1
|
Klein Cerrejon D, Krupke H, Gao D, Paunović N, Sachs D, Leroux JC. Optimized suction patch design for enhanced transbuccal macromolecular drug delivery. J Control Release 2025; 380:875-891. [PMID: 39938719 DOI: 10.1016/j.jconrel.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Peptides represent a rapidly expanding class of drugs with broad therapeutic potential. However, due to their large molecular weight and susceptibility to degradation in the gastrointestinal tract, most peptide drugs are administered via subcutaneous injections. Despite extensive research, a painless broad delivery platform for these drugs is still lacking. Recently, an octopus-inspired buccal patch has shown promise in addressing this challenge by leveraging a synergistic combination of mechanical stretching and permeation enhancers. In this study, the patch and the loaded formulation were optimized to improve ease of use, scalability, and efficacy. Through assessments of mechanical properties, finite element simulations, and ex vivo experiments, we evaluated the effects of patch design and material, as well as the drug matrix composition and the formulation preparation methods on the delivery performance. A patch with a > 9-fold larger effective surface area, produced via mold casting of medical-grade silicone (shore hardness 50) and loaded with a lyophilized drug matrix, emerged as the most promising system. In beagle dogs, 30-min application of this patch resulted in a 14.6 % bioavailability for teriparatide (4118 g mol-1), while bioavailability of semaglutide (4114 g mol-1) was 9.6 times higher than that of the commercial tablet. This work showcases how systematic optimization of this technology can improve and simplify the buccal administration of macromolecular drugs, facilitating the clinical translation of this non-invasive dosage form.
Collapse
Affiliation(s)
- David Klein Cerrejon
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Hanna Krupke
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel Gao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Nevena Paunović
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - David Sachs
- Citus AG, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
2
|
Xu H, Zhi J, Chen B, Zhao S, Huang J, Bi C, Li L, Tian B, Liu Y, Zhang Y, Duan J, Yang F, He X, Xu K, Wu K, Wang T, Pham N, Ding X, Wen L. A Biomimetic Adhesive Disc for Robotic Adhesion Sliding Inspired by the Net-Winged Midge Larva. Soft Robot 2025; 12:95-108. [PMID: 39411787 DOI: 10.1089/soro.2023.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Net-winged midge larvae (Blephariceridae) are known for their remarkable ability to adhere to and crawl on the slippery surfaces of rocks in fast-flowing and turbulent alpine streams, waterfalls, and rivers. This remarkable performance can be attributed to the larvae's powerful ventral suckers. In this article, we first develop a theoretical model of the piston-driven sucker that considers the lubricated state of the contact area. We then implement a piston-driven robotic sucker featuring a V-shaped notch to explore the adhesion-sliding mechanism. Each biomimetic larval sucker has the unique feature of an anterior-facing V-shaped notch on its soft disc rim; it slides along the shear direction while the entire disc surface maintains powerful adhesion on the benthic substrate, just like the biological counterpart. We found that this biomimetic sucker can reversibly transit between "high friction" (4.26 ± 0.34 kPa) and "low friction" (0.41 ± 0.02 kPa) states due to the piston movement, resulting in a frictional enhancement of up to 93.9%. We also elucidate the frictional anisotropy (forward/backward force ratio: 0.81) caused by the V-shaped notch. To demonstrate the robotic application of this adhesion-sliding mechanism, we designed an underwater crawling robot Adhesion Sliding Robot-1 (ASR-1) equipped with two biomimetic ventral suckers. This robot can successfully crawl on a variety of substrates such as curved surfaces, sidewalls, and overhangs and against turbulent water currents with a flow speed of 2.4 m/s. In addition, we implemented a fixed-wing aircraft Adhesion Sliding Robot-2 (ASR-2) featuring midge larva-inspired suckers, enabling transit from rapid water surface gliding to adhesion sliding in an aquatic environment. This adhesion-sliding mechanism inspired by net-winged midge larvae may pave the way for future robots with long-term observation, monitoring, and tracking capabilities in a wide variety of aerial and aquatic environments.
