1
|
Wu J, Greenfield JL. Photoswitchable Imines Drive Dynamic Covalent Systems to Nonequilibrium Steady States. J Am Chem Soc 2024; 146:20720-20727. [PMID: 39025474 PMCID: PMC11295185 DOI: 10.1021/jacs.4c03817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Coupling a photochemical reaction to a thermal exchange process can drive the latter to a nonequilibrium steady state (NESS) under photoirradiation. Typically, systems use separate motifs for photoresponse and equilibrium-related processes. Here, we show that photoswitchable imines can fulfill both roles simultaneously, autonomously driving a dynamic covalent system into a NESS under continuous light irradiation. We demonstrate this using transimination reactions, where E-to-Z photoisomerism generates a more kinetically labile species. At the NESS, energy is stored both in the metastable Z-isomer of the imine and in the system's nonequilibrium constitution; when the light is switched off, this stored energy is released as the system reverts to its equilibrium state. The system operates autonomously under continuous light irradiation and exhibits characteristics of a light-driven information ratchet. This is enabled by the dual-role of the imine linkage as both the photochromic and dynamic covalent bond. This work highlights the ability and application of these imines to drive systems to NESSs, thus offering a novel approach in the field of systems chemistry.
Collapse
Affiliation(s)
- Jiarong Wu
- Institut
für Organische Chemie, Universität
Würzburg, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Universität
Würzburg, Würzburg 97074, Germany
| | - Jake L. Greenfield
- Institut
für Organische Chemie, Universität
Würzburg, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Universität
Würzburg, Würzburg 97074, Germany
| |
Collapse
|
2
|
Esteve F, Rieu T, Lehn JM. Constitutional adaptation to p Ka modulation by remote ester hydrolysis. Chem Sci 2024; 15:7092-7103. [PMID: 38756812 PMCID: PMC11095373 DOI: 10.1039/d4sc01288g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
The mechanisms through which environmental conditions affect the expression of interconnected species is a key step to comprehending the principles underlying complex chemical processes. In Nature, chemical modifications triggered by the environment have a major impact on the structure and function of biomolecules and regulate different reaction pathways. Yet, minimalistic artificial systems implementing related adaptation behaviours remain barely explored. The hydrolysis of amino acid methyl esters to their corresponding amino acids leads to a drastic change in pKa (ca. 7 and 9, respectively) that protonates the free amino group at physiological conditions. Dynamic covalent libraries (DCvLs) based on amino acid methyl esters and aldehydes respond to such hydrolysis and lead to constitutional adaptation. Each of the libraries studied experiences a DCvL conversion allowing for constituent selection due to the silencing of the zwitterionic amino acids towards imine formation. The selective action of different enzymes on the DCvLs results in states with simplified constitutional distributions and transient chirality. When additional components (i.e., scavengers) that are not affected by hydrolysis are introduced into the dynamic libraries, the amino acid methyl ester hydrolysis induces the up-regulation of the constituents made of these scavenging components. In these systems, the constituent distribution is resolved from a scrambled mixture of imines to a state characterized by the predominance of a single aldimine. Remarkably, although the final libraries display higher "simplexity", the different transient states present an increased complexity that allows for the emergence of organized structures [micelle formation] and distributions [up-regulation of two antagonistic constituents]. This reactive site inhibition by a remote chemical modification resembles the scenario found in some enzymes for the regulation of their activity through proximal post-translational modifications.
