1
|
Lu Y, Pang X, Li M, Liang M, Wang W, He Q, Qahramon Zarifzoda A, Chen F. In-Situ Preparation of Iron(II)-phthalocyanine@multi-Walled-CNTs Nanocomposite for Quasi-Solid-State Flexible Symmetric Supercapacitors with Long Cycling Life. CHEMSUSCHEM 2024:e202401940. [PMID: 39384551 DOI: 10.1002/cssc.202401940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
The construction of supercapacitor electrode materials with exceptional performance is crucial to the commercialisation of flexible supercapacitors. Here, a novel in-situ precipitation technique was applied for constructing iron(II)-phthalocyanine (FePc) based nanocomposite as the electrode material in quasi-solid-state flexible supercapacitors. The highly redox-active FePc nanostructures were grown in the multi-walled-CNTs (MWCNTs) networks, which shows convenient electron/electrolyte ion transport pathways along with outstanding structural stability, leading to high energy storage and long cycling life. The electrode of FePc@MWCNTs delivered a higher specific capacity than that of individual MWCNTs and FePc. The quasi-solid-state symmetric flexible device that was constructed using FePc@MWCNTs electrode demonstrated impressive performance with a maximum energy density of 29.7 Wh kg-1 and a maximum power density of 4000 W kg-1. Moreover, the device demonstrated superior durability and flexibility, as evidenced by its exceptional cyclic stability (111.3 %) even after 30000 cycles at 8 A g-1. These results reveal that the FePc@MWCNTs nanocomposite prepared by this simple in-situ precipitation method is promising as electrode material for next-generation flexible wearable power sources.
Collapse
Affiliation(s)
- Yongwang Lu
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan, 528225, China
| | - Xin Pang
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan, 528225, China
| | - Minzhang Li
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan, 528225, China
| | - Man Liang
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan, 528225, China
| | - Wei Wang
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan, 528225, China
| | - Qinyu He
- Guangzhou Institute of Science and Technology, Guangzhou, 510540, China
| | - Afzalshoh Qahramon Zarifzoda
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Fuming Chen
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan, 528225, China
- S.U. Umarov Physical-Technical Institute of the National Academy of Sciences of Tajikistan, Aini Ave. 299/1, Dushanbe, 734063, Tajikistan
| |
Collapse
|
2
|
Hao W, Lee SH, Peera SG. Xerogel-Derived Manganese Oxide/N-Doped Carbon as a Non-Precious Metal-Based Oxygen Reduction Reaction Catalyst in Microbial Fuel Cells for Energy Conversion Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2949. [PMID: 37999303 PMCID: PMC10674280 DOI: 10.3390/nano13222949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 11/25/2023]
Abstract
Current study provides a novel strategy to synthesize the nano-sized MnO nanoparticles from the quick, ascendable, sol-gel synthesis strategy. The MnO nanoparticles are supported on nitrogen-doped carbon derived from the cheap sustainable source. The resulting MnO/N-doped carbon catalysts developed in this study are systematically evaluated via several physicochemical and electrochemical characterizations. The physicochemical characterizations confirms that the crystalline MnO nanoparticles are successfully synthesized and are supported on N-doped carbons, ascertained from the X-ray diffraction and transmission electron microscopic studies. In addition, the developed MnO/N-doped carbon catalyst was also found to have adequate surface area and porosity, similar to the traditional Pt/C catalyst. Detailed investigations on the effect of the nitrogen precursor, heat treatment temperature, and N-doped carbon support on the ORR activity is established in 0.1 M of HClO4. It was found that the MnO/N-doped carbon catalysts showed enhanced ORR activity with a half-wave potential of 0.69 V vs. RHE, with nearly four electron transfers and excellent stability with just a loss of 10 mV after 20,000 potential cycles. When analyzed as an ORR catalyst in dual-chamber microbial fuel cells (DCMFC) with Nafion 117 membrane as the electrolyte, the MnO/N-doped carbon catalyst exhibited a volumetric power density of ~45 mW m2 and a 60% degradation of organic matter in 30 days of continuous operation.
