1
|
Masubuchi Y, Ishida T, Koide Y, Uneyama T. Phantom chain simulations for the fracture of star polymer networks with various strand densities. SOFT MATTER 2024; 20:7103-7110. [PMID: 39176458 DOI: 10.1039/d4sm00726c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Despite many attempts, the relationship between the fracture and structure of polymer networks is yet to be clarified. For this problem, a recent study on phantom chain simulations [Y. Masubuchi et al., Macromolecules, 2023, 56, 9359-9367.] has demonstrated that the fracture characteristics obtained for polymer networks with various node functionalities and conversion ratios lie on master curves if they are plotted against cycle rank, which is the number of closed loops in the network per network node. In this study, we extended the simulation to the effect of prepolymer concentration c on the relationships between the cycle rank and fracture characteristics within the concentration range of 1 ≲ c/c* ≲ 10, concerning the overlapping concentration c*. We created networks from sols of star-branched phantom bead-spring chains via an end-linking reaction between different chains through Brownian dynamics simulations upon varying the number of branching arms f from 1 to 8, and the conversion ratio φc from 0.6 to 0.95. For the resultant networks, the cycle rank ξ was consistent with the mean-field theory. The networks were uniaxially stretched with energy minimization until break to obtain modulus G, strain at break εb, stress at break σb, and work for fracture Wb. As reported earlier, εb data for various f and φc are located on a master curve if plotted against ξ. The other quantities also draw master curves as functions of ξ if normalized by the branch point density υbr. The master curves depend on c; as c increases, all the mechanical characteristics monotonically increase. If we plot σb/υbr and Wb/υbr against G/υbr, the data for various f and φc lie on master curves but depending on c. Consequently, the fracture characteristics are not solely described by the modulus.
Collapse
Affiliation(s)
- Yuichi Masubuchi
- Department of Materials Physics, Nagoya University, Nagoya 4649603, Japan.
| | - Takato Ishida
- Department of Materials Physics, Nagoya University, Nagoya 4649603, Japan.
| | - Yusuke Koide
- Department of Materials Physics, Nagoya University, Nagoya 4649603, Japan.
| | - Takashi Uneyama
- Department of Materials Physics, Nagoya University, Nagoya 4649603, Japan.
| |
Collapse
|
2
|
Masubuchi Y, Doi Y, Ishida T, Sakumichi N, Sakai T, Mayumi K, Uneyama T. Phantom Chain Simulations for the Fracture of Energy-Minimized Tetra- and Tri-Branched Networks. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Yuichi Masubuchi
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan
| | - Yuya Doi
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan
| | - Takato Ishida
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan
| | - Naoyuki Sakumichi
- Department of Bioengineering, The University of Tokyo, Tokyo 1138654, Japan
| | - Takamasa Sakai
- Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo 1138654, Japan
| | - Koichi Mayumi
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi 2778581, Chiba, Japan
| | - Takashi Uneyama
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan
| |
Collapse
|
3
|
Pérez LA, Hernández R, Alonso JM, Pérez-González R, Sáez-Martínez V. Granular Disulfide-Crosslinked Hyaluronic Hydrogels: A Systematic Study of Reaction Conditions on Thiol Substitution and Injectability Parameters. Polymers (Basel) 2023; 15:polym15040966. [PMID: 36850248 PMCID: PMC9967816 DOI: 10.3390/polym15040966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Granular polymer hydrogels based on dynamic covalent bonds are attracting a great deal of interest for the design of injectable biomaterials. Such materials generally exhibit shear-thinning behavior and properties of self-healing/recovery after the extrusion that can be modulated through the interactions between gel microparticles. Herein, bulk macro-hydrogels based on thiolated-hyaluronic acid were produced by disulphide bond formation using oxygen as oxidant at physiological conditions and gelation kinetics were monitored. Three different thiol substitution degrees (SD%: 65%, 30% and 10%) were selected for hydrogel formation and fully characterized as to their stability in physiological medium and morphology. Then, extrusion fragmentation technique was applied to obtain hyaluronic acid microgels with dynamic disulphide bonds that were subsequently sterilized by autoclaving. The resulting granular hyaluronic hydrogels were able to form stable filaments when extruded through a syringe. Rheological characterization and cytotoxicity tests allowed to assess the potential of these materials as injectable biomaterials. The application of extrusion fragmentation for the formation of granular hyaluronic hydrogels and the understanding of the relation between the autoclaving processes and the resulting particle size and rheological properties should expand the development of injectable materials for biomedical applications.
