generated Co catalysts exhibited a satisfactory activity and selectivity to the target product, which overmatched the commonly used Co/C, Pt or Raney Ni catalysts. We anticipate that such an in situ reconstruction of CoBOx by reactants during the reaction could provide a new approach for the design and optimization of catalysts to produce primary amines.
Collapse
Affiliation(s)
- Mingkai Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, China,Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Sai Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, China,*Correspondence: Sai Zhang, ; Yuanyuan Ma,
| | - Yuanyuan Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, China,*Correspondence: Sai Zhang, ; Yuanyuan Ma,
| |
Collapse
|
5
|
Hu Q, Jiang S, Wu Y, Xu H, Li G, Zhou Y, Wang J. Ambient-Temperature Reductive Amination of 5-Hydroxymethylfurfural Over Al 2 O 3 -Supported Carbon-Doped Nickel Catalyst. CHEMSUSCHEM 2022; 15:e202200192. [PMID: 35233939 DOI: 10.1002/cssc.202200192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Indexed: 06/14/2023]
Abstract
An efficient catalytic system for the conversion of 5-hydroxymethylfurfural (HMF) into N-containing compounds over low-cost non-noble-metal catalysts is preferable, but it is challenging to reach high conversion and selectivity under mild conditions. Herein, an Al2 O3 -supported carbon-doped Ni catalyst was obtained via the direct pyrolysis-reduction of a mixture of Ni3 (BTC)2 ⋅ 12H2 O and Al2 O3 , generating stable Ni0 species due to the presence of carbon residue. A high yield of 96 % was observed in the reductive amination of HMF into 5-hydroxymethyl furfurylamine (HMFA) with ammonia and hydrogen at ambient temperature. The catalyst was recyclable and could be applied to the ambient-temperature synthesis of HMF-based secondary/tertiary amines and other biomass-derived amines from the carbonyl compounds. The significant performance was attributable to the synergistic effect of Ni0 species and acidic property of the support Al2 O3 , which promoted the selective ammonolysis of the imine intermediate while inhibiting the potential side reaction of over-hydrogenation.
Collapse
Affiliation(s)
- Qizhi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Shi Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yue Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hongzhong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Guoqing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
6
|
Bhunia MK, Chandra D, Abe H, Niwa Y, Hara M. Synergistic Effects of Earth-Abundant Metal-Metal Oxide Enable Reductive Amination of Carbonyls at 50 °C. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4144-4154. [PMID: 35014256 DOI: 10.1021/acsami.1c21157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reductive amination of carbonyls to primary amines is of importance to the synthesis of fine chemicals; however, this reaction with heterogeneous catalysts containing earth-abundant metals under mild conditions remains scarce. Here, we show that the nickel catalyst with mixed oxidation states enables such synthesis of primary amines under low temperature (50 °C) and H2 pressure (0.9 MPa). The catalyst shows activity in both water and toluene. The high activity likely results from the formation of small (ca. 4.6 nm) partially oxidized nickel nanoparticles (NPs) homogeneously anchored onto the silica and their synergistic effect. Detailed characterizations indicate stabilization of NPs through strong metal support interaction via electron donation from the metal to support. We identify that the support endowed with an amphoteric nature shows better performance. This strategy of making small metal-metal oxide NPs will open an avenue toward the rational development of efficient catalysts that would allow for other organic transformations under mild reaction conditions.
