1
|
Sharma R, Malviya R, Singh S, Prajapati B. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels 2023; 9:gels9050430. [PMID: 37233021 DOI: 10.3390/gels9050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates are polysaccharides that are produced naturally and can be isolated from brown sea algae and bacteria. Sodium alginate (SA) is utilized extensively in the field of biological soft tissue repair and regeneration owing to its low cost, high biological compatibility, and quick and moderate crosslinking. In addition to their high printability, SA hydrogels have found growing popularity in tissue engineering, particularly due to the advent of 3D bioprinting. There is a developing curiosity in tissue engineering with SA-based composite hydrogels and their potential for further improvement in terms of material modification, the molding process, and their application. This has resulted in numerous productive outcomes. The use of 3D scaffolds for growing cells and tissues in tissue engineering and 3D cell culture is an innovative technique for developing in vitro culture models that mimic the in vivo environment. Especially compared to in vivo models, in vitro models were more ethical and cost-effective, and they stimulate tissue growth. This article discusses the use of sodium alginate (SA) in tissue engineering, focusing on SA modification techniques and providing a comparative examination of the properties of several SA-based hydrogels. This review also covers hydrogel preparation techniques, and a catalogue of patents covering different hydrogel formulations is also discussed. Finally, SA-based hydrogel applications and future research areas concerning SA-based hydrogels in tissue engineering were examined.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| |
Collapse
|
2
|
Ning X, Huang J, A Y, Yuan N, Chen C, Lin D. Research Advances in Mechanical Properties and Applications of Dual Network Hydrogels. Int J Mol Sci 2022; 23:15757. [PMID: 36555397 PMCID: PMC9779336 DOI: 10.3390/ijms232415757] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Hydrogels with a three-dimensional network structure are particularly outstanding in water absorption and water retention because water exists stably in the interior, making the gel appear elastic and solid. Although traditional hydrogels have good water absorption and high water content, they have poor mechanical properties and are not strong enough to be applied in some scenarios today. The proposal of double-network hydrogels has dramatically improved the toughness and mechanical strength of hydrogels that can adapt to different environments. Based on ensuring the properties of hydrogels, they themselves will not be damaged by excessive pressure and tension. This review introduces preparation methods for double-network hydrogels and ways to improve the mechanical properties of three typical gels. In addition to improving the mechanical properties, the biocompatibility and swelling properties of hydrogels enable them to be applied in the fields of biomedicine, intelligent sensors, and ion adsorption.
Collapse
Affiliation(s)
- Xuanjun Ning
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jiani Huang
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Yimuhan A
- School of Materials and Metallurgy, University of Birmingham, Birmingham B15 2TT, UK
| | - Ningning Yuan
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Cheng Chen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Donghai Lin
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai 201209, China
| |
Collapse
|
3
|
Thazhathethil S, Muramatsu T, Tamaoki N, Weder C, Sagara Y. Excited State Charge-Transfer Complexes Enable Fluorescence Color Changes in a Supramolecular Cyclophane Mechanophore. Angew Chem Int Ed Engl 2022; 61:e202209225. [PMID: 35950260 PMCID: PMC9804172 DOI: 10.1002/anie.202209225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 01/05/2023]
Abstract
Mechanochromic mechanophores are reporter molecules that indicate mechanical events through changes of their photophysical properties. Supramolecular mechanophores in which the activation is based on the rearrangement of luminophores and/or quenchers without any covalent bond scission, remain less well investigated. Here, we report a cyclophane-based supramolecular mechanophore that contains a 1,6-bis(phenylethynyl)pyrene luminophore and a pyromellitic diimide quencher. In solution, the blue monomer emission of the luminophore is largely quenched and a faint reddish-orange emission originating from a charge-transfer (CT) complex is observed. A polyurethane elastomer containing the mechanophore displays orange emission in the absence of force, which is dominated by the CT-emission. Mechanical deformation causes a decrease of the CT-emission and an increase of blue monomer emission, due to the spatial separation between the luminophore and quencher. The ratio of the two emission intensities correlates with the applied stress.