Collapse
Affiliation(s)
- Luis Andrés Pérez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain
- Correspondence: (R.H.); (V.S.-M.); Tel.: +34-915-622900 (R.H.); +34-945-561134 (V.S.-M.)
| | - José María Alonso
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain
| | - Raúl Pérez-González
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain
| | - Virginia Sáez-Martínez
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain
- Correspondence: (R.H.); (V.S.-M.); Tel.: +34-915-622900 (R.H.); +34-945-561134 (V.S.-M.)
| |
Collapse
|
4
|
Masubuchi Y, Yamazaki R, Doi Y, Uneyama T, Sakumichi N, Sakai T. Brownian simulations for tetra-gel-type phantom networks composed of prepolymers with bidisperse arm length. SOFT MATTER 2022; 18:4715-4724. [PMID: 35703364 DOI: 10.1039/d2sm00488g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We studied the effect of arm length contrast of prepolymers on the mechanical properties of tetra-branched networks via Brownian dynamics simulations. We employed a bead-spring model without the excluded volume interactions, and we did not consider the solvent explicitly. Each examined 4-arm star branch prepolymer has uneven arm lengths to attain two-against-two (2a2) or one-against-three (1a3) configurations. The arm length contrast was varied from 38-2 to 20-20 for 2a2, and from 5-25 to 65-5 for 1a3, with the fixed total bead number of 81, including the single bead located at the branch point for prepolymers. We distributed 400 molecules in the simulation box with periodic boundary conditions, and the bead number density was fixed at 4. We created polymer networks by cross-end-coupling of equilibrated tetra-branched prepolymers. To mimic the experiments of tetra gels, we discriminated the molecules into two types and allowed the reaction only between different types of molecules at their end beads. The final conversion ratio was more than 99%, at which unreacted dangling ends are negligible. We found that the fraction of double linkage, in which two of the four arms connect a pair of branch points, increases from 3% to 15% by increasing the arm length contrast. We stretched the resultant tetra-type networks to obtain the ratio of mechanically effective strands. We found that the ratio is 96% for the monodisperse system, decreasing to 90% for high arm length contrast. We introduced bond scission according to the bond stretching to observe the network fracture under sufficiently slow elongation. The fracture behavior was not correlated with the fraction of double linkage because the scission occurs at single linkages.
Collapse
Affiliation(s)
- Yuichi Masubuchi
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan.
| | - Ryohei Yamazaki
- Department of Engineering Physics, Nagoya University, Nagoya 4648603, Japan
| | - Yuya Doi
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan.
| | - Takashi Uneyama
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan.
| | - Naoyuki Sakumichi
- Department of Bioengineering, The University of Tokyo, Tokyo 1138654, Japan
| | - Takamasa Sakai
- Department of Bioengineering, The University of Tokyo, Tokyo 1138654, Japan
| |
Collapse
|
5
|
Yamamoto T, Schiessel H. Loop extrusion driven volume phase transition of entangled chromosomes. Biophys J 2022; 121:2742-2750. [PMID: 35706364 DOI: 10.1016/j.bpj.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Experiments on reconstituted chromosomes have revealed that mitotic chromosomes are assembled even without nucleosomes. When topoisomerase II (topo II) is depleted from such reconstituted chromosomes, these chromosomes are not disentangled and form "sparklers," where DNA and linker histone are condensed in the core and condensin is localized at the periphery. To understand the mechanism of the assembly of sparklers, we here take into account the loop extrusion by condensin in an extension of the theory of entangled polymer gels. The loop extrusion stiffens an entangled DNA network because DNA segments in the elastically effective chains are translocated to loops, which are elastically ineffective. Our theory predicts that the loop extrusion by condensin drives the volume phase transition that collapses a swollen entangled DNA gel because the stiffening of the network destabilizes the swollen phase. This may be an important piece to understand the mechanism of the assembly of mitotic chromosomes.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan.