Collapse
Affiliation(s)
| | - Sang-Hun Lee
- Department of Environmental Science, Keimyung University, Daegu 42601, Republic of Korea
| | - Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
3
|
Almanassra IW, Al-Ansari T, Ihsanullah I, Kochkodan V, Chatla A, Atieh MA, Shanableh A, Laoui T. Carbide-derived carbon as an extraordinary material for the removal of chromium from an aqueous solution. CHEMOSPHERE 2022; 307:135953. [PMID: 35964727 DOI: 10.1016/j.chemosphere.2022.135953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
In the present work, the adsorptive removal of chromium (Cr) from water by carbide-derived carbon (CDC) was investigated. The morphology and structure of the CDC were characterized by using FTIR, SEM, TEM, XRD, and N2 adsorption-desorption measurements. The effect of adsorption parameters including contact time, initial Cr concentration, temperature, initial solution pH, and CDC dosage was examined on the removal of Cr ions. The kinetic analysis revealed that the experimental data on the removal of Cr ions on CDC is well correlated with the pseudo-second order kinetic model (with R2 > 0.999), while the equilibrium data were fitted by the Redlich-Peterson isotherm model (with R2 > 0.992). The Langmuir and Sips models were also in good compliance with the equilibrium data, indicating a monolayer coverage of Cr ions onto the CDC surface with some heterogeneous active adsorption sites. The CDC revealed a notable Langmuir adsorption capacity of 159.1 mg/g for Cr ions at pH 6 and room temperature. The thermodynamic analysis illustrated that the Cr ions elimination by CDC is a feasible adsorption process and endothermic in nature. After five adsorption/desorption cycles, less than 18% reduction in the adsorption capacity was obtained indicating the stability and reusability of the CDC. Moreover, the CDC demonstrated an excellent potential in removing the Cr ions from real brackish water. According to the adsorption data, both physical and chemical adsorption processes occurred, and the adsorption was mainly controlled by electrostatic interactions with a possible reduction of hexavalent Cr to trivalent Cr at acidic conditions.
Collapse
Affiliation(s)
- Ismail W Almanassra
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates.
| | - Tareq Al-Ansari
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Anjaneyulu Chatla
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Muataz Ali Atieh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates; Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates; Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Tahar Laoui
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates; Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
4
|
Balogun SA, Fayemi OE. Recent Advances in the Use of CoPc-MWCNTs Nanocomposites as Electrochemical Sensing Materials. BIOSENSORS 2022; 12:850. [PMID: 36290988 PMCID: PMC9599089 DOI: 10.3390/bios12100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Cobalt phthalocyanine multiwalled carbon nanotubes (CoPc-MWCNTs), a nanocomposite, are extraordinary electrochemical sensing materials. This material has attracted growing interest owing to its unique physicochemical properties. Notably, the metal at the center of the metal phthalocyanine structure offers an enhanced redox-active behavior used to design solid electrodes for determining varieties of analytes. This review extensively discusses current developments in CoPc-MWCNTs nanocomposites as potential materials for electrochemical sensors, along with their different fabrication methods, modifying electrodes, and the detected analytes. The advantages of CoPc-MWCNTs nanocomposite as sensing material and its future perspectives are carefully reviewed and discussed.
Collapse
Affiliation(s)
- Sheriff A. Balogun
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
| | - Omolola E. Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
| |
Collapse
|
5
|
Chakraborty I, Das S, Dubey BK, Ghangrekar MM. High-Density Polyethylene Waste-Derived Carbon as a Low-Cost Cathode Catalyst in Microbial Fuel Cell. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2021. [DOI: 10.1007/s41742-021-00374-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Kumar Y, Kibena-Põldsepp E, Kozlova J, Rähn M, Treshchalov A, Kikas A, Kisand V, Aruväli J, Tamm A, Douglin JC, Folkman SJ, Gelmetti I, Garcés-Pineda FA, Galán-Mascarós JR, Dekel DR, Tammeveski K. Bifunctional Oxygen Electrocatalysis on Mixed Metal Phthalocyanine-Modified Carbon Nanotubes Prepared via Pyrolysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41507-41516. [PMID: 34428020 PMCID: PMC8589254 DOI: 10.1021/acsami.1c06737] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 05/05/2023]
Abstract
Non-precious-metal catalysts are promising alternatives for Pt-based cathode materials in low-temperature fuel cells, which is of great environmental importance. Here, we have investigated the bifunctional electrocatalytic activity toward the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) of mixed metal (FeNi; FeMn; FeCo) phthalocyanine-modified multiwalled carbon nanotubes (MWCNTs) prepared by a simple pyrolysis method. Among the bimetallic catalysts containing nitrogen derived from corresponding metal phthalocyanines, we report the excellent ORR activity of FeCoN-MWCNT and FeMnN-MWCNT catalysts with the ORR onset potential of 0.93 V and FeNiN-MWCNT catalyst for the OER having EOER = 1.58 V at 10 mA cm-2. The surface morphology, structure, and elemental composition of the prepared catalysts were examined with scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The FeCoN-MWCNT and FeMnN-MWCNT catalysts were prepared as cathodes and tested in anion-exchange membrane fuel cells (AEMFCs). Both catalysts displayed remarkable AEMFC performance with a peak power density as high as 692 mW cm-2 for FeCoN-MWCNT.
