1
|
Li H, Tolmachev D, Batys P, Sammalkorpi M, Lutkenhaus JL. Solvent-Responsive Glass Transition Behavior of Polyelectrolyte Complexes. Macromolecules 2025; 58:292-303. [PMID: 39831290 PMCID: PMC11741136 DOI: 10.1021/acs.macromol.4c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Polyelectrolyte complexes (PECs) have attracted considerable attention owing to their unique physicochemical properties and potential applications as smart materials. Herein, the glass transitions of PECs solvated with varying alcohols are investigated in poly(diallyldimethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes by using modulated differential scanning calorimetry (MDSC). Solvents with one or two hydroxyl groups are selected to examine the effect of PAA-solvent interactions on the glass transition temperature (T g). Except for glycerol, all alcohol solvents yield PECs with detectable T g's and plasticization behavior. Furthermore, a linear relationship for 1/T g and the natural logarithm of the number of hydroxyl groups to intrinsic ion pair ratio [ln(n hydroxyl/n intrinsic-ion-pair)] is found. This result is significant because prior work demonstrated the relationship only for water and no other solvents. All-atom molecular dynamics (MD) simulations analyze the ability of the solvent to form hydrogen bonds via the solvent's OH groups to the PAA, revealing that the solvent molecule size and available hydroxyl groups govern the change in the glass transition. Overall, the clear dependence of a PEC's glass transition on the solvent's chemical structure provides a simple guideline for predicting their relationship.
Collapse
Affiliation(s)
- Hongwei Li
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College
Station, Texas 77843, United States
| | - Dmitry Tolmachev
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, 00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, 00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77840, United States
| |
Collapse
|
2
|
Roman HE. Polymers in Physics, Chemistry and Biology: Behavior of Linear Polymers in Fractal Structures. Polymers (Basel) 2024; 16:3400. [PMID: 39684144 DOI: 10.3390/polym16233400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/11/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
We start presenting an overview on recent applications of linear polymers and networks in condensed matter physics, chemistry and biology by briefly discussing selected papers (published within 2022-2024) in some detail. They are organized into three main subsections: polymers in physics (further subdivided into simulations of coarse-grained models and structural properties of materials), chemistry (quantum mechanical calculations, environmental issues and rheological properties of viscoelastic composites) and biology (macromolecules, proteins and biomedical applications). The core of the work is devoted to a review of theoretical aspects of linear polymers, with emphasis on self-avoiding walk (SAW) chains, in regular lattices and in both deterministic and random fractal structures. Values of critical exponents describing the structure of SAWs in different environments are updated whenever available. The case of random fractal structures is modeled by percolation clusters at criticality, and the issue of multifractality, which is typical of these complex systems, is illustrated. Applications of these models are suggested, and references to known results in the literature are provided. A detailed discussion of the reptation method and its many interesting applications are provided. The problem of protein folding and protein evolution are also considered, and the key issues and open questions are highlighted. We include an experimental section on polymers which introduces the most relevant aspects of linear polymers relevant to this work. The last two sections are dedicated to applications, one in materials science, such as fractal features of plasma-treated polymeric materials surfaces and the growth of polymer thin films, and a second one in biology, by considering among others long linear polymers, such as DNA, confined within a finite domain.
Collapse
Affiliation(s)
- Hector Eduardo Roman
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| |
Collapse
|
3
|
Kastinen T, Batys P, Tolmachev D, Laasonen K, Sammalkorpi M. Ion-Specific Effects on Ion and Polyelectrolyte Solvation. Chemphyschem 2024; 25:e202400244. [PMID: 38712639 DOI: 10.1002/cphc.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Ion-specific effects on aqueous solvation of monovalent counter ions, Na+ ${^+ }$ , K+ ${^+ }$ , Cl- ${^- }$ , and Br- ${^- }$ , and two model polyelectrolytes (PEs), poly(styrene sulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA) were here studied with ab initio molecular dynamics (AIMD) and classical molecular dynamics (MD) simulations based on the OPLS-aa force-field which is an empirical fixed point-charge force-field. Ion-specific binding to the PE charge groups was also characterized. Both computational methods predict similar response for the solvation of the PEs but differ notably in description of ion solvation. Notably, AIMD captures the experimentally observed differences in Cl- ${^- }$ and Br- ${^- }$ anion solvation and binding with the PEs, while the classical MD simulations fail to differentiate the ion species response. Furthermore, the findings show that combining AIMD with the computationally less costly classical MD simulations allows benefiting from both the increased accuracy and statistics reach.