Collapse
Affiliation(s)
- Manas K Bhunia
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Debraj Chandra
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Hitoshi Abe
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Graduate School of Science and Technology, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Yasuhiro Niwa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
- Advanced Low Carbon Technology Research and Development Program (ALCA), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
7
|
Zhu H, David Wang W, Li F, Sun X, Li B, Song Q, Kou J, Ma K, Ren X, Dong Z. Facile preparation of ultrafine Pd nanoparticles anchored on covalent triazine frameworks catalysts for efficient N-alkylation. J Colloid Interface Sci 2022; 606:1340-1351. [PMID: 34500150 DOI: 10.1016/j.jcis.2021.08.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 01/25/2023]
Abstract
The fabrication of stable and efficient catalysts for green and economic catalytic transformation is significant. Here, highly stable covalent triazine frameworks (CTF-1) were used as the supporting material for anchoring ultrafine Pd nanoparticles (NPs) via a facile impregnation process and a one-pot calcination-reduction strategy. The widespread dispersion of ultrafine Pd NPs was a result of the abundant high nitrogen-content triazine groups of CTF-1 that endowed the catalyst Pd@CTF-1 with high catalytic activity. The catalytic performance of Pd@CTF-1 was demonstrated by the one-pot N-alkylation of benzaldehyde with aniline (or nitrobenzene) under mild reaction conditions, and Pd@CTF-1 exhibited a wide range of general applicability for N-alkylation reactions. The reaction mechanism for the N-alkylation reaction was also studied in detail. In addition, the Pd@CTF-1 catalyst exhibited high thermal and chemical stability, maintaining good catalytic efficiency after multiple reaction cycles. This study provides new insights for the fabrication of organic supporting materials with highly dispersed active catalytic sites that can lead to excellent catalytic performance for efficient, economical, and green reactions.
Collapse
Affiliation(s)
- Hanghang Zhu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| | - Feng Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Xun Sun
- Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Boyang Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Qiang Song
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jinfang Kou
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Kexin Ma
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Xuanguang Ren
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
8
|
Li Z, Zhang H, Tan T, Lei M. The mechanism of direct reductive amination of aldehyde and amine with formic acid catalyzed by boron trifluoride complexes: insights from a DFT study. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00967f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A volcano diagram of BF3 catalytic species and their activities was proposed for the DRA of aldehyde and amine with formic acid.
Collapse
Affiliation(s)
- Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Institute of Computational Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huili Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Institute of Computational Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Institute of Computational Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Saranya PV, Neetha M, Philip RM, Anilkumar G. Recent advances and prospects in the cobalt-catalyzed amination reactions. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Unglaube F, Schlapp J, Quade A, Schäfer J, Mejía E. Highly active heterogeneous hydrogenation catalysts prepared from cobalt complexes and rice husk waste. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00005a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly active heterogeneous catalysts for the hydrogenation of nitro compounds were made by pyrolysis of rice husk waste impregnated with cobalt complexes followed by base-treatment. The catalysts show high selectivity and broad substrate scope.
Collapse
Affiliation(s)
- Felix Unglaube
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Janina Schlapp
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Antje Quade
- Leibniz-Institut für Plasmaforschung und Technologie e.V., Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Jan Schäfer
- Leibniz-Institut für Plasmaforschung und Technologie e.V., Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Esteban Mejía
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
11
|
Dai Z, Pan YM, Wang SG, Zhang X, Yin Q. Direct reductive amination of ketones with ammonium salt catalysed by Cp*Ir(III) complexes bearing an amidato ligand. Org Biomol Chem 2021; 19:8934-8939. [PMID: 34636833 DOI: 10.1039/d1ob01710a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of half-sandwich Ir(III) complexes 1-6 bearing an amidato bidentate ligand were conveniently synthesized and applied to the catalytic Leuckart-Wallach reaction to produce racemic α-chiral primary amines. With 0.1 mol% of complex 1, a broad range of ketones, including aryl ketones, dialkyl ketones, cyclic ketones, α-keto acids, α-keto esters and diketones, could be transformed to their corresponding primary amines with moderate to excellent yields (40%-95%). Asymmetric transformation was also attempted with chiral Ir complexes 3-6, and 16% ee of the desired primary amine was obtained. Despite the unsatisfactory enantio-control achieved so far, the current exploration might stimulate more efforts towards the discovery of better chiral catalysts for this challenging but important transformation.
