1
|
Han Y, Zhang L, Yang W. Synthesis of Mesoporous Silica Using the Sol-Gel Approach: Adjusting Architecture and Composition for Novel Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:903. [PMID: 38869528 PMCID: PMC11173812 DOI: 10.3390/nano14110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
The sol-gel chemistry of silica has long been used for manipulating the size, shape, and microstructure of mesoporous silica particles. This manipulation is performed in mild conditions through controlling the hydrolysis and condensation of silicon alkoxide. Compared to amorphous silica particles, the preparation of mesoporous silica, such as MCM-41, using the sol-gel approach offers several unique advantages in the fields of catalysis, medicament, and environment, due to its ordered mesoporous structure, high specific surface area, large pore volume, and easily functionalized surface. In this review, our primary focus is on the latest research related to the manipulation of mesoporous silica architectures using the sol-gel approach. We summarize various structures, including hollow, yolk-shell, multi-shelled hollow, Janus, nanotubular, and 2D membrane structures. Additionally, we survey sol-gel strategies involving the introduction of various functional elements onto the surface of mesoporous silica to enhance its performance. Furthermore, we outline the prospects and challenges associated with mesoporous silica featuring different structures and functions in promising applications, such as high-performance catalysis, biomedicine, wastewater treatment, and CO2 capture.
Collapse
Affiliation(s)
- Yandong Han
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
| | - Lin Zhang
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
| | - Wensheng Yang
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Varol HS, Herberger T, Kirsch M, Mikolei J, Veith L, Kannan-Sampathkumar V, Brand RD, Synatschke CV, Weil T, Andrieu-Brunsen A. Electropolymerization of Polydopamine at Electrode-Supported Insulating Mesoporous Films. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:9192-9207. [PMID: 38027541 PMCID: PMC10653081 DOI: 10.1021/acs.chemmater.3c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Bioinspired, stimuli-responsive, polymer-functionalized mesoporous films are promising platforms for precisely regulating nanopore transport toward applications in water management, iontronics, catalysis, sensing, drug delivery, or energy conversion. Nanopore technologies still require new, facile, and effective nanopore functionalization with multi- and stimuli-responsive polymers to reach these complicated application targets. In recent years, zwitterionic and multifunctional polydopamine (PDA) films deposited on planar surfaces by electropolymerization have helped surfaces respond to various external stimuli such as light, temperature, moisture, and pH. However, PDA has not been used to functionalize nanoporous films, where the PDA-coating could locally regulate the ionic nanopore transport. This study investigates the electropolymerization of homogeneous thin PDA films to functionalize nanopores of mesoporous silica films. We investigate the effect of different mesoporous film structures and the number of electropolymerization cycles on the presence of PDA at mesopores and mesoporous film surfaces. Our spectroscopic, microscopic, and electrochemical analysis reveals that the amount and location (pores and surface) of deposited PDA at mesoporous films is related to the combination of the number of electropolymerization cycles and the mesoporous film thickness and pore size. In view of the application of the proposed PDA-functionalized mesoporous films in areas requiring ion transport control, we studied the ion nanopore transport of the films by cyclic voltammetry. We realized that the amount of PDA in the nanopores helps to limit the overall ionic transport, while the pH-dependent transport mechanism of pristine silica films remains unchanged. It was found that (i) the pH-dependent deprotonation of PDA and silica walls and (ii) the insulation of the indium-tin oxide (ITO) surface by increasing the amount of PDA within the mesoporous silica film affect the ionic nanopore transport.
Collapse
Affiliation(s)
- H. Samet Varol
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- Department
of Chemistry “Giacomo Ciamician″, Università degli Studi di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Tilmann Herberger
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Marius Kirsch
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Joanna Mikolei
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Lothar Veith
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Raoul D. Brand
- Institute
of Physical Chemistry, Justus-Liebig University, 35392 Giessen, Germany
| | | | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Annette Andrieu-Brunsen
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
3
|
Scala-Benuzzi M, Fernández SN, Giménez G, Ybarra G, Soler-Illia GJAA. Ordered Mesoporous Electrodes for Sensing Applications. ACS OMEGA 2023; 8:24128-24152. [PMID: 37457464 PMCID: PMC10339336 DOI: 10.1021/acsomega.3c02013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Electrochemical sensors have become increasingly relevant in fields such as medicine, environmental monitoring, and industrial process control. Selectivity, specificity, sensitivity, signal reproducibility, and robustness are among the most important challenges for their development, especially when the target compound is present in low concentrations or in complex analytical matrices. In this context, electrode modification with Mesoporous Thin Films (MTFs) has aroused great interest in the past years. MTFs present high surface area, uniform pore distribution, and tunable pore size. Furthermore, they offer a wide variety of electrochemical signal modulation possibilities through molecular sieving, electrostatic or steric exclusion, and preconcentration effects which are due to mesopore confinement and surface functionalization. In order to fully exploit these advantages, it is central to develop reproducible routes for sensitive, selective, and robust MTF-modified electrodes. In addition, it is necessary to understand the complex mass and charge transport processes that take place through the film (particularly in the mesopores, pore surfaces, and interfaces) and on the electrode in order to design future intelligent and adaptive sensors. We present here an overview of MTFs applied to electrochemical sensing, in which we address their fabrication methods and the transport processes that are critical to the electrode response. We also summarize the current applications in biosensing and electroanalysis, as well as the challenges and opportunities brought by integrating MTF synthesis with electrode microfabrication, which is critical when moving from laboratory work to in situ sensing in the field of interest.