Collapse
Affiliation(s)
- Tuuva Kastinen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere University, Finland
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239, Krakow, Poland
| | - Dmitry Tolmachev
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| | - Kari Laasonen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| |
Collapse
|
4
|
Lalwani S, Hellikson K, Batys P, Lutkenhaus JL. Counter Anion Type Influences the Glass Transition Temperature of Polyelectrolyte Complexes. Macromolecules 2024; 57:4695-4705. [PMID: 38827958 PMCID: PMC11140738 DOI: 10.1021/acs.macromol.3c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Salt acts as a plasticizer in polyelectrolyte complexes (PECs), which impacts the physical, thermal, and mechanical properties, thus having implications in applications, such as drug delivery, energy storage, and smart coatings. Added salt disrupts polycation-polyanion intrinsic ion pairs, lowering a hydrated PEC's glass transition temperature (Tg). However, the relative influence of counterion type on the PEC's Tg is not well understood. Here, the effect of anion type (NaCl, NaBr, NaNO3, and NaI) on the Tg of solid-like, hydrated PECs composed of poly(diallydimethylammonium) (PDADMA)-poly(styrenesulfonate) (PSS) is investigated. With increasing the chaotropic nature of the salt anion, the Tg decreases. The relative differences are attributed to the doping level, the amount of bound water, the mobility of water molecules within the PECs, and the strength of interactions between the PEs. For all studied salt concentrations and salt types, the Tg followed the scaling of -1/Tg ≈ ln([IP]/[H2O]), in which [IP]/[H2O] is the ratio of intrinsic pairs to water. The scaling estimates that about 7 to 17% of the intrinsic ion pairs should be weakened for the PEC to partake in a glass transition. Put together, this study highlights that the Tg in PECs is impacted by the salt anion, but the mechanism of the glass transition remains unchanged.
Collapse
Affiliation(s)
- Suvesh
Manoj Lalwani
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kayla Hellikson
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow PL-30239, Poland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77840, United States
| |
Collapse
|
5
|
Persano F, Malitesta C, Mazzotta E. Cellulose-Based Hydrogels for Wastewater Treatment: A Focus on Metal Ions Removal. Polymers (Basel) 2024; 16:1292. [PMID: 38732760 PMCID: PMC11085632 DOI: 10.3390/polym16091292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The rapid worldwide industrial growth in recent years has made water contamination by heavy metals a problem that requires an immediate solution. Several strategies have been proposed for the decontamination of wastewater in terms of heavy metal ions. Among these, methods utilizing adsorbent materials are preferred due to their cost-effectiveness, simplicity, effectiveness, and scalability for treating large volumes of contaminated water. In this context, heavy metal removal by hydrogels based on naturally occurring polymers is an attractive approach for industrial wastewater remediation as they offer significant advantages, such as an optimal safety profile, good biodegradability, and simple and low-cost procedures for their preparation. Hydrogels have the ability to absorb significant volumes of water, allowing for the effective removal of the dissolved pollutants. Furthermore, they can undergo surface chemical modifications which can further improve their ability to retain different environmental pollutants. This review aims to summarize recent advances in the application of hydrogels in the treatment of heavy metal-contaminated wastewater, particularly focusing on hydrogels based on cellulose and cellulose derivatives. The reported studies highlight how the adsorption properties of these materials can be widely modified, with a wide range of adsorption capacity for different heavy metal ions varying between 2.3 and 2240 mg/g. The possibility of developing new hydrogels with improved sorption performances is also discussed in the review, with the aim of improving their effective application in real scenarios, indicating future directions in the field.
Collapse
Affiliation(s)
| | | | - Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy; (F.P.); (C.M.)
| |
Collapse
|
6
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
7
|
Eneh C, Nixon K, Lalwani SM, Sammalkorpi M, Batys P, Lutkenhaus JL. Solid-Liquid-Solution Phases in Poly(diallyldimethylammonium)/Poly(acrylic acid) Polyelectrolyte Complexes at Varying Temperatures. Macromolecules 2024; 57:2363-2375. [PMID: 38495383 PMCID: PMC10938883 DOI: 10.1021/acs.macromol.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
The coacervation and complexation of oppositely charged polyelectrolytes are dependent on numerous environmental and preparatory factors, but temperature is often overlooked. Temperature effects remain unclear because the temperature dependence of both the dielectric constant and polymer-solvent interaction parameter can yield lower and/or upper critical solution phase behaviors for PECs. Further, secondary interactions, such as hydrogen bonding, can affect the temperature response of a PEC. That is, mixtures of oppositely charged polyelectrolytes can exhibit phase separation upon lowering and/or increasing the mixture's temperature. Here, the phase behavior of poly(diallylmethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes under varying KBr ionic strengths, mixing ratios, and temperatures at a fixed pH (in which PAA hydrogen bonding can occur) is examined. At room temperature, the PDADMA/PAA PECs exhibit four different phase states: precipitate, coexisting precipitate and coacervate, solid-like gel, and coacervate. Variable-temperature optical microscopy reveals the upper critical solution temperature (UCST) at which each phase transitioned to a solution state. Interestingly, the UCST value is highly dependent on the original phase of the PEC, in which solid-like precipitates exhibit higher UCST values. Large-scale all-atom molecular dynamics (MD) simulations support that precipitates exhibit kinetic trapping, which may contribute to the higher UCST values observed in the experiment. Taken together, this study highlights the significance of temperature on the phase behavior of PECs, which may play a larger role in stimuli-responsive materials, membraneless organelles, and separations applications.