Collapse
Affiliation(s)
- Haoyuan Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- The ShenYuan Honors College, Beihang University, Beijing, China
| | - Jiale Zhi
- CENTRALE PEKIN/School of General Engineering, Beihang University, Beijing, China
| | - Bohan Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Shuyong Zhao
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Jie Huang
- School of Aeronautic Science and Engineering, Beihang University, Beijing, China
| | - Chongze Bi
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Lei Li
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Bochen Tian
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Yuchen Liu
- CENTRALE PEKIN/School of General Engineering, Beihang University, Beijing, China
| | - Yiyuan Zhang
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - JinXi Duan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Fuqiang Yang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Xia He
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Kun Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Ke Wu
- INRIA, Villeneuve d'Ascq, France
| | - Tianmiao Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Nguyen Pham
- Imperial College London, London, United Kingdom
| | - Xilun Ding
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Li Wen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| |
Collapse
|
3
|
Kortman VG, de Vries E, Jovanova J, Sakes A. Unlocking Versatility: Magnetic-Actuated Deployable Suction Gripper for Complex Surface Handling. Soft Robot 2024; 11:1020-1031. [PMID: 38836749 DOI: 10.1089/soro.2023.0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Suction grippers offer a distinct advantage in their ability to handle a wide range of items. However, attaching these grippers to irregular and rough surfaces presents an ongoing challenge. To address this obstacle, this study explores the integration of magnetic intelligence into a soft suction gripper design, enabling fast external magnetic actuation of the attachment process. Additionally, miniaturization options are enhanced by implementing a compliant deploying mechanism. The resulting design is the first-of-its-kind magnetically-actuated deployable suction gripper featuring a thin magnetic membrane (Ø 50 mm) composed of carbonyl iron particles embedded in a silicone matrix. This membrane is supported by a frame made of superelastic nitinol wires that facilitate deployment. During experiments, the proof-of-principle prototype demonstrates successful attachment on a diverse range of curved surfaces in both dry and wet environments. The gripper achieves attachment on curved surfaces with radii of 50-75 mm, exerting a maximum attachment force of 2.89 ± 0.54 N. The current gripper design achieves a folding percentage of 75%, enabling it to fit into a Ø 12.5 mm tube and access hard-to-reach areas while maintaining sufficient surface area for attachment forces. The proposed prototype serves as a foundational steppingstone for further research in the development of reliable and effective magnetically-actuated suction grippers across various configurations. By addressing the limitations of attachment to irregular surfaces and exploring possibilities for miniaturization and precise control, this study opens new avenues for the practical application of suction grippers in diverse industries and scenarios.
Collapse
Affiliation(s)
- Vera G Kortman
- Department of BioMechanical Engineering, Faculty of 3mE, Delft University of Technology, Delft, The Netherlands
- Department of Marine and Transport Technology, Faculty of 3mE, Delft University of Technology, Delft, The Netherlands
| | - Ellen de Vries
- Department of BioMechanical Engineering, Faculty of 3mE, Delft University of Technology, Delft, The Netherlands
| | - Jovana Jovanova
- Department of Marine and Transport Technology, Faculty of 3mE, Delft University of Technology, Delft, The Netherlands
| | - Aimée Sakes
- Department of BioMechanical Engineering, Faculty of 3mE, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
4
|
Kumar N, Dalvi S, Sumant AV, Pastewka L, Jacobs TDB, Dhinojwala A. Small-scale roughness entraps water and controls underwater adhesion. SCIENCE ADVANCES 2024; 10:eadn8343. [PMID: 39110787 PMCID: PMC11305375 DOI: 10.1126/sciadv.adn8343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
While controlling underwater adhesion is critical for designing biological adhesives and in improving the traction of tires, haptics, or adhesives for health monitoring devices, it is hindered by a lack of fundamental understanding of how the presence of trapped water impedes interfacial bonding. Here, by using well-characterized polycrystal diamond surfaces and soft, nonhysteretic, low-surface energy elastomers, we show a reduction in adhesion during approach and four times higher adhesion during retraction as compared to the thermodynamic work of adhesion. Our findings reveal how the loading phase of contact is governed by the entrapment of water by ultrasmall (10-nanometer-scale) surface features. In contrast, the same nanofeatures that reduce adhesion during approach serve to increase adhesion during separation. The explanation for this counterintuitive result lies in the incompressibility-inextensibility of trapped water and the work needed to deform the polymer around water pockets. Unlike the well-known viscoelastic contribution to adhesion, this science unlocks strategies for tailoring surface topography to enhance underwater adhesion.