Collapse
Affiliation(s)
- María
L. Scala-Benuzzi
- INTI-Micro
y Nanotecnologías, Instituto Nacional
de Tecnología Industrial, Av. Gral. Paz 5445, 1560 San Martín, Buenos
Aires, Argentina
- Instituto
de Nanosistemas, Escuela de Bio y Nanotecnologías, UNSAM-CONICET, Av. 25 de Mayo 1169, 1650 San Martín, Provincia de Buenos Aires, Argentina
| | - Sol N. Fernández
- INTI-Micro
y Nanotecnologías, Instituto Nacional
de Tecnología Industrial, Av. Gral. Paz 5445, 1560 San Martín, Buenos
Aires, Argentina
- Instituto
de Nanosistemas, Escuela de Bio y Nanotecnologías, UNSAM-CONICET, Av. 25 de Mayo 1169, 1650 San Martín, Provincia de Buenos Aires, Argentina
- Instituto
de Calidad Industrial (INCALIN-UNSAM), Av. 25 de Mayo y Francia, 1650 San Martín, Provincia
de Buenos Aires Argentina
| | - Gustavo Giménez
- INTI-Micro
y Nanotecnologías, Instituto Nacional
de Tecnología Industrial, Av. Gral. Paz 5445, 1560 San Martín, Buenos
Aires, Argentina
| | - Gabriel Ybarra
- INTI-Micro
y Nanotecnologías, Instituto Nacional
de Tecnología Industrial, Av. Gral. Paz 5445, 1560 San Martín, Buenos
Aires, Argentina
| | - Galo J. A. A. Soler-Illia
- Instituto
de Nanosistemas, Escuela de Bio y Nanotecnologías, UNSAM-CONICET, Av. 25 de Mayo 1169, 1650 San Martín, Provincia de Buenos Aires, Argentina
| |
Collapse
|
4
|
Pardehkhorram R, Andrieu-Brunsen A. Pushing the limits of nanopore transport performance by polymer functionalization. Chem Commun (Camb) 2022; 58:5188-5204. [PMID: 35394003 DOI: 10.1039/d2cc01164f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inspired by the design and performance of biological pores, polymer functionalization of nanopores has emerged as an evolving field to advance transport performance within the last few years. This feature article outlines developments in nanopore functionalization and the resulting transport performance including gating based on electrostatic interaction, wettability and ligand binding, gradual transport controlled by polymerization as well as functionalization-based asymmetric nanopore and nanoporous material design going towards the transport direction. Pushing the limits of nanopore transport performance and thus reducing the performance gap between biological and technological pores is strongly related to advances in polymerization chemistry and their translation into nanopore functionalization. Thereby, the effect of the spatial confinement has to be considered for polymer functionalization as well as for transport regulation, and mechanistic understanding is strongly increased by combining experiment and theory. A full mechanistic understanding together with highly precise nanopore structure design and polymer functionalization is not only expected to improve existing application of nanoporous materials but also opens the door to new technologies. The latter might include out of equilibrium devices, ionic circuits, or machine learning based sensors.