Collapse
Affiliation(s)
- Chikaodinaka
I. Eneh
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kevin Nixon
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Suvesh Manoj Lalwani
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, Aalto 00076, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto 00076, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, Aalto 00076, Finland
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow 30-239, Poland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77840, United States
| |
Collapse
|
8
|
Li H, Lalwani SM, Eneh CI, Braide T, Batys P, Sammalkorpi M, Lutkenhaus JL. A Perspective on the Glass Transition and the Dynamics of Polyelectrolyte Multilayers and Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14823-14839. [PMID: 37819874 PMCID: PMC10863056 DOI: 10.1021/acs.langmuir.3c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Polyelectrolyte multilayers (PEMs) or polyelectrolyte complexes (PECs), formed by layer-by-layer assembly or the mixing of oppositely charged polyelectrolytes (PEs) in aqueous solution, respectively, have potential applications in health, energy, and the environment. PEMs and PECs are very tunable because their structure and properties are influenced by factors such as pH, ionic strength, salt type, humidity, and temperature. Therefore, it is increasingly important to understand how these factors affect PECs and PEMs on a molecular level. In this Feature Article, we summarize our contributions to the field in the development of approaches to quantify the swelling, thermal properties, and dynamic mechanical properties of PEMs and PECs. First, the role of water as a plasticizer and in the glass-transition temperature (Tg) in both strong poly(diallyldimethylammonium)/poly(sodium 4-styrenesulfonate) (PDADMA/PSS) and weak poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) systems is presented. Then, factors influencing the dynamics of PECs and PEMs are discussed. We also reflect on the swelling of PEMs in response to different salts and solvent additives. Last, the nature of water's microenvironment in PEMs/PECs is discussed. A special emphasis is placed on experimental techniques, along with molecular simulations. Taken together, this review presents an outlook and offers recommendations for future research directions, such as studying the additional effects of hydrogen-bonding hydrophobic interactions.
Collapse
Affiliation(s)
- Hongwei Li
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Suvesh Manoj Lalwani
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Chikaodinaka I. Eneh
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Tamunoemi Braide
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy
of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, 00076 Aalto, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77840, United States
| |
Collapse
|
9
|
Li J, Li X, Lee D, Yun J, Wu A, Jiang C, Lee SW. Engineering of Solvation Entropy by Poly(4-styrenesulfonic acid) Additive in an Aqueous Electrochemical System for Enhanced Low-Grade Heat Harvesting. NANO LETTERS 2023. [PMID: 37368326 DOI: 10.1021/acs.nanolett.3c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The thermally regenerative electrochemical cycle (TREC) is a reliable and efficient approach to converting low-grade heat into electricity. A high temperature coefficient (α) is the key to maximize the energy conversion efficiency of the TREC system. In this study, we present significant improvement of α of a Prussian blue analogue (PBA)-based electrochemical cell by adding poly(4-styrenesulfonic acid) (PSS) to the electrolyte. Raman spectra showed that water-soluble charged polymers strongly affect the ion hydration structure and increase the entropy change (ΔS) during ion intercalation in PBA. A large α of -2.01 mV K-1 and high absolute heat-to-electricity conversion efficiency up to 1.83% was achieved with a TREC cell in the temperature range 10-40 °C. This study provides a fundamental understanding of the origin of α and a facile method to boosting the temperature coefficient for building a highly efficient low-grade heat harvesting system.