Collapse
Affiliation(s)
- Zengjin Dai
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Ying-Min Pan
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China. .,Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
12
|
Dilauro G, Messa F, Bona F, Perrone S, Salomone A. Cobalt-catalyzed cross-coupling reactions of aryl- and alkylaluminum derivatives with (hetero)aryl and alkyl bromides. Chem Commun (Camb) 2021; 57:10564-10567. [PMID: 34557887 DOI: 10.1039/d1cc04002b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A simple cobalt complex, such as Co(phen)Cl2, turned out to be a highly efficient and cheap precatalyst for a host of cross-coupling reactions involving aromatic and aliphatic organoaluminum reagents with aryl, heteroaryl and alkyl bromides. New C(sp2)-C(sp2) and C(sp2)-C(sp3) bonds were formed in good to excellent yields and with high chemoselectivity, under mild reaction conditions.
Collapse
Affiliation(s)
- Giuseppe Dilauro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy
| | - Francesco Messa
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy
| | - Fabio Bona
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy
| | - Serena Perrone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy
| | - Antonio Salomone
- Dipartimento di Chimica, Consorzio C.I.N.M.P.I.S., Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
13
|
Wang J, Tran DT, Chang K, Prabhakaran S, Kim DH, Kim NH, Lee JH. Bifunctional Catalyst Derived from Sulfur-Doped VMoO x Nanolayer Shelled Co Nanosheets for Efficient Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42944-42956. [PMID: 34473465 DOI: 10.1021/acsami.1c13488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel sulfur-doped vanadium-molybdenum oxide nanolayer shelling over two-dimensional cobalt nanosheets (2D Co@S-VMoOx NSs) was synthesized via a facile approach. The formation of such a unique 2D core@shell structure together with unusual sulfur doping effect increased the electrochemically active surface area and provided excellent electric conductivity, thereby boosting the activities for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). As a result, only low overpotentials of 73 and 274 mV were required to achieve a current response of 10 mA cm-2 toward HER and OER, respectively. Using the 2D Co@S-VMoOx NSs on nickel foam as both cathode and anode electrode, the fabricated electrolyzer showed superior performance with a small cell voltage of 1.55 V at 10 mA cm-2 and excellent stability. These results suggested that the 2D Co@S-VMoOx NSs material might be a potential bifunctional catalyst for green hydrogen production via electrochemical water splitting.
Collapse
Affiliation(s)
- Jingqiang Wang
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Kai Chang
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Sampath Prabhakaran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Do Hwan Kim
- Division of Science Education, Graduate School of Department of Energy Storage/Conversion Engineering, Jeonbuk National University Jeonju, Jeonbuk 54896 Republic of Korea
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
- Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
14
|
Subaramanian M, Ramar PM, Sivakumar G, Kadam RG, Petr M, Zboril R, Gawande MB, Balaraman E. Convenient and Reusable Manganese‐Based Nanocatalyst for Amination of Alcohols. ChemCatChem 2021. [DOI: 10.1002/cctc.202100635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Murugan Subaramanian
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati 517507 Tirupati India
| | - Palmurukan M. Ramar
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati 517507 Tirupati India
| | - Ganesan Sivakumar
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati 517507 Tirupati India
| | - Ravishankar G. Kadam
- Regional Centre of Advanced Technologies and Materials Palacky University 78371 Olomouc Czech Republic
| | - Martin Petr
- Regional Centre of Advanced Technologies and Materials Palacky University 78371 Olomouc Czech Republic
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials Palacky University 78371 Olomouc Czech Republic
| | - Manoj B. Gawande
- Regional Centre of Advanced Technologies and Materials Palacky University 78371 Olomouc Czech Republic
| | - Ekambaram Balaraman
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati 517507 Tirupati India
| |
Collapse
|
15
|
Liu J, Song Y, Ma L. Earth-abundant Metal-catalyzed Reductive Amination: Recent Advances and Prospect for Future Catalysis. Chem Asian J 2021; 16:2371-2391. [PMID: 34235866 DOI: 10.1002/asia.202100473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/27/2021] [Indexed: 12/29/2022]
Abstract