Collapse
Affiliation(s)
- Nityanshu Kumar
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Siddhesh Dalvi
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Anirudha V. Sumant
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Lars Pastewka
- Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
- Cluster of Excellence livMatS, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg 79110, Germany
| | - Tevis D. B. Jacobs
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
5
|
Yue T, Bloomfield-Gadêlha H, Rossiter J. Snail-inspired water-enhanced soft sliding suction for climbing robots. Nat Commun 2024; 15:4038. [PMID: 38740752 DOI: 10.1038/s41467-024-48293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Snails can stably slide across a surface with only a single high-payload sucker, offering an efficient adhesive locomotion mechanism for next-generation climbing robots. The critical factor for snails' sliding suction behaviour is mucus secretion, which reduces friction and enhances suction. Inspired by this, we proposed an artificial sliding suction mechanism. The sliding suction utilizes water as an artificial mucus, which is widely available and evaporates with no residue. The sliding suction allows a lightweight robot (96 g) to slide vertically and upside down, achieving high speeds (rotation of 53°/s and translation of 19 mm/s) and high payload (1 kg as tested and 5.03 kg in theory), and does not require energy during adhesion. Here, we show that the sliding suction is a low-cost, energy-efficient, high-payload and clean adhesive locomotion strategy, which has high potential for use in climbing robots, outdoor inspection robots and robotic transportation.
Collapse
Affiliation(s)
- Tianqi Yue
- School of Engineering Mathematics and Technology, and Bristol Robotics Laboratory, University of Bristol, Bristol, UK
| | - Hermes Bloomfield-Gadêlha
- School of Engineering Mathematics and Technology, and Bristol Robotics Laboratory, University of Bristol, Bristol, UK
| | - Jonathan Rossiter
- School of Engineering Mathematics and Technology, and Bristol Robotics Laboratory, University of Bristol, Bristol, UK.
| |
Collapse
|
6
|
Yue T, Si W, Keller A, Yang C, Bloomfield-Gadêlha H, Rossiter J. Bioinspired multiscale adaptive suction on complex dry surfaces enhanced by regulated water secretion. Proc Natl Acad Sci U S A 2024; 121:e2314359121. [PMID: 38557166 PMCID: PMC11032437 DOI: 10.1073/pnas.2314359121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024] Open
Abstract
Suction is a highly evolved biological adhesion strategy for soft-body organisms to achieve strong grasping on various objects. Biological suckers can adaptively attach to dry complex surfaces such as rocks and shells, which are extremely challenging for current artificial suction cups. Although the adaptive suction of biological suckers is believed to be the result of their soft body's mechanical deformation, some studies imply that in-sucker mucus secretion may be another critical factor in helping attach to complex surfaces, thanks to its high viscosity. Inspired by the combined action of biological suckers' soft bodies and mucus secretion, we propose a multiscale suction mechanism which successfully achieves strong adaptive suction on dry complex surfaces which are both highly curved and rough, such as a stone. The proposed multiscale suction mechanism is an organic combination of mechanical conformation and regulated water seal. Multilayer soft materials first generate a rough mechanical conformation to the substrate, reducing leaking apertures to micrometres (~10 µm). The remaining micron-sized apertures are then sealed by regulated water secretion from an artificial fluidic system based on the physical model, thereby the suction cup achieves long suction longevity on complex surfaces but minimal overflow. We discuss its physical principles and demonstrate its practical application as a robotic gripper on a wide range of complex dry surfaces. We believe the presented multiscale adaptive suction mechanism is a powerful unique adaptive suction strategy which may be instrumental in the development of versatile soft adhesion.
Collapse
Affiliation(s)
- Tianqi Yue
- School of Engineering Mathematics and Technology, and Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1TW, United Kingdom
| | - Weiyong Si
- Faculty of Environment and Technology, and Bristol Robotics Laboratory, University of the West of England, BristolBS16 1QY, United Kingdom
- School of Computer Science and Electronic Engineering, University of Essex, EssexCO4 3SQ, United Kingdom
| | - Alex Keller
- School of Engineering Mathematics and Technology, and Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1TW, United Kingdom
| | - Chenguang Yang
- Faculty of Environment and Technology, and Bristol Robotics Laboratory, University of the West of England, BristolBS16 1QY, United Kingdom
| | - Hermes Bloomfield-Gadêlha
- School of Engineering Mathematics and Technology, and Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1TW, United Kingdom
| | - Jonathan Rossiter
- School of Engineering Mathematics and Technology, and Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1TW, United Kingdom
| |
Collapse
|
7
|
Hernandez AM, Sandoval JA, Yuen MC, Wood RJ. Stickiness in shear: stiffness, shape, and sealing in bioinspired suction cups affect shear performance on diverse surfaces. BIOINSPIRATION & BIOMIMETICS 2024; 19:036008. [PMID: 38528733 DOI: 10.1088/1748-3190/ad2c21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024]
Abstract
Aquatic organisms utilizing attachment often contend with unpredictable environments that can dislodge them from substrates. To counter these forces, many organisms (e.g. fish, cephalopods) have evolved suction-based organs for adhesion. Morphology is diverse, with some disc shapes deviating from a circle to more ovate designs. Inspired by the diversity of multiple aquatic species, we investigated how bioinspired cups with different disc shapes performed in shear loading conditions. These experiments highlighted pertinent physical characteristics found in biological discs (regions of stiffness, flattened margins, a sealing rim), as well as ecologically relevant shearing conditions. Disc shapes of fabricated cups included a standard circle, ellipses, and other bioinspired designs. To consider the effects of sealing, these stiff silicone cups were produced with and without a soft rim. Cups were tested using a force-sensing robotic arm, which directionally sheared them across surfaces of varying roughness and compliance in wet conditions while measuring force. In multiple surface and shearing conditions, elliptical and teardrop shapes outperformed the circle, which suggests that disc shape and distribution of stiffness may play an important role in resisting shear. Additionally, incorporating a soft rim increased cup performance on rougher substrates, highlighting interactions between the cup materials and surfaces asperities. To better understand how these cup designs may resist shear, we also utilized a visualization technique (frustrated total internal reflection; FTIR) to quantify how contact area evolves as the cup is sheared.