Collapse
Affiliation(s)
- Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Tanguy Rieu
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
3
|
Li L, Zheng R, Sun R. Understanding multicomponent low molecular weight gels from gelators to networks. J Adv Res 2024:S2090-1232(24)00126-7. [PMID: 38570015 DOI: 10.1016/j.jare.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/11/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND The construction of gels from low molecular weight gelators (LMWG) has been extensively studied in the fields of bio-nanotechnology and other fields. However, the understanding gaps still prevent the prediction of LMWG from the full design of those gel systems. Gels with multicomponent become even more complicated because of the multiple interference effects coexist in the composite gel systems. AIM OF REVIEW This review emphasizes systems view on the understanding of multicomponent low molecular weight gels (MLMWGs), and summarizes recent progress on the construction of desired networks of MLMWGs, including self-sorting and co-assembly, as well as the challenges and approaches to understanding MLMWGs, with the hope that the opportunities from natural products and peptides can speed up the understanding process and close the gaps between the design and prediction of structures. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key concepts. Firstly, understanding the complicated multicomponent gels systems requires a systems perspective on MLMWGs. Secondly, several protocols can be applied to control self-sorting and co-assembly behaviors in those multicomponent gels system, including the certain complementary structures, chirality inducing and dynamic control. Thirdly, the discussion is anchored in challenges and strategies of understanding MLMWGs, and some examples are provided for the understanding of multicomponent gels constructed from small natural products and subtle designed short peptides.
Collapse
Affiliation(s)
- Liangchun Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Renlin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Rongqin Sun
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
4
|
Matysiak BM, Thomas D, Cronin L. Reaction Kinetics using a Chemputable Framework for Data Collection and Analysis. Angew Chem Int Ed Engl 2024; 63:e202315207. [PMID: 38155102 PMCID: PMC11497221 DOI: 10.1002/anie.202315207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 12/30/2023]
Abstract
Automated chemistry platforms have been widely explored, but many focus on fixed tasks for chemical synthesis or analysis. However, a typical synthetic chemistry workflow utilizes both, such as kinetic measurements for reaction development and optimization. Due to their repetitive and time-consuming nature, kinetic measurements are often omitted, which limits the mechanistic investigation of reactions. Herein, we present a "Chemputer" platform with on-line analytics (UV/Vis, NMR) which automates routine kinetic measurements. The system's capabilities are showcased by exploring an inverse electron-demand Diels-Alder using initial rate measurements, a metal complexation using variable time normalization analysis (VTNA), and formation of a series of tosylamide derivatives using Hammett analysis. Over 60 individual experiments are presented which required minimal intervention, highlighting the significant time savings of automation. Owing to the modular design of the platform, which facilitates rapid integration of commercial analytical tools, our approach is widely accessible and adjustable to the reaction under investigation. The platform is operated using the chemical programming language, XDL, hence experimental procedures and results are stored in a precise, computer-readable format. We propose that widespread adoption of this reporting protocol in the chemical community could build a database of validated kinetic data beneficial for Machine Learning.
Collapse
Affiliation(s)
| | - Dean Thomas
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Leroy Cronin
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
5
|
Ailincai D, Andreica BI. Citryl-Imino-Chitosan Xerogels as Promising Materials for Mercury Recovery from Waste Waters. Polymers (Basel) 2023; 16:19. [PMID: 38201684 PMCID: PMC10780342 DOI: 10.3390/polym16010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The present study reported the obtention of xerogels based on chitosan and citral and their use as materials for mercury ion recovery from aqueous solutions, this being a serious problem related to the environment. The systems were prepared by the acid condensation of chitosan with citral, followed by the lyophilization of the resulting hydrogels, in order to obtain highly porous solid materials. The structural, morphological and supramolecular characterization of the systems was performed using 1H-NMR and FTIR spectroscopy, scanning electron microscopy and wide-angle X-ray diffraction. The ability of the obtained materials to be used for the recovery of mercury from aqueous solutions revealed the high potential of the xerogels to be used in this sense, the analysis of the materials post mercury absorption experiments revealing that this ability is predominantly conferred by the imine linkages which act as coordinating moieties for mercury ions.