Nitrogen-containing compounds, as an important class of chemicals, have been used widely in pharmaceuticals, materials synthesis. Transition metal-catalyzed reductive amination of an aldehyde or a ketone with ammonia or an amine has been proved to be an efficient and practical method for the preparation of nitrogen-containing compounds in academia and industry for a century. Given the above, several effective methods using transition metals have been developed in recent years. Noble transition metals like Pd, Pt, and Au-based catalysts have been predominately used in reductive amination. Because of their high prices, strict official regulations of residues in pharmaceuticals, and deleterious effects on the biological system, their industrial applications are severely hampered. With the increasing sustainable and environmental problems, the Earth-abundant transition metals including Ti, Fe, Co, Ni, and Zr have also been investigated for the reductive amination reaction and showed great potential to the advancement of sustainable and cost-effective reductive amination processes. This critical review will mainly summarize the work using Earth-abundant metals. The effects of different transition metals used in catalytic reduction amination were discussed and compared, and some suggestions were given. The last section highlights the catalytic activities of bi- and tri-metallic catalysts. Indeed, this latter family is very promising and simultaneously benefits from increased stability, and selectivity, compared to monometallic NPs, due to synergistic substrate activation. Few comprehensive reviews focusing on Earth-abundant transition metals catalyst has been published since 1948, although several authors reported some summaries dealing with one or the other part of this aspect. It is hoped that this critical review will inspire researchers to develop new efficient and selective earth-abundant metal catalysts for highly, environmentally sustainable reductive amination methods, as well as improve the pharmaceutical industry and related chemical synthesis company traditional method with the utilization of the green method widely.
Collapse
Affiliation(s)
- Jianguo Liu
- Key Laboratory of Renewable Energy Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China.,Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Yanpei Song
- Key Laboratory of Renewable Energy Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Longlong Ma
- Key Laboratory of Renewable Energy Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| |
Collapse
|
16
|
Yang Y, Cheng L, Wang M, Yin L, Feng Y, Wang C, Li Y. Difunctionalization of Alkynones by Base-Mediated Reaction with α,α-Dithioketones. Org Lett 2021; 23:5339-5343. [PMID: 34228461 DOI: 10.1021/acs.orglett.1c01640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel 1,2-difunctionalization of alkynones via an umpolung strategy for the synthesis of tetrasubstituted olefins has been developed. This procedure is realized by a formal C-C σ-bond cleavage reaction of cyclic α,α-dithioketones and subsequent deprotection. Notable features of this approach include excellent yields, mild reaction conditions, a broad substrate scope, and operational simplicity.
Collapse
Affiliation(s)
- Yajie Yang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lu Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mengdan Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Liqiang Yin
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ye Feng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chengyu Wang
- School of Chemistry and Chemical Engineering, Linyi University, Shuangling Road, Linyi, Shandong 276000, China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.,Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
17
|
Elfinger M, Schönauer T, Thomä SLJ, Stäglich R, Drechsler M, Zobel M, Senker J, Kempe R. Co-Catalyzed Synthesis of Primary Amines via Reductive Amination employing Hydrogen under very mild Conditions. CHEMSUSCHEM 2021; 14:2360-2366. [PMID: 33826246 PMCID: PMC8251741 DOI: 10.1002/cssc.202100553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Nanostructured and reusable 3d-metal catalysts that operate with high activity and selectivity in important chemical reactions are highly desirable. Here, a cobalt catalyst was developed for the synthesis of primary amines via reductive amination employing hydrogen as the reducing agent and easy-to-handle ammonia, dissolved in water, as the nitrogen source. The catalyst operates under very mild conditions (1.5 mol% catalyst loading, 50 °C and 10 bar H2 pressure) and outperforms commercially available noble metal catalysts (Pd, Pt, Ru, Rh, Ir). A broad scope and a very good functional group tolerance were observed. The key for the high activity seemed to be the used support: an N-doped amorphous carbon material with small and turbostratically disordered graphitic domains, which is microporous with a bimodal size distribution and with basic NH functionalities in the pores.