Collapse
Affiliation(s)
- Jia Li
- Rolls-Royce@NTU Corporate Lab, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoya Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Donghoon Lee
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jeonghun Yun
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Angyin Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Cheng Jiang
- Rolls-Royce@NTU Corporate Lab, Nanyang Technological University, Singapore 639798, Singapore
| | - Seok Woo Lee
- Rolls-Royce@NTU Corporate Lab, Nanyang Technological University, Singapore 639798, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
10
|
Klačić T, Bohinc K, Kovačević D. Suppressing the Hofmeister Anion Effect by Thermal Annealing of Thin-Film Multilayers Made of Weak Polyelectrolytes. Macromolecules 2022; 55:9571-9582. [PMID: 36397937 PMCID: PMC9661731 DOI: 10.1021/acs.macromol.2c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Indexed: 11/30/2022]
Abstract
![]()
Thin films made of
weak polyelectrolytes poly(allylamine hydrochloride)
(PAH) and poly(acrylic acid) (PAA) have been fabricated on silicon
wafers using the layer-by-layer (LbL) method. To study the influence
of counteranion type on the growth and properties of PAH/PAA multilayers,
the nature of the supporting sodium salt was varied from cosmotropic
to chaotropic anions (F–, Cl–,
and ClO4–). Results of ellipsometry and
AFM measurements indicate that the film thickness and surface roughness
systematically increase on the order F– < Cl– < ClO4–. Furthermore,
we found that the hydrophobicity of the PAH/PAA multilayer also follows
the described trend when a polycation is the terminating layer. However,
the heating of PAH/PAA multilayers to 60 °C during the LbL assembly
suppressed the influence of background anions on the multilayer formation
and properties. On the basis of the obtained results, it could be
concluded that thermal annealing induces changes at the polymer–air
interface in the sense of reorientation and migration of polymer chains.
Collapse
Affiliation(s)
- Tin Klačić
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Davor Kovačević
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Phase Behavior of Ion-Containing Polymers in Polar Solvents: Predictions from a Liquid-State Theory with Local Short-Range Interactions. Polymers (Basel) 2022; 14:polym14204421. [PMID: 36297998 PMCID: PMC9612006 DOI: 10.3390/polym14204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The thermodynamic phase behavior of charged polymers is a crucial property underlying their role in biology and various industrial applications. A complete understanding of the phase behaviors of such polymer solutions remains challenging due to the multi-component nature of the system and the delicate interplay among various factors, including the translational entropy of each component, excluded volume interactions, chain connectivity, electrostatic interactions, and other specific interactions. In this work, the phase behavior of partially charged ion-containing polymers in polar solvents is studied by further developing a liquid-state (LS) theory with local shortrange interactions. This work is based on the LS theory developed for fully-charged polyelectrolyte solutions. Specific interactions between charged groups of the polymer and counterions, between neutral segments of the polymer, and between charged segments of the polymer are incorporated into the LS theory by an extra Helmholtz free energy from the perturbed-chain statistical associating fluid theory (PC-SAFT). The influence of the sequence structure of the partially charged polymer is modeled by the number of connections between bonded segments. The effects of chain length, charge fraction, counterion valency, and specific short-range interactions are explored. A computational App for salt-free polymer solutions is developed and presented, which allows easy computation of the binodal curve and critical point by specifying values for the relevant model parameters.
Collapse
|
12
|
Chen S, Wang ZG. Driving force and pathway in polyelectrolyte complex coacervation. Proc Natl Acad Sci U S A 2022; 119:e2209975119. [PMID: 36037377 PMCID: PMC9457374 DOI: 10.1073/pnas.2209975119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
There is notable discrepancy between experiments and coarse-grained model studies regarding the thermodynamic driving force in polyelectrolyte complex coacervation: experiments find the free energy change to be dominated by entropy, while simulations using coarse-grained models with implicit solvent usually report a large, even dominant energetic contribution in systems with weak to intermediate electrostatic strength. Here, using coarse-grained, implicit-solvent molecular dynamics simulation combined with thermodynamic analysis, we study the potential of mean force (PMF) in the two key stages on the coacervation pathway for symmetric polyelectrolyte mixtures: polycation-polyanion complexation and polyion pair-pair condensation. We show that the temperature dependence in the dielectric constant of water gives rise to a substantial entropic contribution in the electrostatic interaction. By accounting for this electrostatic entropy, which is due to solvent reorganization, we find that under common conditions (monovalent ions, room temperature) for aqueous systems, both stages are strongly entropy-driven with negligible or even unfavorable energetic contributions, consistent with experimental results. Furthermore, for weak to intermediate electrostatic strengths, this electrostatic entropy, rather than the counterion-release entropy, is the primary entropy contribution. From the calculated PMF, we find that the supernatant phase consists predominantly of polyion pairs with vanishingly small concentration of bare polyelectrolytes, and we provide an estimate of the spinodal of the supernatant phase. Finally, we show that prior to contact, two neutral polyion pairs weakly attract each other by mutually induced polarization, providing the initial driving force for the fusion of the pairs.
