1
|
Kadarauch M, Moss TA, Phipps RJ. Intermolecular Asymmetric Arylative Dearomatization of 1-Naphthols. J Am Chem Soc 2024; 146:34970-34978. [PMID: 39631941 DOI: 10.1021/jacs.4c14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Arylative dearomatization forms quaternary stereocenters in cyclic systems with the concomitant introduction of an aromatic ring. Pd-catalyzed arylative dearomatization, which uses conditions analogous to cross-coupling, has emerged as a powerful method in an intramolecular context. But translating this from intramolecular cyclizations to an intermolecular process has proven extremely challenging: examples are scarce, and those that exist have not been rendered enantioselective, despite the potential for broad application in medicinal chemistry and natural product synthesis. We describe a strategy that utilizes attractive interactions between the ligand and substrate to overcome this challenge and promote intermolecular, highly enantioselective arylative dearomatization of naphthols using a broad range of aryl bromide electrophiles. Crucial to success is the use of the readily accessed sulfonated chiral phosphine sSPhos, which we believe engages in attractive electrostatic interactions with the substrate. Not only does sSPhos control enantioselectivity but it also drastically accelerates the reaction, most likely by facilitating the challenging palladation step that initiates dearomatization.
Collapse
Affiliation(s)
- Max Kadarauch
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Thomas A Moss
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Trumpington, Cambridge CB2 0AA, U.K
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
2
|
Brufani G, Di Erasmo B, Li CJ, Vaccaro L. Csp 2-H functionalization of phenols: an effective access route to valuable materials via Csp 2-C bond formation. Chem Sci 2024; 15:3831-3871. [PMID: 38487228 PMCID: PMC10935747 DOI: 10.1039/d4sc00687a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
In the vast majority of top-selling pharmaceutical and industrial products, phenolic structural motifs are highly prevalent. Non-functionalized simple phenols serve as building blocks in the synthesis of value-added chemicals. It is worth mentioning that lignin, being the largest renewable biomass source of aromatic building blocks in nature, mainly consists of phenolic units, which enable the production of structurally diverse phenols. Given their remarkable applicability in the chemical value chain, many efforts have been devoted to increasing the molecular complexity of the phenolic scaffold. Among the key techniques, direct functionalization of Csp2-H is a powerful tool, enabling the construction of new Csp2-C bonds in an economical and atomic manner. Herein we present and summarize the large plethora of direct Csp2-H functionalization methods that enables scaffold diversification of simple, unprotected phenols, leading to the formation of new Csp2-C bonds. In this review article, we intend to summarize the contributions that appeared in the literature mainly in the last 5 years dealing with the functionalization of unprotected phenols, both catalytic and non-catalytic. Our goal is to highlight the key findings and the ongoing challenges in the stimulating and growing research dedicated to the development of new protocols for the valorization of phenols.
Collapse
Affiliation(s)
- Giulia Brufani
- Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia Via Elce di Sotto 8 06123 Perugia Italy https://greensoc.chm.unipg.it
| | - Benedetta Di Erasmo
- Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia Via Elce di Sotto 8 06123 Perugia Italy https://greensoc.chm.unipg.it
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street West Montreal QC H3A0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street West Montreal QC H3A0B8 Canada
| | - Luigi Vaccaro
- Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia Via Elce di Sotto 8 06123 Perugia Italy https://greensoc.chm.unipg.it
| |
Collapse
|
3
|
Gennaiou K, Petsi M, Kakarikas B, Iordanidis N, Zografos A. Divergent Synthesis of Bisphenols and Diaryl Ethers by Metal Compatible Organocatalytic Aerobic Oxidation of Boronic Acids. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Marina Petsi
- Aristotle University of Thessaloniki Faculty of Sciences GREECE
| | - Basil Kakarikas
- Aristotle University of Thessaloniki Faculty of Sciences GREECE
| | | | | |
Collapse
|
4
|
Zhu DL, Jiang S, Young DJ, Wu Q, Li HY, Li HX. Visible-light-driven C(sp 2)-H arylation of phenols with arylbromides enabled by electron donor-acceptor excitation. Chem Commun (Camb) 2022; 58:3637-3640. [PMID: 35212323 DOI: 10.1039/d1cc07127k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have developed a catalyst-free visible-light-driven C(sp2)-H arylation of unprotected phenols with arylbromides to give 2-arylated phenols. This reaction proceeds through the excitation of an electron donor-acceptor complex between a phenolate and an arylbromide, electron transfer, and debrominative C(sp2)-C(sp2) coupling.