Collapse
Affiliation(s)
- Matthias Elfinger
- Inorganic Chemistry II – Catalyst designSustainable Chemistry CentreUniversity of Bayreuth95440BayreuthGermany
| | - Timon Schönauer
- Inorganic Chemistry II – Catalyst designSustainable Chemistry CentreUniversity of Bayreuth95440BayreuthGermany
| | - Sabrina L. J. Thomä
- Solid State Chemistry – Mesostructured MaterialsUniversity of Bayreuth95440BayreuthGermany
| | - Robert Stäglich
- Inorganic Chemistry III and North Bavarian NMR centerUniversity of Bayreuth95440BayreuthGermany
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI)Keylab “Electron and Optical Microscopy”University of Bayreuth95440BayreuthGermany
| | - Mirijam Zobel
- Solid State Chemistry – Mesostructured MaterialsUniversity of Bayreuth95440BayreuthGermany
| | - Jürgen Senker
- Inorganic Chemistry III and North Bavarian NMR centerUniversity of Bayreuth95440BayreuthGermany
| | - Rhett Kempe
- Inorganic Chemistry II – Catalyst designSustainable Chemistry CentreUniversity of Bayreuth95440BayreuthGermany
| |
Collapse
|
18
|
Key Parameters for the Synthesis of Active and Selective Nanostructured 3d Metal Catalysts Starting from Coordination Compounds – Case Study: Nickel Mediated Reductive Amination. ChemCatChem 2021. [DOI: 10.1002/cctc.202100562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Shah S, Shaikh H, Farrukh S, Malik MI, Mughal ZUN, Bhagat S. Sonochemical synthesis of Co 3O 4 nanoparticles deposited on GO sheets and their potential application as a nanofiller in MMMs for O 2/N 2 separation. RSC Adv 2021; 11:19647-19655. [PMID: 35479244 PMCID: PMC9033576 DOI: 10.1039/d1ra02264d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
In this study we report an environmentally friendly, facile and straightforward sonochemical synthetic strategy for a Co3O4/GO nanocomposite using N,N'-bis(salicylidene)ethylenediaminocobalt(ii) as a precursor and graphene oxide sheets as an immobilization support for Co3O4 nanoparticles. The synthesis was facilitated by physical and chemical effects of cavitation bubbles. The synthesized nanocomposite was thoroughly characterized for its composition and morphology using Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS), Scanning electron microscopy (SEM), UV-visible, Raman and X-ray diffraction spectroscopy (XRD), etc. The results show Co3O4 nanoparticles of 10 nm (SD 3 nm) were prepared on well exfoliated sheets of GO. The applicability of the synthesized Co3O4/GO nanocomposite was optimized as a nanofiller for mixed matrix membranes (MMMs) comprised of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) and polyvinyl chloride. The affinity of the prepared MMMs was evaluated for the separation of O2/N2 gases by varying the concentration of nanofiller, i.e. 0.03%, 0.04%, 0.05% and 0.075% (w/v). The results display high separation performance for O2/N2 gases with excellent permeance (N2 167 GPU and O2 432 GPU at 1 bar) and O2/N2 selectivity of 2.58, when the MMMs were loaded with 0.05% (w/v) of Co3O4/GO nanocomposite.