Collapse
Affiliation(s)
- Shensheng Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
13
|
Yang X, Scacchi A, Vahid H, Sammalkorpi M, Ala-Nissila T. Interaction between two polyelectrolytes in monovalent aqueous salt solutions. Phys Chem Chem Phys 2022; 24:21112-21121. [PMID: 36018307 DOI: 10.1039/d2cp02066a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use the recently developed soft-potential-enhanced Poisson-Boltzmann (SPB) theory to study the interaction between two parallel polyelectrolytes (PEs) in monovalent ionic solutions in the weak-coupling regime. The SPB theory is fitted to ion distributions from coarse-grained molecular dynamics (MD) simulations and benchmarked against all-atom MD modelling for poly(diallyldimethylammonium) (PDADMA). We show that the SPB theory is able to accurately capture the interactions between two PEs at distances beyond the PE radius. For PDADMA positional correlations between the charged groups lead to locally asymmetric PE charge and ion distributions. This gives rise to small deviations from the SPB prediction that appear as short-range oscillations in the potential of mean force. Our results suggest that the SPB theory can be an efficient way to model interactions in chemically specific complex PE systems.
Collapse
Affiliation(s)
- Xiang Yang
- Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland.
| | - Alberto Scacchi
- Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland. .,Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.,Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Hossein Vahid
- Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland. .,Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.,Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.,Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.,Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Tapio Ala-Nissila
- Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland. .,QTF Center of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland.,Interdisciplinary Center for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| |
Collapse
|
14
|
Eneh CI, Kastinen T, Oka S, Batys P, Sammalkorpi M, Lutkenhaus JL. Quantification of Water-Ion Pair Interactions in Polyelectrolyte Multilayers Using a Quartz Crystal Microbalance Method. ACS POLYMERS AU 2022; 2:287-298. [PMID: 35971421 PMCID: PMC9374166 DOI: 10.1021/acspolymersau.2c00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Water existing within
thin polyelectrolyte multilayer (PEM) films
has significant influence on their physical, chemical, and thermal
properties, having implications for applications including energy
storage, smart coatings, and biomedical systems. Ionic strength, salt
type, and terminating layer are known to influence PEM swelling. However,
knowledge of water’s microenvironment within a PEM, whether
that water is affiliated with intrinsic or extrinsic ion pairs, remains
lacking. Here, we examine the influence of both assembly and post-assembly
conditions on the water–ion pair interactions of poly(styrene
sulfonate)/poly(diallyldimethylammonium) (PSS/PDADMA) PEMs in NaCl
and KBr. This is accomplished by developing a methodology in which
quartz crystal microbalance with dissipation monitoring is applied
to estimate the number of water molecules affiliated with an ion pair
(i), as well as the hydration coefficient, πsaltH2O. PSS/PDADMA PEMs are assembled in varying ionic strengths of either
NaCl and KBr and then exposed post-assembly to increasing ionic strengths
of matching salt type. A linear relationship between the total amount
of water per intrinsic ion pair and the post-assembly salt concentration
was obtained at post-assembly salt concentrations >0.5 M, yielding
estimates for both i and πsaltH2O. We observe higher
values of i and πsaltH2O in KBr-assembled PEMs due
to KBr being more effective in doping the assembly because of KBr’s
more chaotropic nature as compared to NaCl. Lastly, when PSS is the
terminating layer, i decreases in value due to PSS’s
hydrophobic nature. Classical and ab initio molecular
dynamics provide a microstructural view as to how NaCl and KBr interact
with individual polyelectrolytes and the involved water shells. Put
together, this study provides further insight into the understanding
of existing water microenvironments in PEMs and the effects of both
assembly and post-assembly conditions.