Collapse
Affiliation(s)
- Alyssa M Hernandez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States of America
- Project CETI, New York, NY 10003 United States of America
| | - Jessica A Sandoval
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States of America
- Project CETI, New York, NY 10003 United States of America
| | - Michelle C Yuen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States of America
- Project CETI, New York, NY 10003 United States of America
| | - Robert J Wood
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States of America
- Project CETI, New York, NY 10003 United States of America
| |
Collapse
|
8
|
Jayavel P, Karthik V, Mathunny JJ, Jothi S, Devaraj A. Hand assistive device with suction cup (HADS) technology for poststroke patients. Proc Inst Mech Eng H 2024; 238:160-169. [PMID: 38189258 DOI: 10.1177/09544119231221190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A stroke is a neurological disease that primarily causes paralysis. Besides paraplegia, all other types of paralysis affect the upper extremity. Advanced technologies, such as wearable devices and rehabilitation regimens, are also being developed to enhance the functional ability of a stroke person to grasp and release daily living objects. In this research, we developed a rehabilitation functional assist device combining a flexion and extension mechanism with suction cup technology (hybrid technology) to help post-stroke patients improve their hand grip strength in day-to-day grasping activities. Ten poststroke hemiplegia patients were studied to test the functional ability of the impaired hand by wearing and not wearing the device. The outcomes were validated by three standard clinical tests, such as the Toronto Rehabilitation Institute - Hand Functional Test (TRI-HFT), the Chedoke Arm Hand Activity Inventory (CAHAI-9), and the Fugl-Meyer Assessment (FMA) with overall score improvements of 14.5 ± 3.8-25 ± 2.2 (p = 0.005), 5.4 ± 2.8-10 ± 1.6 (p = 0.008), and 9.6 ± 2.6-17 ± 2.4 (p = 0.005) respectively. The p-value for each of the three evaluations was less than 0.05, indicating significantly improved results and the average feedback score of the participants was 3.8 out of 5. The proposed device significantly increased impaired hand functionality in post-stroke patients. The subjects could complete some of the grasping tasks that they could not grasp without the device.Clinical trial registrationThe Clinical Trial Registry of India approved the work CTRI/2022/02/040495 described in this manuscript.
Collapse
Affiliation(s)
- Porkodi Jayavel
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Varshini Karthik
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Jaison Jacob Mathunny
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Suresh Jothi
- SRM College of Physiotherapy, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Ashokkumar Devaraj
- Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| |
Collapse
|
9
|
Sandoval JA, Ishida M, Jadhav S, Huen S, Tolley MT. Tuning the Morphology of Suction Discs to Enable Directional Adhesion for Locomotion in Wet Environments. Soft Robot 2022; 9:1083-1097. [PMID: 35285735 DOI: 10.1089/soro.2021.0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Reversible adhesion provides robotic systems with unique capabilities, including wall climbing and walking underwater, and yet the control of adhesion continues to pose a challenge. Directional adhesives have begun to address this limitation by providing adhesion when loaded in one direction and releasing easily when loaded in the opposite direction. However, previous work has focused on directional adhesives for dry environments. In this work, we sought to address this need for directional adhesives for use in a wet environment by tuning the morphology of suction discs to achieve anisotropic adhesion. We developed a suction disc that exhibited significant directional preference in attachment and detachment without requiring active control. The suction discs exhibited morphological computation-that is, they were programmed based on their geometry and material properties to detach under specific angles of loading. We investigated two design parameters-disc symmetry and slits within the disc margin-as mechanisms to yield anisotropic adhesion, and through experimental characterizations, we determined that an asymmetric suction disc most consistently provided directional adhesion. We performed a parametric sweep of material stiffness to optimize for directional adhesion and found that the material composition of the suction disc demonstrated the ability to override the effect of body asymmetry on achieving anisotropic adhesion. We modeled the stress distributions within the different suction disc symmetries using finite element analysis, yielding insights into the differences in contact pressures between the variants. We experimentally demonstrated the utility of the suction discs in a simulated walking gait using linear actuators as one potential application of the directional suction disc.