Collapse
Affiliation(s)
- Daniela Ailincai
- Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
- The Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Bianca Iustina Andreica
- Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| |
Collapse
|
6
|
Ayme JF, Bruchmann B, Karmazin L, Kyritsakas N. Transient self-assembly of metal-organic complexes. Chem Sci 2023; 14:1244-1251. [PMID: 36756320 PMCID: PMC9891378 DOI: 10.1039/d2sc06374c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Implementing transient processes in networks of dynamic molecules holds great promise for developing new functional behaviours. Here we report that trichloroacetic acid can be used to temporarily rearrange networks of dynamic imine-based metal complexes towards new equilibrium states, forcing them to express complexes otherwise unfavourable in their initial equilibrium states. Basic design principles were determined for the creation of such networks. Where a complex distribution of products was obtained in the initial equilibrium state of the system, the transient rearrangement temporarily yielded a simplified output, forcing a more structured distribution of products. Where a single complex was obtained in the initial equilibrium state of the system, the transient rearrangement temporarily modified the properties of this complex. By doing so, the mechanical properties of an helical macrocyclic complex could be temporarily altered by rearranging it into a [2]catenane.
Collapse
Affiliation(s)
- Jean-François Ayme
- BASF SE, Joint Research Network on Advanced Materials and Systems (JONAS) Carl-Bosch Str. 38 67056 Ludwigshafen Germany
| | - Bernd Bruchmann
- BASF SE, Joint Research Network on Advanced Materials and Systems (JONAS) Carl-Bosch Str. 38 67056 Ludwigshafen Germany
| | - Lydia Karmazin
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg 1 rue Blaise Pascal 67008 Strasbourg France
| | - Nathalie Kyritsakas
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg 1 rue Blaise Pascal 67008 Strasbourg France
| |
Collapse
|
7
|
Zhou Q, Fang C, Li X, You L, Qi Y, Liu M, Xu Y, He Q, Lu S, Zhou Y. Room‐Temperature Green Recyclable Epoxy Composites with Enhanced Mechanical and Thermal Properties Cross‐Linked via B−O−C Bonds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Quan Zhou
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Chaoyu Fang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xin Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Liwen You
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yiqing Qi
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Min Liu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yuan Xu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qiuyan He
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Shiting Lu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yutong Zhou
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education) School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
8
|
Liu Q, Jin B, Li Q, Yang H, Luo Y, Li X. Self-sorting assembly of artificial building blocks. SOFT MATTER 2022; 18:2484-2499. [PMID: 35266949 DOI: 10.1039/d2sm00153e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembly to build high-level structures, which is ubiquitous in living systems, has captured the imagination of scientists, striving to emulate the intricacy, homogeneity and versatility of the naturally occurring systems, and to pursue a similar level of organization in artificial building blocks. In particular, self-sorting assembly in multicomponent systems, based on the spontaneous recognition and consequent spatial aggregation of the same or interactive building units, is able to realize very complicated assembly behaviours, and usually results in multiple well-ordered products or hierarchical structures in a one-step manner. This highly efficient assembly strategy has attracted tremendous research attention in recent years, and numerous examples have been reported in artificial systems, particularly with supramolecular and polymeric building blocks. In the current review, we summarize the progress in recent years, and classify them into five main categories, based on their working mechanisms or principles. With the review of these strategies, we hope to provide not only some deep insights into this field, but also and more importantly, useful thoughts in the design and fabrication of self-sorting systems in the future.
Collapse
Affiliation(s)
- Qianwei Liu
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Bixin Jin
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Qin Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Huanzhi Yang
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Yunjun Luo
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
| | - Xiaoyu Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
- Experimental Centre of Advanced Materials, Beijing Institute of China, Beijing 100081, People's Republic of China
| |
Collapse
|
9
|
Taylor LLK, Andrews R, Sung ACY, Vitorica-Yrezabal IJ, Riddell IA. Synthesis and characterisation of an integratively self-sorted [Fe 4L 6] 8+ tetrahedron. Chem Commun (Camb) 2022; 58:12301-12304. [DOI: 10.1039/d2cc04624e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exclusive formation of an integratively sorted tetrahedral complex enables incorporating a unique vertex.