Collapse
Affiliation(s)
- Yogesh Kumar
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Elo Kibena-Põldsepp
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Jekaterina Kozlova
- Institute
of Physics, University of Tartu, W. Ostwald Street 1, 50411 Tartu, Estonia
| | - Mihkel Rähn
- Institute
of Physics, University of Tartu, W. Ostwald Street 1, 50411 Tartu, Estonia
| | - Alexey Treshchalov
- Institute
of Physics, University of Tartu, W. Ostwald Street 1, 50411 Tartu, Estonia
| | - Arvo Kikas
- Institute
of Physics, University of Tartu, W. Ostwald Street 1, 50411 Tartu, Estonia
| | - Vambola Kisand
- Institute
of Physics, University of Tartu, W. Ostwald Street 1, 50411 Tartu, Estonia
| | - Jaan Aruväli
- Institute
of Ecology and Earth Sciences, University
of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Aile Tamm
- Institute
of Physics, University of Tartu, W. Ostwald Street 1, 50411 Tartu, Estonia
| | - John C. Douglin
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, 3200003 Haifa, Israel
| | - Scott J. Folkman
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Ilario Gelmetti
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Felipe A. Garcés-Pineda
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - José Ramón Galán-Mascarós
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Passeig Llüis Companys 23, 08010 Barcelona, Spain
| | - Dario R. Dekel
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, 3200003 Haifa, Israel
- The
Nancy & Stephen Grand Technion Energy Program (GTEP), Technion—Israel Institute of Technology, 3200003 Haifa, Israel
| | - Kaido Tammeveski
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| |
Collapse
|
7
|
Kumar Y, Kibena‐Põldsepp E, Kozlova J, Kikas A, Käärik M, Aruväli J, Kisand V, Leis J, Tamm A, Tammeveski K. Bimetal Phthalocyanine‐Modified Carbon Nanotube‐Based Bifunctional Catalysts for Zinc‐Air Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yogesh Kumar
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | | | - Jekaterina Kozlova
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Arvo Kikas
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Maike Käärik
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | - Jaan Aruväli
- Institute of Ecology and Earth Science University of Tartu Vanemuise 46 51014 Tartu Estonia
| | - Vambola Kisand
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Jaan Leis
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| | - Aile Tamm
- Institute of Physics University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Kaido Tammeveski
- Institute of Chemistry University of Tartu Ravila 14a 50411 Tartu Estonia
| |
Collapse
|
8
|
Xia Y, Li N, Lu W, Wang W, Yao Y, Zhu Z, Xu T, Gu Y, Chen W. High-valent iron-oxo species on pyridine-containing MWCNTs generated in a solar-induced H 2O 2 activation system for the removal of antimicrobials. CHEMOSPHERE 2021; 273:129545. [PMID: 33497981 DOI: 10.1016/j.chemosphere.2021.129545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/18/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
The overuse of antimicrobials has resulted in serious damage to the ecosystem and human health. Therefore, the development of an efficient, stable, and reusable catalyst to eliminate antimicrobials under mild conditions is highly desired. Drawing inspiration from the metabolism of drugs by the enzymes in the human body, such as heme catalase, we developed a simulated enzyme catalyst, perchloride iron phthalocyanine (FePcCl16), immobilized on pyridine-modified multiwalled carbon nanotubes (FePcCl16-Py-MWCNTs). In the catalyst, FePcCl16 worked as the active site, and the axial fifth ligand, 4-aminopyridine, was introduced to cleave H2O2 heterolytically. Inspired by the reaction mechanism of heme catalase and H2O2, the catalytic system was designed based on FePcCl16-Py-MWCNTs for oxidizing 4-chloro-3,5-dimethylphenol (PCMX) by H2O2 activation. The results showed that the catalytic activity of the system was significantly increased under simulated solar light irradiation, which can promote electron transfer for heterolytic cleavage of H2O2. The enzyme-like catalyst achieved much higher catalytic activity than the Fenton reaction when the pH was close to neutral. It turned out that the main active species was high-valent iron-oxo (Fe(Ⅳ) = O) rather than hydroxyl radial (•OH) or superoxide radical (•O2-), different from most mechanisms. Ultraperformance liquid chromatography-high-definition mass spectrometry showed that the substrate was degraded to small molecule acids by Fe(Ⅳ) = O active species and further mineralization indicated by total organic carbon. The catalytic system exhibited highly efficient, stable, recyclable catalytic performance under mild conditions and did not cause secondary pollution to the environment. This study of a simulated enzyme catalytic system offers important insight into sewage treatment.