Collapse
Affiliation(s)
- Jessica A Sandoval
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Michael Ishida
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Saurabh Jadhav
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Sidney Huen
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Michael T Tolley
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Li W, Yang X, Lai P, Shang L. Bio-inspired adhesive hydrogel for biomedicine-principles and design strategies. SMART MEDICINE 2022; 1:e20220024. [PMID: 39188733 PMCID: PMC11235927 DOI: 10.1002/smmd.20220024] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 08/28/2024]
Abstract
The adhesiveness of hydrogels is urgently required in various biomedical applications such as medical patches, tissue sealants, and flexible electronic devices. However, biological tissues are often wet, soft, movable, and easily damaged. These features pose difficulties for the construction of adhesive hydrogels for medical use. In nature, organisms adhere to unique strategies, such as reversible sucker adhesion in octopuses and nontoxic and firm catechol chemistry in mussels, which provide many inspirations for medical hydrogels to overcome the above challenges. In this review, we systematically classify bioadhesion strategies into structure-related and molecular-related ones, which cover almost all known bioadhesion paradigms. We outline the principles of these strategies and summarize the corresponding designs of medical adhesive hydrogels inspired by them. Finally, conclusions and perspectives concerning the development of this field are provided. For the booming bio-inspired adhesive hydrogels, this review aims to summarize and analyze the various existing theories and provide systematic guidance for future research from an innovative perspective.
Collapse
Affiliation(s)
- Wenzhao Li
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Xinyuan Yang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Puxiang Lai
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Luoran Shang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
11
|
Enhanced Adhesion of Synthetic Discs with Micro-Patterned Margins. Biomimetics (Basel) 2022; 7:biomimetics7040202. [PMID: 36412730 PMCID: PMC9680415 DOI: 10.3390/biomimetics7040202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Many aquatic creatures in nature have non-cooperative surface scaling abilities using suction organs; micro-/nano-scale structures found in different parts of the organs play an important role in this mechanism. Synthetic bioinspired suction devices have been developed, but the mechanisms of bioinspired suction system need further investigation. This paper presents the development of a synthetic adhesive disc inspired by the hillstream loach. The microscopic structures involved in adhesion of the hillstream loach were investigated. Bioinspired suction discs were designed with single-level or hierarchical micropatterned margins. Micro three-dimensional (3D) printing and micro electromechanical system (MEMs) technology were utilized in the fabrication of the discs, and the adhesion performance was tested on substrates with different roughness values. The engaging and disengaging processes of the margin were simulated by carrying out a peeling test on a submerged substrate. The interactions between the liquid film and the microstructures were observed using fluorescence microscopy. The enhanced adhesion forces due to the synergy of the hierarchically micro-patterned margin and the disc cavity were duplicated in the synthetic adhesion system.
Collapse
|
12
|
Hwang GW, Lee HJ, Kim DW, Yang T, Pang C. Soft Microdenticles on Artificial Octopus Sucker Enable Extraordinary Adaptability and Wet Adhesion on Diverse Nonflat Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202978. [PMID: 35975453 PMCID: PMC9631055 DOI: 10.1002/advs.202202978] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Bioinspired soft devices, which possess high adaptability to targeted objects, provide promising solutions for a variety of industrial and medical applications. However, achieving stable and switchable attachment to objects with curved, rough, and irregular surfaces remains difficult, particularly in dry and underwater environments. Here, a highly adaptive soft microstructured switchable adhesion device is presented, which is inspired by the geometric and material characteristics of the tiny denticles on the surface of an octopus sucker. The contact interface of the artificial octopus sucker (AOS) is imprinted with soft, microscale denticles that interact adaptably with highly rough or curved surfaces. Robust and controllable attachment of the AOS with soft microdenticles (AOS-sm) to dry and wet surfaces with diverse morphologies is achieved, allowing conformal attachment on curved and soft objects with high roughness. In addition, AOS-sms assembled with an octopus-arm-inspired soft actuator demonstrate reliable grasping and the transport of complex polyhedrons, rough objects, and soft, delicate, slippery biological samples.