Collapse
Affiliation(s)
- Lauren L. K. Taylor
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Rebecca Andrews
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - April C. Y. Sung
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | | | - Imogen A. Riddell
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
10
|
He M, Lehn JM. Metal Cation-Driven Dynamic Covalent Formation of Imine and Hydrazone Ligands Displaying Synergistic Co-catalysis and Auxiliary Amine Effects. Chemistry 2021; 27:7516-7524. [PMID: 33909937 DOI: 10.1002/chem.202100662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/09/2022]
Abstract
Optimizing C=N bond formation and C/N component exchange has major significance in Dynamic Covalent Chemistry (DCC). Imine and hydrazone generation from their aldehyde, amine and hydrazine components showed large accelerations in presence of AgOTf or Zn(OTf)2 , up to 104 for the Zn(II)-(p-anisidine)imine complex. Zn(OTf)2 and auxiliary p-anisidine together accelerated 630 times the formation of the Zn(II)-hydrazone complex, revealing a strong synergistic effect, traced to very fast initial formation of the reactive Zn(II)-imine complex presenting a C=N bond metallo-activated towards reaction with the hydrazine component. Reactions involving more entities showed kinetically faster and thermodynamically simpler outputs due to dynamic competition within a mixture of higher complexity. Catalytic amounts of metal salts and auxiliary amine gave similar marked rate accelerations and turnover, indicating true catalysis. The synergistic effect achieved by combining metallo- and organo-catalysis points to a powerful co-catalysis strategy of bond-formation in DCC through interconnected chemical transformations.
Collapse
Affiliation(s)
- Meixia He
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
11
|
Yang Z, Lehn JM. Dynamic Covalent Self-Sorting and Kinetic Switching Processes in Two Cyclic Orders: Macrocycles and Macrobicyclic Cages. J Am Chem Soc 2020; 142:15137-15145. [PMID: 32809804 DOI: 10.1021/jacs.0c07131] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic covalent component self-sorting processes have been investigated for constituents of different cyclic orders, macrocycles and macrobicyclic cages based on multiple reversible imine formation. The progressive assembly of the final structures from dialdehyde and polyamine components involved the generation of kinetic products and mixtures of intermediates which underwent component selection and self-correction to generate the final thermodynamic constituents. Importantly, constitutional dynamic networks (CDNs) of macrocycles and macrobicyclic cages were set up either from separately prepared constituents or by in situ assembly from their components. Over time, these CDNs underwent conversion from a kinetically trapped out-of-equilibrium distribution of constituents to the thermodynamically self-sorted one through component exchange in different dimensional orders.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Jean-Marie Lehn
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| |
Collapse
|
12
|
Puangsamlee T, Miljanić OŠ. Three-Way Chemoselectivity Switching through Coupled Equilibria. Org Lett 2020; 22:5900-5904. [PMID: 32663404 DOI: 10.1021/acs.orglett.0c02003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Controlling the chemoselectivity of reactions operating on complex mixtures, including those found in biological and petrochemical feedstocks or in the primordial soup from which life emerged, is generally challenging. The selectivity of imine oxidation can be controlled in dynamic combinatorial libraries, wherein coupled equilibria of imine exchange and the diaza-Cope rearrangement determine whether and when the oxidizable precursor is made available to the oxidant. Adjusting the rate of oxidant addition allows the isolation of three dominant products.