Collapse
Affiliation(s)
- Raheleh Pardehkhorram
- Macromolecular Chemistry, Smart Membranes, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| | - Annette Andrieu-Brunsen
- Macromolecular Chemistry, Smart Membranes, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| |
Collapse
|
5
|
Layer-selective functionalisation in mesoporous double layer via iniferter initiated polymerisation for nanoscale step gradient formation. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Stanzel M, Zhao L, Mohammadi R, Pardehkhorram R, Kunz U, Vogel N, Andrieu-Brunsen A. Simultaneous Nanolocal Polymer and In Situ Readout Unit Placement in Mesoporous Separation Layers. Anal Chem 2021; 93:5394-5402. [PMID: 33724794 PMCID: PMC8027984 DOI: 10.1021/acs.analchem.0c04446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/24/2021] [Indexed: 11/28/2022]
Abstract
Bioinspired solid-state nanopores and nanochannels have attracted interest in the last two decades, as they are envisioned to advance future sensing, energy conversion, and separation concepts. Although much effort has been made regarding functionalization of these materials, multifunctionality and accurate positioning of functionalities with nanoscale precision still remain challenging. However, this precision is necessary to meet transport performance and complexity of natural pores in living systems, which are often based on nonequilibrium states and compartmentalization. In this work, a nanolocal functionalization and simultaneous localized sensing strategy inside a filtering mesoporous film using precisely placed plasmonic metal nanoparticles inside mesoporous films with pore accessibility control is demonstrated. A single layer of gold nanoparticles is incorporated into mesoporous thin films with precise spatial control along the nanoscale layer thickness. The local surface plasmon resonance is applied to induce a photopolymerization leading to a nanoscopic polymer shell around the particles and thus nanolocal polymer placement inside the mesoporous material. As near-field modes are sensitive to the dielectric properties of their surrounding, the in situ sensing capability is demonstrated using UV-vis spectroscopy. It is demonstrated that the sensing sensitivity only slightly decreases upon functionalization. The presented nanolocal placement of responsive functional polymers into nanopores offers a simultaneous filtering and nanoscopic readout function. Such a nanoscale local control is envisioned to have a strong impact onto the development of new transport and sensor concepts, especially as the system can be developed into higher complexity using different metal nanoparticles and additional design of mesoporous film filtering properties.
Collapse
Affiliation(s)
- Mathias Stanzel
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Lucy Zhao
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Reza Mohammadi
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
| | - Raheleh Pardehkhorram
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Ulrike Kunz
- Department
of Materials and Earth Sciences, Physical Metallurgy Group, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
| | - Annette Andrieu-Brunsen
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
7
|
Recent trends in nanopore polymer functionalization. Curr Opin Biotechnol 2020; 63:200-209. [PMID: 32387643 DOI: 10.1016/j.copbio.2020.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Functional nanopores play an essential role in many biotechnological applications such as sensing, or drug delivery. Prominent examples are polymer functionalized ceramic or solid state nanopores. Intensive research efforts led to a discovery of a plethora of polymer functionalized nanopores demonstrating gated molecular transport upon basically all common stimuli. Nevertheless, nature's biological pore transport precision is unreached. This can be, among others, ascribed to limits in design precision especially with respect to functionalization. Recent trends in polymer functionalized nanopores address the role of confinement and polymerization control, strategies toward more sustainable reaction conditions, such as visible light initiation and strategies toward nanoscale local placement of polymer functionalization. The resulting multi-stimuli responsive nanopore performance enables concerted release or transport, side selective separation and selective detection.
Collapse
|
8
|
Herzog N, Hübner H, Rüttiger C, Gallei M, Andrieu-Brunsen A. Functional Metalloblock Copolymers for the Preparation and In Situ Functionalization of Porous Silica Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4015-4024. [PMID: 32267702 PMCID: PMC7360126 DOI: 10.1021/acs.langmuir.0c00245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Stimuli-responsive mesoporous silica films were prepared by evaporation-induced self-assembly through the physical entrapment of a functional metalloblock copolymer structuring agent, which simultaneously served to functionalize the mesopore. After end-functionalization with a silane group, the applied functional metalloblock copolymers were covalently integrated into the silica mesopore wall. In addition, they were partly degraded after the formation of the mesoporous film, which enabled the precise design of accessible mesopores. These polymer-silica hybrid materials exhibited remarkable and gating ionic permselectivity and offer the potential for highly precise pore filling design and combination with high-throughput printing techniques. This in situ functionalization strategy of mesoporous silica using responsive metalloblock copolymers has the potential to improve how we approach the design of complex architectures at the nanoscale for tailored transport. This functionalization strategy paves the way for a variety of technologies based on molecular transport in nanoscale pores, including separation, sensing, catalysis, and energy conversion.
Collapse
Affiliation(s)
- Nicole Herzog
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technical University of Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Hanna Hübner
- Chair
in Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany
| | - Christian Rüttiger
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technical University of Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Markus Gallei
- Chair
in Polymer Chemistry, Saarland University, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany
| | - Annette Andrieu-Brunsen
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technical University of Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| |
Collapse
|