Collapse
Affiliation(s)
- Gui Won Hwang
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Heon Joon Lee
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Da Wan Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
- School of Electronic and Electrical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Tae‐Heon Yang
- Department of Electronic EngineeringKorea National University of TransportationChungju‐siChungbuk27469Republic of Korea
| | - Changhyun Pang
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST)Sungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| |
Collapse
|
13
|
Vallet Y, Laurent C, Bertholdt C, Rahouadj R, Morel O. Analysis of suction-based gripping strategies in wildlife towards future evolutions of the obstetrical suction cup. BIOINSPIRATION & BIOMIMETICS 2022; 17:061003. [PMID: 36206746 DOI: 10.1088/1748-3190/ac9878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The design of obstetrical suction cups used for vacuum assisted delivery has not substantially evolved through history despite of its inherent limitations. The associated challenges concern both the decrease of risk of soft tissue damage and failure of instrumental delivery due to detachment of the cup. The present study firstly details some of the suction-based strategies that have been developed in wildlife in order to create and maintain an adhesive contact with potentially rough and uneven substratum in dry or wet environments. Such strategies have permitted the emergence of bioinspired suction-based devices in the fields of robotics or biomedical patches that are briefly reviewed. The objective is then to extend the observations of such suction-based strategies toward the development of innovative medical suction cups. We firstly conclude that the overall design, shape and materials of the suction cups could be largely improved. We also highlight that the addition of a patterned surface combined with a viscous fluid at the interface between the suction cup and scalp could significantly limit the detachment rate and the differential pressure required to exert a traction force. In the future, the development of a computational model including a detailed description of scalp properties should allow to experiment various designs of bioinspired suction cups.
Collapse
Affiliation(s)
- Y Vallet
- CNRS UMR 7239 LEM3-Université de Lorraine, Nancy, France
| | - C Laurent
- CNRS UMR 7239 LEM3-Université de Lorraine, Nancy, France
| | - C Bertholdt
- Université de Lorraine, CHRU-NANCY, Pôle de la Femme, F-54000 Nancy, France
- IADI, INSERM U1254, Rue du Morvan, 54500 Vandoeuvre-lès-Nancy, France
| | - R Rahouadj
- CNRS UMR 7239 LEM3-Université de Lorraine, Nancy, France
| | - O Morel
- Université de Lorraine, CHRU-NANCY, Pôle de la Femme, F-54000 Nancy, France
- IADI, INSERM U1254, Rue du Morvan, 54500 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
14
|
Wang Y, Hensel R, Arzt E. Attachment of bioinspired microfibrils in fluids: transition from a hydrodynamic to hydrostatic mechanism. J R Soc Interface 2022; 19:20220050. [PMID: 35382580 PMCID: PMC8984370 DOI: 10.1098/rsif.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/10/2022] [Indexed: 11/12/2022] Open
Abstract
Reversible and switchable adhesion of elastomeric microstructures has attracted significant interest in the development of grippers for object manipulation. Their applications, however, have often been limited to dry conditions and adhesion of such deformable microfibrils in the fluid environment is less understood. In the present study, we performed adhesion tests in silicone oil using single cylindrical microfibrils of a flat-punch shape with a radius of 80 µm. Stiff fibrils were created using three-dimensional printing of an elastomeric resin with an elastic modulus of 500 MPa, and soft fibrils, with a modulus of 3.3 MPa, were moulded in polyurethane. Our results suggest that adhesion is dominated by hydrodynamic forces, which can be maximized by stiff materials and high retraction velocities, in line with theoretical predictions. The maximum pull-off stress of stiff cylindrical fibrils is 0.6 MPa, limited by cavitation and viscous fingering, occurring at retraction velocities greater than 2 µm s-1. Next, we add a mushroom cap to the microfibrils, which, in the case of the softer material, deforms upon retraction and leads to a transition to a hydrostatic suction regime with higher pull-off stresses ranging from 0.7 to 0.9 MPa. The effects of elastic modulus, fibril size and viscosity for underwater applications are illustrated in a mechanism map to provide guidance for design optimization.