Collapse
Affiliation(s)
- Shakkeeb Thazhathethil
- Department of Materials Science and EngineeringTokyo Institute of Technology2-12-1 OokayamaMeguro-ku, Tokyo152-8552Japan
- Research Institute for Electronic ScienceHokkaido UniversityN20, W10SapporoHokkaido001-0020Japan
| | - Tatsuya Muramatsu
- Department of Materials Science and EngineeringTokyo Institute of Technology2-12-1 OokayamaMeguro-ku, Tokyo152-8552Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic ScienceHokkaido UniversityN20, W10SapporoHokkaido001-0020Japan
| | - Christoph Weder
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Yoshimitsu Sagara
- Department of Materials Science and EngineeringTokyo Institute of Technology2-12-1 OokayamaMeguro-ku, Tokyo152-8552Japan
| |
Collapse
|
4
|
Thazhathethil S, Muramatsu T, Tamaoki N, Weder C, Sagara Y. Excited State Charge‐Transfer Complexes Enable Fluorescence Color Changes in a Supramolecular Cyclophane Mechanophore. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shakkeeb Thazhathethil
- Hokkaido University Graduate School of Life Science: Hokkaido Daigaku Daigakuin Seimei Kagakuin Division of Life Science JAPAN
| | - Tatsuya Muramatsu
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Department of Materials Science and Engineering JAPAN
| | - Nobuyuki Tamaoki
- Hokkaido University Graduate School of Life Science: Hokkaido Daigaku Daigakuin Seimei Kagakuin Division of Life Science JAPAN
| | - Christoph Weder
- University of Fribourg: Universite de Fribourg Adolphe Merkle Institute JAPAN
| | - Yoshimitsu Sagara
- Tokyo Institute of Technology Department of Chemical Science and Engineering 2-12-1 Ookayama, Meguro-ku 152-8552 Tokyo JAPAN
| |
Collapse
|
5
|
Tan M, Wang X, Xie T, Zhang Z, Shi Y, Li Y, Chen Y. Fluorogenic Mechanophore Based on Dithiomaleimide with Dual Responsiveness. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Tan
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaoying Wang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Tong Xie
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhen Zhang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanchao Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Fellin CR, Nelson A. Direct-Ink Write 3D Printing Multistimuli-Responsive Hydrogels and Post-Functionalization Via Disulfide Exchange. ACS APPLIED POLYMER MATERIALS 2022; 4:3054-3061. [PMID: 38239328 PMCID: PMC10795753 DOI: 10.1021/acsapm.1c01538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Herein, we describe a multi-stimuli-responsive hydrogel that can be 3D printed via a direct-ink write process to afford cross-linked hydrogel networks that can be post-functionalized with thiol-bearing molecules. Poly(alkyl glycidyl ether)s with methacrylate groups at their termini were synthesized and self-assembled into hydrogels with three key stimuli-responsive behaviors necessary for extrusion based 3D printing: a sol-gel temperature response, shear-thinning behavior, and the ability to be photochemically crosslinked. In addition, the chemically crosslinked hydrogels demonstrated a temperature dependent swelling consistent with an LCST behavior. Pyridyl disulfide urethane methacrylate (PDS-UM) monomers were introduced into the network as a thiol-reactive handle for post-functionalization of the hydrogel. The reactivities of these hydrogels were investigated at different temperatures (5, 25, 37 °C) and swelling statuses (as-cured versus preswollen) using glutathione as a reactive probe. To illustrate the versatility of the platform, a number of additional thiol-containing probes such as proteins, polymers, and small molecules were conjugated to the hydrogel network at different temperatures, pH's, and concentrations. In a final demonstration of the multi-stimuli-responsive hydrogel platform, a customized DIW 3D printer was used to fabricate a printed object that was subsequently conjugated with a fluorescent tag and displayed the ability to change in size with environmental temperature.
Collapse
Affiliation(s)
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, Washington 98105, USA
| |
Collapse
|
7
|
|
8
|
Creusen G, Schmidt RS, Walther A. One-Component DNA Mechanoprobes for Facile Mechanosensing in Photopolymerized Hydrogels and Elastomers. ACS Macro Lett 2021; 10:671-678. [PMID: 35549108 DOI: 10.1021/acsmacrolett.1c00211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA mechanosensors offer unique properties for mechano-adaptive and self-reporting materials, such as programmable bond strength and geometrical strain response, tunable fluorescent strain sensing, interfacing to biological systems, and the ability to store mechanical information. However, the facile incorporation of advanced DNA motifs into polymer networks and achieving robustness in application settings remain difficult. Herein, we introduce one-component DNA mechanoprobes that can be easily polymerized into polymer hydrogels and even elastomers to allow strain-induced fluorescence sensing. The all-in-one mechanoprobe contains a DNA hairpin for programmable force sensing, an internal fluorophore-quencher pair as a reporter, and methacrylamide groups on both ends for rapid and facile photopolymerization into networks based on the nontoxic water-soluble monomer methoxy triethylene glycol acrylate (mTEGA). In addition to mechanosensing hydrogels, we utilize the low Tg of p(mTEGA) to develop the first bulk elastomer materials with DNA force sensors, which show high elasticity and stronger mechanofluorescence. The system makes decisive steps forward for DNA-based mechanoprobes by overcoming the classical multicomponent design of such probes, allowing photopolymerization useful for the design of complex objects or even 3D printing and demonstrating that such motifs may even be useful in dry bulk materials.