| | - Helmut Schiessel
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| |
Collapse
|
6
|
Masubuchi Y, Doi Y, Uneyama T. Effects of Slip-Spring Parameters and Rouse Bead Density on Polymer Dynamics in Multichain Slip-Spring Simulations. J Phys Chem B 2022; 126:2930-2941. [PMID: 35298156 DOI: 10.1021/acs.jpcb.2c00697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multichain slip-spring (MCSS) model is one of the coarse-grained models of polymers developed in the niche between bead-spring models and tube type descriptions. In this model, polymers are represented by Rouse chains connected by virtual springs that temporally connect the chains, hop along the chain, and are constructed and annihilated at the chain ends. Earlier studies have shown that MCSS simulations can nicely reproduce entangled and unentangled polymer dynamics. However, the model parameters have been chosen arbitrarily, and their effects have not been reported. In this study, for the first time, we systematically investigated the effects of model parameters: fugacity of virtual springs, its intensity, and the Rouse bead density. We validated the employed simulation code by confirming that the statistics of the system follow the theoretical setup. Namely, the virtual spring density is correctly controlled, and polymer chains exhibit ideal chain statistics irrespective of the chosen parameter values. For diffusion and linear viscoelasticity, simulation results obtained for different parameters can be superposed with each other by conversion factors for the bead number per chain and units of length, time, and modulus. These conversion factors follow scaling laws concerning the number of Rouse segments between two consecutive anchoring points of virtual springs along the polymer chain. Besides, diffusion and viscoelasticity excellently agree with literature data for the standard bead-spring simulation. These results imply that the coarse-graining level for the MCSS model can be arbitrarily chosen and controlled by model parameters.
Collapse
Affiliation(s)
- Yuichi Masubuchi
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan
| | - Yuya Doi
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan
| | - Takashi Uneyama
- Department of Materials Physics, Nagoya University, Nagoya 4648603, Japan
| |
Collapse
|
7
|
Carmona P, Tasici AM, Sande SA, Knudsen KD, Nyström B. Glyceraldehyde as an Efficient Chemical Crosslinker Agent for the Formation of Chitosan Hydrogels. Gels 2021; 7:186. [PMID: 34842656 PMCID: PMC8628775 DOI: 10.3390/gels7040186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/05/2022] Open
Abstract
The rheological changes that occur during the chemical gelation of semidilute solutions of chitosan in the presence of the low-toxicity agent glyceraldehyde (GCA) are presented and discussed in detail. The entanglement concentration for chitosan solutions was found to be approximately 0.2 wt.% and the rheological experiments were carried out on 1 wt.% chitosan solutions with various amounts of GCA at different temperatures (25 °C and 40 °C) and pH values (4.8 and 5.8). High crosslinker concentration, as well as elevated temperature and pH close to the pKa value (pH ≈ 6.3-7) of chitosan are three parameters that all accelerate the gelation process. These conditions also promote a faster solid-like response of the gel-network in the post-gel region after long curing times. The mesh size of the gel-network after a very long (18 h) curing time was found to contract with increasing level of crosslinker addition and elevated temperature. The gelation of chitosan in the presence of other chemical crosslinker agents (glutaraldehyde and genipin) is discussed and a comparison with GCA is made. Small angle neutron scattering (SANS) results reveal structural changes between chitosan solutions, incipient gels, and mature gels.
Collapse
Affiliation(s)
- Pierre Carmona
- Department of Chemistry, University of Oslo, N-0315 Oslo, Norway;
- Department of Physics, Division of Nano-and BioPhysics, Chalmers University of Technology, Fysikgränd 3, 412 96 Gothenburg, Sweden
| | - Anca M. Tasici
- Department of Pharmacy, Section for Pharmaceutics and Social Pharmacy, University of Oslo, N-0316 Oslo, Norway; (A.M.T.); (S.A.S.)
| | - Sverre A. Sande
- Department of Pharmacy, Section for Pharmaceutics and Social Pharmacy, University of Oslo, N-0316 Oslo, Norway; (A.M.T.); (S.A.S.)
| | | | - Bo Nyström
- Department of Chemistry, University of Oslo, N-0315 Oslo, Norway;
| |
Collapse
|
8
|
Schneider J, Fleck F, Karimi-Varzaneh HA, Müller-Plathe F. Simulation of Elastomers by Slip-Spring Dissipative Particle Dynamics. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jurek Schneider
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Frank Fleck
- Continental Reifen Deutschland GmbH, D-30419 Hannover, Germany
| | | | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| |
Collapse
|
9
|
Suzuki Y, Shinagawa Y, Kato E, Mishima R, Fukao K, Matsumoto A. Polymerization-Induced Vitrification and Kinetic Heterogenization at the Onset of the Trommsdorff Effect. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuhito Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yuya Shinagawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eri Kato
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ryutaro Mishima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Koji Fukao
- Department of Physics, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|