Collapse
Affiliation(s)
- Chikaodinaka I Eneh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Tuuva Kastinen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland.,Faculty of Engineering and Natural Sciences, Chemistry & Advanced Materials, Tampere University, P.O. Box 541, 33014 Tampere, Finland.,Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Suyash Oka
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow 30-239, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland.,Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland.,Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|
15
|
Khavani M, Batys P, Lalwani SM, Eneh CI, Leino A, Lutkenhaus JL, Sammalkorpi M. Effect of Ethanol and Urea as Solvent Additives on PSS–PDADMA Polyelectrolyte Complexation. Macromolecules 2022; 55:3140-3150. [PMID: 35492577 PMCID: PMC9052311 DOI: 10.1021/acs.macromol.1c02533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/27/2022] [Indexed: 11/28/2022]
Abstract
![]()
The effect of urea
and ethanol additives on aqueous solutions of
poly(styrenesulfonate) (PSS), poly(diallyldimethylammonium)
(PDADMA), and their complexation interactions are examined here via
molecular dynamics simulations, interconnected laser Doppler velocimetry,
and quartz crystal microbalance with dissipation. It is found that
urea and ethanol have significant, yet opposite influences on PSS
and PDADMA solvation and interactions. Notably, ethanol is systematically
depleted from solvating the charge groups but condenses at the hydrophobic
backbone of PSS. As a consequence of the poorer solvation environment
for the ionic groups, ethanol significantly increases the extent of
counterion condensation. On the other hand, urea readily solvates
both polyelectrolytes and replaces water in solvation. For PSS, urea
causes disruption of the hydrogen bonding of the PSS headgroup with
water. In PSS–PDADMA complexation, these differences influence
changes in the binding configurations relative to the case of pure
water. Specifically, added ethanol leads to loosening of the complex
caused by the enhancement of counterion condensation; added urea pushes
polyelectrolyte chains further apart because of the formation of a
persistent solvation shell. In total, we find that the effects of
urea and ethanol rise from changes in the microscopic-level solvation
environment and conformation resulting from solvating water being
replaced by the additive. The differences cannot be explained purely
via considering relative permittivity and continuum level electrostatic
screening. Taken together, the findings could bear significance in
tuning polyelectrolyte materials’ mechanical and swelling characteristics
via solution additives.
Collapse
Affiliation(s)
- Mohammad Khavani
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | | | | | - Anna Leino
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | | | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy of Finland Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
16
|
Lalwani SM, Batys P, Sammalkorpi M, Lutkenhaus JL. Relaxation Times of Solid-like Polyelectrolyte Complexes of Varying pH and Water Content. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suvesh M. Lalwani
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16100, FI-00076 Aalto, Finland
| | - Jodie L. Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Ion-Specific and Solvent Effects on PDADMA–PSS Complexation and Multilayer Formation. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5030038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among various parameters that influence the formation of polyelectrolyte complexes and multilayers, special emphasis should be placed on ion-specific and solvent effects. In our study, we systematically examined the above-mentioned effects on poly(diallyldimethylammonium chloride) (PDADMACl)-sodium poly(4-styrenesulfonate) (NaPSS) complexation in solution and at the surface by means of dynamic light scattering, ellipsometry and atomic force microscopy measurements. As solvents, we used water and water/ethanol mixture. The obtained results confirm the importance of ion-specific and solvent effects on complexes prepared in solution, as well as on multilayers built up on a silica surface. The experiments in mixed solvent solution showed that at a higher ethanol mole fraction, the decrease in monomer titrant to titrand ratio, at which the increase in the size of complexes is observed, takes place. The difference between chloride and bromide ions was more pronounced at a higher mole fraction of ethanol and in the case of positive complex formation, suggesting that the larger amount of bromide ions could be condensed to the polycation chain. These findings are in accordance with the results we obtained for polyelectrolyte multilayers and could be helpful for designing polyelectrolyte multilayers with tuned properties needed for various applications, primarily in the field of biomedicine.
Collapse
|
18
|
Prabhu VM. Interfacial tension in polyelectrolyte systems exhibiting associative liquid–liquid phase separation. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Batys P, Fedorov D, Mohammadi P, Lemetti L, Linder MB, Sammalkorpi M. Self-Assembly of Silk-like Protein into Nanoscale Bicontinuous Networks under Phase-Separation Conditions. Biomacromolecules 2021; 22:690-700. [PMID: 33406825 DOI: 10.1021/acs.biomac.0c01506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liquid-liquid phase separation of biomacromolecules is crucial in various inter- and extracellular biological functions. This includes formation of condensates to control, e.g., biochemical reactions and structural assembly. The same phenomenon is also found to be critically important in protein-based high-performance biological materials. Here, we use a well-characterized model triblock protein system to demonstrate the molecular level formation mechanism and structure of its condensate. Large-scale molecular modeling supported by analytical ultracentrifuge characterization combined with our earlier high magnification precision cryo-SEM microscopy imaging leads to deducing that the condensate has a bicontinuous network structure. The bicontinuous network rises from the proteins having a combination of sites with stronger mutual attraction and multiple weakly attractive regions connected by flexible, multiconfigurational linker regions. These attractive sites and regions behave as stickers of varying adhesion strength. For the examined model triblock protein construct, the β-sheet-rich end units are the stronger stickers, while additional weaker stickers, contributing to the condensation affinity, rise from spring-like connections in the flexible middle region of the protein. The combination of stronger and weaker sticker-like connections and the flexible regions between the stickers result in a versatile, liquid-like, self-healing structure. This structure also explains the high flexibility, easy deformability, and diffusion of the proteins, decreasing only 10-100 times in the bicontinuous network formed in the condensate phase in comparison to dilute protein solution. The here demonstrated structure and condensation mechanism of a model triblock protein construct via a combination of the stronger binding regions and the weaker, flexible sacrificial-bond-like network as well as its generalizability via polymer sticker models provide means to not only understand intracellular organization, regulation, and cellular function but also to identify direct control factors for and to enable engineering improved protein and polymer constructs to enhance control of advanced fiber materials, smart liquid biointerfaces, or self-healing matrices for pharmaceutics or bioengineering materials.