Collapse
Affiliation(s)
- Da-Liang Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. .,School of Chemistry and Environmental Engineering, Analysis and Testing Centre, Yancheng Teachers University, Yancheng 224007, China
| | - Shan Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - David James Young
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Hai-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
YORIMITSU H, PERRY GJP. Sulfonium-aided coupling of aromatic rings via sigmatropic rearrangement. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:190-205. [PMID: 35400695 PMCID: PMC9071926 DOI: 10.2183/pjab.98.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Biaryl synthesis continues to occupy a central role in chemical synthesis. From blockbuster drug molecules to organic electronics, biaryls present numerous possibilities and new applications continue to emerge. Transition-metal-catalyzed coupling reactions represent the gold standard for biaryl synthesis and the mechanistic steps, such as reductive elimination, are well established. Developing routes that exploit alternative mechanistic scenarios could give unprecedented biaryl structures and expand the portfolio of biaryl applications. We have developed metal-free C-H/C-H couplings of aryl sulfoxides with phenols to afford 2-hydroxy-2'-sulfanylbiaryls. This cascade strategy consists of an interrupted Pummerer reaction and [3,3] sigmatropic rearrangement. Our method enables the synthesis of intriguing aromatic molecules, including oligoarenes, enantioenriched dihetero[8]helicenes, and polyfluorobiaryls. From our successes in aryl sulfoxide/phenol couplings and a deeper understanding of sigmatropic rearrangements for biaryl synthesis, we have established related methods, such as aryl sulfoxide/aniline and aryl iodane/phenol couplings. Overall, our fundamental interests in underexplored reaction mechanisms have led to various methods for accessing important biaryl architectures.
Collapse
Affiliation(s)
- Hideki YORIMITSU
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Gregory J. P. PERRY
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
WANG W, Zou PS, PANG L, Pan C, Mo DL, SU GF. Recent Advances on the Synthesis of 2,3-Fused Quinazolinones. Org Biomol Chem 2022; 20:6293-6313. [DOI: 10.1039/d2ob00778a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As one of the most important structural units in pharmaceuticals and medicinal chemistry, quinazolinone and its derivatives exhibit a wide range of biological and pharmacological activities, including anti-inflammatory, antitubercular, antiviral,...
Collapse
|
7
|
Abstract
A Cu-catalyzed straightforward synthesis of benzoxazoles from free phenols and cyclic oxime esters is reported. The mild reaction conditions tolerate various electron-withdrawing and electron-donating functional groups on both substrates, affording benzoxazoles in moderate to good yields. With this protocol, large-scale syntheses of Ezutromid and Flunoxaprofe in one or two steps are demonstrated. A catalytic mechanism, which includes Cu-catalyzed amination via inner-sphere electron transfer and consequent annulation, is proposed.
Collapse
Affiliation(s)
- Zheng-Hai Wang
- Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| | - Dong-Hui Wang
- Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China.,Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Boulevard, Nanjing 210023, China
| |
Collapse
|
8
|
Yanagi T, Yorimitsu H. Mechanistic Investigation of a Synthetic Route to Biaryls by the Sigmatropic Rearrangement of Arylsulfonium Species. Chemistry 2021; 27:13450-13456. [PMID: 34322930 DOI: 10.1002/chem.202101735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 12/26/2022]
Abstract
A comprehensive mechanistic investigation was conducted on the coupling reaction of aryl sulfoxides with phenols by using trifluoroacetic anhydride to yield biaryls. NMR experiments revealed that our previously proposed mechanism, which consists of a cascade of an interrupted Pummerer reaction and a rate-determining [3,3] sigmatropic rearrangement, is reasonable. The electronic effects of the substrates were also evaluated to elucidate the nature of the rearrangement step. Based on experimental observations and theoretical calculations, we conclude that the rearrangement is highly asynchronous and stepwise rather than concerted when electron-rich phenols are employed for the reaction.