Collapse
Affiliation(s)
- Yue Wang
- INM – Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - René Hensel
- INM – Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Eduard Arzt
- INM – Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
| |
Collapse
|
15
|
Wang Y, Sun G, He Y, Zhou K, Zhu L. Octopus-inspired sucker to absorb soft tissues: stiffness gradient and acetabular protuberance improve the adsorption effect. BIOINSPIRATION & BIOMIMETICS 2022; 17:036005. [PMID: 35235920 DOI: 10.1088/1748-3190/ac59c6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Rigid suckers commonly used in surgical procedures often cause absorption damage, while their soft counterparts are difficult to handle due to their weak anchoring. Alternatively, the octopus sucker is both soft and has strong suction power. Further observation revealed that its structure is self-sealing and that the tissues are layered in hardness. Inspired by said structure and the characteristics of associated materials, a bionic soft sucker with stiffness gradient and acetabular roof structure was proposed, made of silicone with varying hardness including structures such as acetabular roof and circle muscles. The automatic tensile force measurement system was used to experimentally analyze the adsorption performance of the suckers to the soft curved contact surface. Both dry and wet conditions were tested, along with practical tests on organisms. The bionic sucker adsorption force was increased by 25.1% and 34.6% on the cylindrical surface, and 45.2% and 7.3% on the spherical surface for dry and wet conditions, respectively. During the experiment, the bionic suckers did not cause notable suction damage to the contact surfaces. Thus, this type of bionic sucker shows good application prospects in the field of surgery.
Collapse
Affiliation(s)
- Yi Wang
- Beijing Engineering Research Center of Optoelectronic Information and Instruments, Beijing Information Science and Technology University, Beijing 100192, People's Republic of China
- Bionic and Intelligent Equipment Lab, Beijing Information Science and Technology University, Beijing 100192, People's Republic of China
| | - Guangkai Sun
- Beijing Engineering Research Center of Optoelectronic Information and Instruments, Beijing Information Science and Technology University, Beijing 100192, People's Republic of China
- Bionic and Intelligent Equipment Lab, Beijing Information Science and Technology University, Beijing 100192, People's Republic of China
| | - Yanlin He
- Beijing Engineering Research Center of Optoelectronic Information and Instruments, Beijing Information Science and Technology University, Beijing 100192, People's Republic of China
- Bionic and Intelligent Equipment Lab, Beijing Information Science and Technology University, Beijing 100192, People's Republic of China
| | - Kangpeng Zhou
- Beijing Engineering Research Center of Optoelectronic Information and Instruments, Beijing Information Science and Technology University, Beijing 100192, People's Republic of China
- Bionic and Intelligent Equipment Lab, Beijing Information Science and Technology University, Beijing 100192, People's Republic of China
| | - Lianqing Zhu
- Beijing Engineering Research Center of Optoelectronic Information and Instruments, Beijing Information Science and Technology University, Beijing 100192, People's Republic of China
- Bionic and Intelligent Equipment Lab, Beijing Information Science and Technology University, Beijing 100192, People's Republic of China
| |
Collapse
|
16
|
Wang Y, Li Z, Elhebeary M, Hensel R, Arzt E, Saif MTA. Water as a "glue": Elasticity-enhanced wet attachment of biomimetic microcup structures. SCIENCE ADVANCES 2022; 8:eabm9341. [PMID: 35319998 PMCID: PMC8942358 DOI: 10.1126/sciadv.abm9341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Octopus, clingfish, and larva use soft cups to attach to surfaces under water. Recently, various bioinspired cups have been engineered. However, the mechanisms of their attachment and detachment remain elusive. Using a novel microcup, fabricated by two-photon lithography, coupled with in situ pressure sensor and observation cameras, we reveal the detailed nature of its attachment/detachment under water. It involves elasticity-enhanced hydrodynamics generating "self-sealing" and high suction at the cup-substrate interface, converting water into "glue." Detachment is mediated by seal breaking. Three distinct mechanisms of breaking are identified, including elastic buckling of the cup rim. A mathematical model describes the interplay between the attachment/detachment process, geometry, elasto-hydrodynamics, and cup retraction speed. If the speed is too slow, then the octopus cannot attach; if the tide is too gentle for the larva, then water cannot serve as a glue. The concept of "water glue" can innovate underwater transport and manufacturing strategies.