Collapse
Affiliation(s)
- Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Dmitrii Fedorov
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland
| | - Laura Lemetti
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.,Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
20
|
Tiwari P, Bharti I, Bohidar HB, Quadir S, Joshi MC, Arfin N. Complex Coacervation and Overcharging during Interaction between Hydrophobic Zein and Hydrophilic Laponite in Aqueous Ethanol Solution. ACS OMEGA 2020; 5:33064-33074. [PMID: 33403268 PMCID: PMC7774070 DOI: 10.1021/acsomega.0c04647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
In this paper, for the first time, we have reported the formation of complex coacervate during interaction between hydrophobic protein, zein, and hydrophilic nanoclay, Laponite, in a 60% v/v ethanol solution at pH 4. Dynamic light scattering and viscosity measurements revealed the formation of zein-Laponite complexes during the interaction between zein at fixed concentration, C Z = 1 mg/mL, and varying concentrations of Laponite, C L (7.8 × 10-4 - 0.25% w/v). Further investigation of the zein-Laponite complexes using turbidity and zeta potential data showed that these complexes could be demarcated in three different regions: Region I, below the charge neutralization region (C Z = 1 mg/mL, C L ≤ 0.00625% w/v) where soluble complexes was formed during interaction between oppositely charged zein and Laponite; Region II, the charge neutralization region (C Z = 1 mg/mL, 0.00625 < C L ≤ 0.05% w/v) where zein-Laponite complexes form neutral coacervates; and Region III, the interesting overcharged coacervates region (C Z = 1 mg/mL, C L > 0.05% w/v). Investigation of coacervates using a fluorescence imaging technique showed that the size of neutral coacervates in region II was large (mean size = 1223.7 nm) owing to aggregation as compared to the small size of coacervates (mean size = 464.7 nm) in region III owing to repulsion between overcharged coacervates. Differential scanning calorimeter, DSC, revealed the presence of an ample amount of bound water in region III. The presence of bound water was evident from the presence of an additional peak at 107 °C in region III apart from normal enthalpy of evaporation of water from coacervates.
Collapse
Affiliation(s)
- Preeti Tiwari
- Soft
condense matter laboratory, Centre for Interdisciplinary Research
In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Indu Bharti
- Soft
condense matter laboratory, Centre for Interdisciplinary Research
In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Himadri B Bohidar
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shabina Quadir
- Multidisciplinary
Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohan C Joshi
- Multidisciplinary
Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Najmul Arfin
- Soft
condense matter laboratory, Centre for Interdisciplinary Research
In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
21
|
Manoj Lalwani S, Eneh CI, Lutkenhaus JL. Emerging trends in the dynamics of polyelectrolyte complexes. Phys Chem Chem Phys 2020; 22:24157-24177. [PMID: 33094301 DOI: 10.1039/d0cp03696j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polyelectrolyte complexes (PECs) are highly tunable materials that result from the phase separation that occurs upon mixing oppositely charged polymers. Over the years, they have gained interest due to their broad range of applications such as drug delivery systems, protective coatings, food packaging, and surface adhesives. In this review, we summarize the structure, phase transitions, chain dynamics, and rheological and thermal properties of PECs. Although most literature focuses upon the thermodynamics and application of PECs, this review highlights the fundamental role of salt and water on mechanical and thermal properties impacting the PEC's dynamics. A special focus is placed upon experimental results and techniques. Specifically, the review examines phase behaviour and salt partitioning in PECs, as well as different techniques used to measure diffusion coefficients, relaxation times, various superpositioning principles, glass transitions, and water microenvironments in PECs. This review concludes with future areas of opportunity in fundamental studies and best practices in reporting.