Collapse
Affiliation(s)
- Thamon Puangsamlee
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Ognjen Š Miljanić
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
13
|
Ayme J, Dhers S, Lehn J. Triple Self-Sorting in Constitutional Dynamic Networks: Parallel Generation of Imine-Based Cu I , Fe II , and Zn II Complexes. Angew Chem Int Ed Engl 2020; 59:12484-12492. [PMID: 32286724 PMCID: PMC7383593 DOI: 10.1002/anie.202000818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/20/2022]
Abstract
Three imine-based metal complexes, having no overlap in terms of their compositions, have been simultaneously generated from the self-sorting of a constitutional dynamic library (CDL) containing three amines, three aldehydes, and three metal salts. The hierarchical ordering of the stability of the three metal complexes assembled and the leveraging of the antagonistic and agonistic relationships existing between the constituents within the constitutional dynamic network corresponding to the CDL were pivotal in achieving the sorting. Examination of the process by NMR spectroscopy showed that the self-sorting of the FeII and ZnII complexes depended on an interplay between the thermodynamic driving forces and a kinetic trap involved in their assembly. These results also exemplify the concept of "simplexity"-the fact that the output of a self-assembling system may be simplified by increasing its initial compositional complexity-as the two complexes could self-sort only in the presence of the third pair of organic components, those of the CuI complex.
Collapse
Affiliation(s)
- Jean‐François Ayme
- Institute of NanotechnologyKarlsruhe Institute of Technology76344Eggenstein-LeopoldshafenGermany
- Laboratoire de Chimie SupramoléculaireInstitut de Science et d'Ingénierie SupramoléculairesUniversité de Strasbourg8 allée Gaspard Monge67000StrasbourgFrance
| | - Sébastien Dhers
- Laboratoire de Chimie SupramoléculaireInstitut de Science et d'Ingénierie SupramoléculairesUniversité de Strasbourg8 allée Gaspard Monge67000StrasbourgFrance
| | - Jean‐Marie Lehn
- Institute of NanotechnologyKarlsruhe Institute of Technology76344Eggenstein-LeopoldshafenGermany
- Laboratoire de Chimie SupramoléculaireInstitut de Science et d'Ingénierie SupramoléculairesUniversité de Strasbourg8 allée Gaspard Monge67000StrasbourgFrance
| |
Collapse
|
14
|
Ayme J, Dhers S, Lehn J. Triple Self‐Sorting in Constitutional Dynamic Networks: Parallel Generation of Imine‐Based Cu
I
, Fe
II
, and Zn
II
Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jean‐François Ayme
- Institute of Nanotechnology Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie Supramoléculaire Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Sébastien Dhers
- Laboratoire de Chimie Supramoléculaire Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean‐Marie Lehn
- Institute of Nanotechnology Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie Supramoléculaire Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
15
|
Rossi P, Macedi E, Formica M, Giorgi L, Paoli P, Fusi V. Hetero-Tetranuclear Cu 2+ /Ca 2+ /Ca 2+ /Cu 2+ Architectures Based On Malten Ligand: Scaffold for Anion Binding. Chempluschem 2020; 85:1179-1189. [PMID: 32500597 DOI: 10.1002/cplu.202000307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Indexed: 01/05/2023]
Abstract
The hetero-tetranuclear Cu2+ /Ca2+ /Ca2+ /Cu2+ complex obtained with the N,N'-bis((3-hydroxy-4-pyron-2-yl)methyl)-N,N'-dimethylethylendiamine (Malten) ligand has been studied in solid and solution states as scaffold to bind anions. Three crystal structures showing the same metal ions sequence have been examined; they display a tetracharged complex cation neutralized by four monocharged anions. The anions play two different roles: as coordinated (two ClO4 - , Cl- or NO3 - ) or ancillary (two ClO4 - ) guests. The tetranuclear scaffold hosts two anions also in aqueous and ethanol solutions. Spectrophotometric studies in ethanol allowed to determine the addition constant values for Cl- and Br- (Log K1-2 =4.43(4), 4.39(3) for Cl- , 3.80(3), 3.54(2) for Br- ) while the others, although bound, showed lower affinity for the scaffold. Both the crystals and the solutions change their color depending on the added anion, namely pink, dark green or blue in the presence of ClO4 - , Cl- or NO3 - , respectively, thus the presence of the different anions is visible to the naked eye. The hetero-tetranuclear Cu2+ /Ca2+ /Ca2+ /Cu2+ complex is a versatile architecture to be used as scaffold for anion binding.