Collapse
Affiliation(s)
- Yun Xia
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Nan Li
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Wentao Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuyuan Yao
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhexin Zhu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tiefeng Xu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yan Gu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
9
|
Almanassra IW, Okonkwo EC, Alhassan O, Atieh MA, Kochkodan V, Al-Ansari T. Stability and thermophysical properties test of carbide-derived carbon thermal fluid; a comparison between functionalized and emulsified suspensions. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Removal of sodium dodecyl sulphate from wastewater and its effect on anodic biofilm and performance of microbial fuel cell. INTERNATIONAL BIODETERIORATION & BIODEGRADATION 2021. [DOI: 10.1016/j.ibiod.2020.105108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Bhowmick GD, Das S, Adhikary K, Ghangrekar MM, Mitra A. Bismuth-Impregnated Ruthenium with Activated Carbon as Photocathode Catalyst to Proliferate the Efficacy of a Microbial Fuel Cell. JOURNAL OF HAZARDOUS TOXIC AND RADIOACTIVE WASTE 2021. [DOI: 10.1061/(asce)hz.2153-5515.0000565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gourav Dhar Bhowmick
- Ph.D. Scholar, Dept. of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India. ORCID:
| | - Sovik Das
- Ph.D. Scholar, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India. ORCID:
| | - Koushik Adhikary
- Dept. of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Makarand Madhao Ghangrekar
- Professor, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India (corresponding author). ORCID:
| | - Arunabha Mitra
- Professor, Dept. of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
12
|
Enhancing the Performance of Microbial Fuel Cell by Using Chloroform Pre-treated Mixed Anaerobic Sludge to Control Methanogenesis in Anodic Chamber. Appl Biochem Biotechnol 2020; 193:846-855. [PMID: 33196970 DOI: 10.1007/s12010-020-03458-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
Formation of methane in the anodic chamber of a microbial fuel cell (MFC) indicates an energy inefficiency in electricity generation as the energy required for electrogenesis gets redirected to methanogenesis. The hypothesis of this research is that inhibition of methanogenesis in the mixed anaerobic anodic inoculum is associated with an enhanced activity of the electrogenic bacterial consortia. Hence, the primary objective of this investigation is to evaluate the ability of chloroform to inhibit the methanogenesis at different dosing to enhance the activity of electrogenic consortia in MFC. A higher methane inhibition and hence an enhanced performance of MFC was achieved when mixed anaerobic sludge, collected from septic tank, was used as inoculum after pre-treatment with 0.25% (v/v) chloroform dosing (MFC-0.25CF). The MFC-0.25CF attained a maximum power density of 8.51 W/m3, which was more than twice as that of MFC inoculated with untreated sludge. Also, a clear correlation between the chloroform dosing, methane inhibition, wastewater treatment, and power generation was established, which demonstrated the effectiveness of the technique in enhancing power generation in MFC along with adequate biodegradation of organic matter present in wastewater at an optimum chloroform dosing of 0.25% (v/v) to inhibit methanogenesis.