Collapse
Affiliation(s)
- Suvesh Manoj Lalwani
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Chikaodinaka I Eneh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA. and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, USA
| |
Collapse
|
22
|
Meng S, Ting JM, Wu H, Tirrell MV. Solid-to-Liquid Phase Transition in Polyelectrolyte Complexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00930] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Siqi Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey M. Ting
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hao Wu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
23
|
Batys P, Morga M, Bonarek P, Sammalkorpi M. pH-Induced Changes in Polypeptide Conformation: Force-Field Comparison with Experimental Validation. J Phys Chem B 2020; 124:2961-2972. [PMID: 32182068 PMCID: PMC7590956 DOI: 10.1021/acs.jpcb.0c01475] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Microsecond-long all-atom molecular dynamics (MD) simulations, circular dichroism, laser Doppler velocimetry, and dynamic light-scattering techniques have been used to investigate pH-induced changes in the secondary structure, charge, and conformation of poly l-lysine (PLL) and poly l-glutamic acid (PGA). The employed combination of the experimental methods reveals for both PLL and PGA a narrow pH range at which they are charged enough to form stable colloidal suspensions, maintaining their α-helix content above 60%; an elevated charge state of the peptides required for colloidal stability promotes the peptide solvation as a random coil. To obtain a more microscopic view on the conformations and to verify the modeling performance, peptide secondary structure and conformations rising in MD simulations are also examined using three different force fields, i.e., OPLS-AA, CHARMM27, and AMBER99SB*-ILDNP. Ramachandran plots reveal that in the examined setup the α-helix content is systematically overestimated in CHARMM27, while OPLS-AA overestimates the β-sheet fraction at lower ionization degrees. At high ionization degrees, the OPLS-AA force-field-predicted secondary structure fractions match the experimentally measured distribution most closely. However, the pH-induced changes in PLL and PGA secondary structure are reasonably captured only by the AMBER99SB*-ILDNP force field, with the exception of the fully charged PGA in which the α-helix content is overestimated. The comparison to simulations results shows that the examined force fields involve significant deviations in their predictions for charged homopolypeptides. The detailed mapping of secondary structure dependency on pH for the polypeptides, especially finding the stable colloidal α-helical regime for both examined peptides, has significant potential for practical applications of the charged homopolypeptides. The findings raise attention especially to the pH fine tuning as an underappreciated control factor in surface modification and self-assembly.
Collapse
Affiliation(s)
- Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Maria Morga
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Piotr Bonarek
- Department
of Physical Biochemistry, Faculty of Biochemistry, Biophysics and
Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science and Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
24
|
Eneh CI, Bolen MJ, Suarez-Martinez PC, Bachmann AL, Zimudzi TJ, Hickner MA, Batys P, Sammalkorpi M, Lutkenhaus JL. Fourier transform infrared spectroscopy investigation of water microenvironments in polyelectrolyte multilayers at varying temperatures. SOFT MATTER 2020; 16:2291-2300. [PMID: 32043105 DOI: 10.1039/c9sm02478f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyelectrolyte multilayers (PEMs) are thin films formed by the alternating deposition of oppositely charged polyelectrolytes. Water plays an important role in influencing the physical properties of PEMs, as it can act both as a plasticizer and swelling agent. However, the way in which water molecules distribute around and hydrate ion pairs has not been fully quantified with respect to both temperature and ionic strength. Here, we examine the effects of temperature and ionic strength on the hydration microenvironments of fully immersed poly(diallyldimethylammonium)/polystyrene sulfonate (PDADMA/PSS) PEMs. This is accomplished by tracking the OD stretch peak using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy at 0.25-1.5 M NaCl and 35-70 °C. The OD stretch peak is deconvoluted into three peaks: (1) high frequency water, which represents a tightly bound microenvironment, (2) low frequency water, which represents a loosely bound microenvironment, and (3) bulk water. In general, the majority of water absorbed into the PEM exists in a bound state, with little-to-no bulk water observed. Increasing temperature slightly reduces the amount of absorbed water, while addition of salt increases the amount of absorbed water. Finally, a van't Hoff analysis is applied to estimate the enthalpy (11-22 kJ mol-1) and entropy (48-79 kJ mol-1 K-1) of water exchanging from low to high frequency states.
Collapse
Affiliation(s)
- Chikaodinaka I Eneh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Matthew J Bolen
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Pilar C Suarez-Martinez
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Adam L Bachmann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Tawanda J Zimudzi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael A Hickner
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, PO Box 16100, 00076 Aalto, Finland and Department of Bioproducts and Biosystems, Aalto University, PO Box 16100, 00076 Aalto, Finland
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA. and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, USA
| |
Collapse
|