Collapse
Affiliation(s)
- Shahnila Shah
- National Center of Excellence in Analytical Chemistry, University of Sindh Jamshoro-76080 Pakistan
| | - Huma Shaikh
- National Center of Excellence in Analytical Chemistry, University of Sindh Jamshoro-76080 Pakistan
| | - Sarah Farrukh
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology Islamabad Pakistan
| | - Muhammad Imran Malik
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi Karachi-75270 Sindh Pakistan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi Karachi 75270 Pakistan
| | - Zaib Un Nisa Mughal
- National Center of Excellence in Analytical Chemistry, University of Sindh Jamshoro-76080 Pakistan
| | - Shabana Bhagat
- National Center of Excellence in Analytical Chemistry, University of Sindh Jamshoro-76080 Pakistan
| |
Collapse
|
20
|
Klarner M, Bieger S, Drechsler M, Kempe R. Chemoselective Hydrogenation of Olefins Using a Nanostructured Nickel Catalyst. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mara Klarner
- Inorganic Chemistry II University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Sandra Bieger
- Inorganic Chemistry II University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) KeyLab “Electron and Optical Microscopy” University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Rhett Kempe
- Inorganic Chemistry II University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| |
Collapse
|
21
|
Polishchuk I, Sklyaruk J, Lebedev Y, Rueping M. Air Stable Iridium Catalysts for Direct Reductive Amination of Ketones. Chemistry 2021; 27:5919-5922. [PMID: 33508154 DOI: 10.1002/chem.202005508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 11/08/2022]
Abstract
Half-sandwich iridium complexes bearing bidentate urea-phosphorus ligands were found to catalyze the direct reductive amination of aromatic and aliphatic ketones under mild conditions at 0.5 mol % loading with high selectivity towards primary amines. One of the complexes was found to be active in both the Leuckart-Wallach (NH4 CO2 H) type reaction as well as in the hydrogenative (H2 /NH4 AcO) reductive amination. The protocol with ammonium formate does not require an inert atmosphere, dry solvents, as well as additives and in contrast to previous reports takes place in hexafluoroisopropanol (HFIP) instead of methanol. Applying NH4 CO2 D or D2 resulted in a high degree of deuterium incorporation into the primary amine α-position.
Collapse
Affiliation(s)
- Iuliia Polishchuk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen, Germany
| | - Jan Sklyaruk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen, Germany
| | - Yury Lebedev
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen, Germany.,KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
22
|
Schönauer T, Thomä SLJ, Kaiser L, Zobel M, Kempe R. General Synthesis of Secondary Alkylamines by Reductive Alkylation of Nitriles by Aldehydes and Ketones. Chemistry 2021; 27:1609-1614. [PMID: 33236790 PMCID: PMC7898800 DOI: 10.1002/chem.202004755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Indexed: 12/14/2022]
Abstract
The development of C-N bond formation reactions is highly desirable due to their importance in biology and chemistry. Recent progress in 3d metal catalysis is indicative of unique selectivity patterns that may permit solving challenges of chemical synthesis. We report here on a catalytic C-N bond formation reaction-the reductive alkylation of nitriles. Aldehydes or ketones and nitriles, all abundantly available and low-cost starting materials, undergo a reductive coupling to form secondary alkylamines and inexpensive hydrogen is used as the reducing agent. The reaction has a very broad scope and many functional groups, including hydrogenation-sensitive examples, are tolerated. We developed a novel cobalt catalyst, which is nanostructured, reusable, and easy to handle. The key seems the earth-abundant metal in combination with a porous support material, N-doped SiC, synthesized from acrylonitrile and a commercially available polycarbosilane.