Collapse
|
13
|
Improving performance of microbial fuel cell by enhanced bacterial-anode interaction using sludge immobilized beads with activated carbon. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2020. [DOI: 10.1016/j.psep.2020.06.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
TiO2-Si- or SrTiO3-Si-impregnated PVA–based low-cost proton exchange membranes for application in microbial fuel cell. IONICS 2020. [DOI: 10.1007/s11581-020-03779-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Zekker I, Bhowmick GD, Priks H, Nath D, Rikmann E, Jaagura M, Tenno T, Tämm K, Ghangrekar MM. ANAMMOX-denitrification biomass in microbial fuel cell to enhance the electricity generation and nitrogen removal efficiency. Biodegradation 2020; 31:249-264. [PMID: 32880776 DOI: 10.1007/s10532-020-09907-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Ivar Zekker
- Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia.
| | - Gourav Dhar Bhowmick
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Hans Priks
- Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia
| | - Dibyojyoty Nath
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ergo Rikmann
- Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia
| | | | - Taavo Tenno
- Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia
| | - Kaido Tämm
- Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia
| | | |
Collapse
|
16
|
Neethu B, Bhowmick G, Fathima A, Ghangrekar M. Anodic inoculum pre-treatment by extracts of Azadirachta indica leaves and Allium sativum peels for improved bioelectricity recovery from microbial fuel cell. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2020. [DOI: 10.1016/j.ijhydene.2020.06.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Neethu B, Tholia V, Ghangrekar M. Optimizing performance of a microbial carbon-capture cell using Box-Behnken design. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Iron-Based Electrocatalysts for Energy Conversion: Effect of Ball Milling on Oxygen Reduction Activity. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, we synthesized new materials based on Fe(II) phthalocyanine (FePc), urea and carbon black pearls (BP), called Fe-N-C, as electrocatalysts for the oxygen reduction reaction (ORR) in neutral solution. The electrocatalysts were prepared by combining ball-milling and pyrolysis treatments, which affected the electrochemical surface area (ECSA) and electrocatalytic activity toward ORR, and stability was evaluated by cyclic voltammetry and chronoamperometry. Ball-milling allowed us to increase the ECSA, and the ORR activity as compared to the Fe-N-C sample obtained without any ball-milling. The effect of a subsequent pyrolysis treatment after ball-milling further improved the electrocatalytic stability of the materials. The set of results indicated that combining ball-milling time and pyrolysis treatments allowed us to obtain Fe-N-C catalysts with high catalytic activity toward ORR and stability which makes them suitable for microbial fuel cell applications.
Collapse
|
19
|
Bhowmick GD, Neethu B, Ghangrekar MM, Banerjee R. Improved Performance of Microbial Fuel Cell by In Situ Methanogenesis Suppression While Treating Fish Market Wastewater. Appl Biochem Biotechnol 2020; 192:1060-1075. [PMID: 32648058 DOI: 10.1007/s12010-020-03366-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/22/2020] [Indexed: 02/05/2023]
Affiliation(s)
- G D Bhowmick
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpu, Kharagpur, 721302, India
| | - B Neethu
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - R Banerjee
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpu, Kharagpur, 721302, India
| |
Collapse
|
20
|
Wang M, Wang S, Yang H, Ku W, Yang S, Liu Z, Lu G. Carbon-Based Electrocatalysts Derived From Biomass for Oxygen Reduction Reaction: A Minireview. Front Chem 2020; 8:116. [PMID: 32185161 PMCID: PMC7059099 DOI: 10.3389/fchem.2020.00116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/07/2020] [Indexed: 11/13/2022] Open
Abstract
Oxygen reduction reaction (ORR) electrocatalysts derived from biomass have become one of the research focuses in hetero-catalysis due to their low cost, high performance, and reproducibility properties. Related researches are of great significance for the development of next-generation fuel cells and metal-air batteries. Herein, the preparation methods of various biomass-derived catalysts and their performance in alkaline, neutral, and acidic media are summarized. This review clarifies the research progress of biomass carbon-based electrocatalysts for ORR in acidic, alkaline and neutral media, and discusses the future development trends. This minireview can give us an important enlightenment to practical application in the future.
Collapse
Affiliation(s)
- Mi Wang
- Engineering College, Changchun Normal University, Changchun, China
| | - Shiyu Wang
- Engineering College, Changchun Normal University, Changchun, China
| | - Haoqi Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Wen Ku
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Shuchen Yang
- Engineering College, Changchun Normal University, Changchun, China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Guolong Lu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| |
Collapse
|