Collapse
Affiliation(s)
- Tomoyuki Yanagi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
9
|
Tarigopula C, Manojveer S, Balamurugan R. Synthesis of Highly Substituted Biaryls by the Construction of a Benzene Ring via In Situ Formed Acetals. J Org Chem 2021; 86:11871-11883. [PMID: 34425048 DOI: 10.1021/acs.joc.1c01277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Herein, we present an interesting method for the construction of a benzene ring using propargylic alcohols and 1,3-dicarbonyls, which involves three new C-C bond formations via cascade alkylation, formylation, annulation, and aromatization to make substituted biaryls. This one-pot Brønsted acid-promoted protocol utilizes the unique reactivity of the acetal formed under the reaction conditions. Alkynyl methyl ketones could be employed instead of 1,3-dicarbonyls as they are converted to 1,3-dicarbonyls by hydration under the reaction conditions.
Collapse
|
10
|
Oh SM, Shin S. Synthesis of
N
‐Hydroxyindole Derivatives via Pd‐Catalyzed Electrophilic Cyclization. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Soo Min Oh
- Department of Chemistry Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University Seoul 04763 South Korea
| | - Seunghoon Shin
- Department of Chemistry Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University Seoul 04763 South Korea
| |
Collapse
|
11
|
Bhanderi K, Ghalsasi PS, Inoue K. Nonconventional driving force for selective oxidative C-C coupling reaction due to concurrent and curious formation of Ag 0. Sci Rep 2021; 11:1568. [PMID: 33452369 PMCID: PMC7811016 DOI: 10.1038/s41598-021-81020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
Is it possible to 'explore' metal's intrinsic property-a cohesive interaction-which naturally transform M0 into an aggregate or a particle or film for driving oxidative C-C bond formation? With this intention, reduction of [Ag(NH3)2]+ to Ag0 with concurrent oxidation of different phenols/naphthols to biphenyls was undertaken. The work is originated during careful observation of an undergraduate experiment-Tollens' test-where silver mirror film deposition takes place on the walls of borosilicate glass test tube. When the same reaction was carried out in polypropylene (plastic-Eppendorf) tube, we observed aggregation of Ag0 leading to floating Ag-particles but not silver film deposition. This prompted us to carry out challenging cross-coupling reaction by ONLY changing the surface of the reaction flask from glass to plastic to silicones. To our surprise, we observed good selective oxidative homo-coupling on Teflon surface while cross-coupling in Eppendorf vial. Thus, we propose that the formation of biphenyl is driven by the macroscopic growth of Ag0 into [Ag-particle] orchestrated by Ag…Ag cohesive interaction. To validate results, experiments were also performed on gram scale. More importantly, oxidation of β-naphthol carried out in quartz (chiral) tube which yielded slight enantioselective excess of BINOL. Details are discussed.
Collapse
Affiliation(s)
- Khushboo Bhanderi
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Prasanna S Ghalsasi
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| | - Katsuya Inoue
- Department of Chemistry, Graduate School of Science and Chirality Research Center (CResCent), Hiroshima University, 1-3-1, Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
12
|
Higuchi K, Tayu M. The Interrupted Pummerer Reaction: Design of Sulfoxides and Their Utility in Organic Synthesis. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
He Z, Biremond T, Perry GJ, Procter DJ. Para-coupling of phenols with C2/C3-substituted benzothiophene S-oxides. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Kobayashi A, Matsuzawa T, Hosoya T, Yoshida S. One-pot Synthesis of Allyl Sulfides from Sulfinate Esters and Allylsilanes through Reduction of Alkoxysulfonium Intermediates. CHEM LETT 2020. [DOI: 10.1246/cl.200285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Akihiro Kobayashi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
15
|
Kobayashi A, Matsuzawa T, Hosoya T, Yoshida S. Sulfoxide synthesis from sulfinate esters under Pummerer-like conditions. Chem Commun (Camb) 2020; 56:5429-5432. [PMID: 32292973 DOI: 10.1039/d0cc02253e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A facile synthetic method for the preparation of allyl sulfoxides by S-allylation of sulfinate esters proceeds through sulfonium intermediates without [3,3]-sigmatropic rearrangement and further Pummerer-type reactions of the resulting allyl sulfoxides. On the basis of the plausible reaction mechanism involving sulfonium salt intermediates, S-alkynylation and S-arylation were also accomplished.
Collapse
Affiliation(s)
- Akihiro Kobayashi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|