Collapse
Affiliation(s)
- Patrizia Rossi
- Department of Industrial Engineering, University of Florence, Via S. Marta 3, 50139, Florence, Italy
| | - Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence, Via S. Marta 3, 50139, Florence, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| |
Collapse
|
16
|
Zhang D, Ronson TK, Xu L, Nitschke JR. Transformation Network Culminating in a Heteroleptic Cd 6L 6L' 2 Twisted Trigonal Prism. J Am Chem Soc 2020; 142:9152-9157. [PMID: 32357009 PMCID: PMC7243256 DOI: 10.1021/jacs.0c03798] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 12/20/2022]
Abstract
Transformations between three-dimensional metallosupramolecular assemblies can enable switching between the different functions of these structures. Here we report a network of such transformations, based upon a subcomponent displacement strategy. The flow through this network is directed by the relative reactivities of different amines, aldehydes, and di(2-pyridyl)ketone. The network provides access to an unprecedented heteroleptic Cd6L6L'2 twisted trigonal prism. The principles underpinning this network thus allow for the design of diverse structural transformations, converting one helicate into another, a helicate into a tetrahedron, a tetrahedron into a different tetrahedron, and a tetrahedron into the new trigonal prismatic structure type. The selective conversion from one host to another also enabled the uptake of a desired guest from a mixture of guests.
Collapse
Affiliation(s)
- Dawei Zhang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Lin Xu
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
17
|
Lewis JEM, Crowley JD. Metallo‐Supramolecular Self‐Assembly with Reduced‐Symmetry Ligands. Chempluschem 2020; 85:815-827. [DOI: 10.1002/cplu.202000153] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Indexed: 12/20/2022]
Affiliation(s)
- James E. M. Lewis
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub 80 Wood Lane London W12 0BZ United Kingdom
| | - James. D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
18
|
Rizzuto F, Nitschke JR. Narcissistic, Integrative, and Kinetic Self-Sorting within a System of Coordination Cages. J Am Chem Soc 2020; 142:7749-7753. [PMID: 32275828 PMCID: PMC7304868 DOI: 10.1021/jacs.0c02444] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Many useful principles of self-assembly have been elucidated through studies of systems where multiple components combine to create a single structure. More complex systems, where multiple product structures self-assemble in parallel from a shared set of precursors, are also of great interest, as biological systems exhibit this behavior. The greater complexity of such systems leads to an increased likelihood that discrete species will not be formed, however. Here we show how the kinetics of self-assembly govern the formation of multiple metal-organic architectures from a mixture of five building blocks, preventing the formation of a discrete structure of intermediate size. By varying ligand symmetry, denticity, and orientation, we explore how five distinct polyhedra-a tetrahedron, an octahedron, a cube, a cuboctahedron, and a triangular prism-assemble in concert around CoII template ions. The underlying rules dictating the organization of assemblies into specific shapes are deciphered, explaining the formation of only three discrete entities when five could form in principle.
Collapse
Affiliation(s)
- Felix.
J. Rizzuto
- University of Cambridge, Department of Chemistry, Cambridge, CB2 1EW, U.K.
| | | |
Collapse
|
19
|
Ayme JF, Lehn JM, Bailly C, Karmazin L. Simultaneous Generation of a [2 × 2] Grid-Like Complex and a Linear Double Helicate: a Three-Level Self-Sorting Process. J Am Chem Soc 2020; 142:5819-5824. [DOI: 10.1021/jacs.0c00896] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jean-François Ayme
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Corinne Bailly
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg, 1 rue Blaise Pascal, 67008 Strasbourg, France
| | - Lydia Karmazin
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg, 1 rue Blaise Pascal, 67008 Strasbourg, France
| |
Collapse
|