Collapse
Affiliation(s)
- Guido Creusen
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Ricarda Sophia Schmidt
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS), 79110 Freiburg, Germany
| |
Collapse
|
9
|
Sagara Y, Traeger H, Li J, Okado Y, Schrettl S, Tamaoki N, Weder C. Mechanically Responsive Luminescent Polymers Based on Supramolecular Cyclophane Mechanophores. J Am Chem Soc 2021; 143:5519-5525. [PMID: 33784073 DOI: 10.1021/jacs.1c01328] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new approach to cyclophane-based supramolecular mechanophores is presented. We report a mechanically responsive cyclic motif that contains two fluorescent 1,6-bis(phenylethynyl)pyrene moieties that are capable of forming intramolecular excimers. The emission spectra of dilute solutions of this cyclophane and a polyurethane elastomer into which a small amount of the mechanophore (0.08 wt %) had been covalently integrated are dominated by excimer emission. Films of the cyclophane-containing polyurethane also display a considerable portion of excimer emission, but upon deformation, the fluorescence becomes monomer-dominated and a perceptible change from cyan to blue is observed. The response is instant, reversible, and consistent with a mechanically induced change of the molecular conformation of the mechanophore so that the excimer-promoting interactions between the luminophores are suppressed. In-depth investigations show a correlation between the applied strain and the emission color, which can conveniently be expressed by the ratio of monomer to excimer emission intensity. The current study suggests that cyclophanes can be utilized to develop various supramolecular mechanophores that detect and visualize weak forces occurring in polymeric materials or generated by living tissues.
Collapse
Affiliation(s)
- Yoshimitsu Sagara
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hanna Traeger
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Jie Li
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-Ku, Sapporo, Hokkaido 001-0020, Japan
| | - Yuji Okado
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-Ku, Sapporo, Hokkaido 001-0020, Japan
| | - Stephen Schrettl
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-Ku, Sapporo, Hokkaido 001-0020, Japan
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
10
|
Traeger H, Kiebala DJ, Weder C, Schrettl S. From Molecules to Polymers-Harnessing Inter- and Intramolecular Interactions to Create Mechanochromic Materials. Macromol Rapid Commun 2020; 42:e2000573. [PMID: 33191595 DOI: 10.1002/marc.202000573] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Indexed: 12/30/2022]
Abstract
The development of mechanophores as building blocks that serve as predefined weak linkages has enabled the creation of mechanoresponsive and mechanochromic polymer materials, which are interesting for a range of applications including the study of biological specimens or advanced security features. In typical mechanophores, covalent bonds are broken when polymers that contain these chemical motifs are exposed to mechanical forces, and changes of the optical properties upon bond scission can be harnessed as a signal that enables the detection of applied mechanical stresses and strains. Similar chromic effects upon mechanical deformation of polymers can also be achieved without relying on the scission of covalent bonds. The dissociation of motifs that feature directional noncovalent interactions, the disruption of aggregated molecules, and conformational changes in molecules or polymers constitute an attractive element for the design of mechanoresponsive and mechanochromic materials. In this article, it is reviewed how such alterations of molecules and polymers can be exploited for the development of mechanochromic materials that signal deformation without breaking covalent bonds. Recent illustrative examples are highlighted that showcase how the use of such mechanoresponsive motifs enables the visual mapping of stresses and damage in a reversible and highly sensitive manner.
Collapse
Affiliation(s)
- Hanna Traeger
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Derek J Kiebala
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| |
Collapse
|
11
|
Wei T, Xie Y, Wen X, Zhao N, Shen G. Establishment of in vitro three-dimensional cementocyte differentiation scaffolds to study orthodontic root resorption. Exp Ther Med 2020; 20:3174-3184. [PMID: 32855686 PMCID: PMC7444329 DOI: 10.3892/etm.2020.9074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Orthodontic-induced root resorption is a severe side effect that can lead to tooth root shortening and loss. Compressive force induces tissue stress in the cementum that covers the tooth root, which is associated with activation of bone metabolism and cementum resorption. To investigate the role of cementocytes in mechanotransduction and osteoclast differentiation, the present study established an in vitro three-dimensional (3D) model replicating cellular cementum and observed the effects of static compression on the cellular behavior of the cementocytes. Cell Counting Kit-8 assay, alkaline phosphatase staining and dentin matrix protein 1 quantification were used to evaluate the cementocyte differentiation in the 3D scaffolds. Cellular viability under static compression was evaluated using live/dead staining, and expression of mineral metabolism-related genes were analyzed via reverse transcription-quantitative PCR. The results suggested that the cementocytes maintained their phenotype and increased the expression of osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL) and sclerostin (SOST) in the 3D model compared with cells cultured in two dimensions. Compression force increased cell death and induced osteoclastic differentiation via the upregulation of SOST and RANKL/OPG ratio, and the downregulation of osteocalcin. The effect of compression showed a force magnitude-dependent pattern. The present study established an in vitro model of cellular cementum to study the biology of cementocytes. The results indicated that cementocytes are sensitive to mechanical loading and may serve potential roles in the metabolic regulation of minerals during orthodontic root resorption. These findings provide a novel tool to study biological processes in the field of orthodontics and expand knowledge of the biological function of cementocytes.
Collapse
Affiliation(s)
- Tingting Wei
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yufei Xie
- Department of Orthodontics, Shanghai Xuhui District Dental Disease Prevention and Control Institute, Shanghai 200001, P.R. China
| | - Xin Wen
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Ning Zhao
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Gang Shen
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|