Collapse
Affiliation(s)
- Timon Schönauer
- Inorganic Chemistry II—Catalyst DesignUniversity of Bayreuth95440BayreuthGermany
| | - Sabrina L. J. Thomä
- Mesostructured MaterialsDepartment of ChemistryUniversity of Bayreuth95440BayreuthGermany
| | - Leah Kaiser
- Inorganic Chemistry II—Catalyst DesignUniversity of Bayreuth95440BayreuthGermany
| | - Mirijam Zobel
- Mesostructured MaterialsDepartment of ChemistryUniversity of Bayreuth95440BayreuthGermany
| | - Rhett Kempe
- Inorganic Chemistry II—Catalyst DesignUniversity of Bayreuth95440BayreuthGermany
| |
Collapse
|
23
|
Co(III)-Salen immobilized cellulose nanocrystals for efficient catalytic CO 2 fixation into cyclic carbonates under mild conditions. Carbohydr Polym 2020; 256:117558. [PMID: 33483060 DOI: 10.1016/j.carbpol.2020.117558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022]
Abstract
Searching for green, recyclable and highly efficient catalyst for the synthesis of cyclic carbonates from CO2 is of great importance because it is profitable for reducing the greenhouse effects and meets the principles of green chemistry. Herein, a series of cellulose nanocrystals, either the pristine or modified ones (TEMPO oxidized and Co(III)salen immobilized), were explored as catalysts for cycloaddition of epoxides and carbon dioxide. The impact of surface properties on the performance of the as-made catalysts was investigated. Co(III)-salen grafted cellulose nanocrystals was proven to be the most effective catalyst in this study, which could afford excellent yield up to 99 % after 24 h even under low CO2 pressures of 0.1 MPa. They can be easily recovered and reused for at least 4 times, demonstrating their excellent stability. We found that the surface functional groups such as enriched sulfate or carboxylic groups could also account for the enhanced catalytic activity. This work highlights the applications of green and sustainable nanoparticles in a cycloaddition reaction and offers a sustainable solution in industrial catalysis related to CO2 conversions.
Collapse
|
24
|
Abstract
The reductive amination, the reaction of an aldehyde or a ketone with ammonia or an amine in the presence of a reducing agent and often a catalyst, is an important amine synthesis and has been intensively investigated in academia and industry for a century. Besides aldehydes, ketones, or amines, starting materials have been used that can be converted into an aldehyde or ketone (for instance, carboxylic acids or organic carbonate or nitriles) or into an amine (for instance, a nitro compound) in the presence of the same reducing agent and catalyst. Mechanistically, the reaction starts with a condensation step during which the carbonyl compound reacts with ammonia or an amine, forming the corresponding imine followed by the reduction of the imine to the alkyl amine product. Many of these reduction steps require the presence of a catalyst to activate the reducing agent. The reductive amination is impressive with regard to the product scope since primary, secondary, and tertiary alkyl amines are accessible and hydrogen is the most attractive reducing agent, especially if large-scale product formation is an issue, since hydrogen is inexpensive and abundantly available. Alkyl amines are intensively produced and use fine and bulk chemicals. They are key functional groups in many pharmaceuticals, agro chemicals, or materials. In this review, we summarize the work published on reductive amination employing hydrogen as the reducing agent. No comprehensive review focusing on this subject has been published since 1948, albeit many interesting summaries dealing with one or the other aspect of reductive amination have appeared. Impressive progress in using catalysts based on earth-abundant metals, especially nanostructured heterogeneous catalysts, has been made during the early development of the field and in recent years.
Collapse
Affiliation(s)
- Torsten Irrgang
- Inorganic Chemistry II - Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Rhett Kempe
- Inorganic Chemistry II - Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
25
|
Murugesan K, Senthamarai T, Chandrashekhar VG, Natte K, Kamer PCJ, Beller M, Jagadeesh RV. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chem Soc Rev 2020; 49:6273-6328. [DOI: 10.1039/c9cs00286c] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Catalytic reductive aminations using molecular hydrogen represent an essential and widely used methodology for the synthesis of different kinds of amines.
Collapse
Affiliation(s)
| | | | | | - Kishore Natte
- Chemical and Material and Sciences Division
- CSIR-Indian Institute of Petroleum
- Dehradun-248005
- India
| | | | | | | |
Collapse
|