Collapse
Affiliation(s)
- Yue Wang
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Zhengwei Li
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61822, USA
| | - Mohamed Elhebeary
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61822, USA
| | - René Hensel
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Eduard Arzt
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany
- Saarland University, Materials Science and Engineering, Saarbrücken, Germany
| | - M. Taher A. Saif
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61822, USA
| |
Collapse
|
17
|
Wang S, Li L, Zhao W, Zhang Y, Wen L. A biomimetic remora disc with tunable, reversible adhesion for surface sliding and skimming. BIOINSPIRATION & BIOMIMETICS 2022; 17:036001. [PMID: 35073526 DOI: 10.1088/1748-3190/ac4e7a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Remora suckerfish (Echeneis naucrates) can perform skimming and sliding motions on the surfaces of moving hosts to optimize adhesion positions. We found that remora achieve skimming and sliding motions through coordinated movement of the suction disc's lamellae and lip locomotion through live animal observations. We implemented an integrated biomimetic remora suction disc based on morphological and kinematic data of biological remoras. With soft actuators enabling 'compression-rotation' and 'compression-extension', the biomimetic disc controls the disc lip and lamellar movement under driving with only one degree of freedom, and can switch freely between three states: zero, low-friction, and robust adhesion. Then we investigate the effects of the biomimetic suction-disc soft-lip material, preload, and lamellar movement on the tangential friction force (both forward and backward) under different adhesion states. This biomimetic suction disc with a low-modulus soft lip can adhere to a smooth surface under 0.1 N preload and achieve normal adhesion-force and tangential frictional-force control ranges spanning ∼10-1to ∼102N and ∼10-1to ∼101N, respectively. The results reveal how remora disc achieved fast, tunable adhesion for skimming and sliding on surfaces. Furthermore, we demonstrate a bio-inspired robot capable of attachment, detachment, skimming, and sliding motions with the aiding of simple biomimetic pectoral-fin flapping. This study lays a foundation for future integrated applications of underwater adhesion robots and related biomechanical exploration.
Collapse
Affiliation(s)
- Siqi Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People's Republic of China
- Shenyuan Honors College, Beihang University, Beijing, 100191, People's Republic of China
| | - Lei Li
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People's Republic of China
| | - Wei Zhao
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People's Republic of China
| | - Yiyuan Zhang
- School of General Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Li Wen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People's Republic of China
| |
Collapse
|
18
|
Ishida M, Sandoval JA, Lee S, Huen S, Tolley MT. Locomotion via active suction in a sea star-inspired soft robot. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3191181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Ishida
- Department of Mechanical and Aerospace Engineering, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Jessica A. Sandoval
- Department of Mechanical and Aerospace Engineering, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Sebastian Lee
- Department of Mechanical Engineering, University of California Berkeley (UCB), Berkeley, CA, USA
| | - Sidney Huen
- Department of Mechanical and Aerospace Engineering, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Michael T. Tolley
- Department of Mechanical and Aerospace Engineering, University of California, San Diego (UCSD), La Jolla, CA, USA
| |
Collapse
|
19
|
Lee HJ, Baik S, Hwang GW, Song JH, Kim DW, Park BY, Min H, Kim JK, Koh JS, Yang TH, Pang C. An Electronically Perceptive Bioinspired Soft Wet-Adhesion Actuator with Carbon Nanotube-Based Strain Sensors. ACS NANO 2021; 15:14137-14148. [PMID: 34425674 DOI: 10.1021/acsnano.1c05130] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of bioinspired switchable adhesive systems has promising solutions in various industrial/medical applications. Switchable and perceptive adhesion regardless of the shape or surface shape of the object is still challenging in dry and aquatic surroundings. We developed an electronic sensory soft adhesive device that recapitulates the attaching, mechanosensory, and decision-making capabilities of a soft adhesion actuator. The soft adhesion actuator of an artificial octopus sucker may precisely control its robust attachment against surfaces with various topologies in wet environments as well as a rapid detachment upon deflation. Carbon nanotube-based strain sensors are three-dimensionally coated onto the irregular surface of the artificial octopus sucker to mimic nerve-like functions of an octopus and identify objects via patterns of strain distribution. An integration with machine learning complements decision-making capabilities to predict the weight and center of gravity for samples with diverse shapes, sizes, and mechanical properties, and this function may be useful in turbid water or fragile environments, where it is difficult to utilize vision.
Collapse
Affiliation(s)
- Heon Joon Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Sangyul Baik
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Gui Won Hwang
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Jin Ho Song
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
- Department SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Da Wan Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Bo-Yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal H3A 2B4, Quebec, Canada
- Department of Data Science, Inha University, Incheon 22212, Republic of Korea
| | - Hyeongho Min
- Department SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Je-Sung Koh
- Department of Mechanical Engineering, Ajou University, Suwon 16499, Gyeonggi-do, Republic of Korea
| | - Tae-Heon Yang
- Department of Electronic Engineering, Korea National University of Transportation, Chungju-si 27469, Chungbuk, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Suwon 16419, Gyunggi-do, Republic of Korea
| |
Collapse
|
20
|
Persson BNJ. Side-leakage of face mask. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:75. [PMID: 34089395 PMCID: PMC8179097 DOI: 10.1140/epje/s10189-021-00081-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/20/2021] [Indexed: 05/02/2023]
Abstract
Face masks are used to trap particles (or fluid drops) in a porous material (filter) in order to avoid or reduce the transfer of particles between the human lungs (or mouth and nose) and the external environment. The air exchange between the lungs and the environment is assumed to occur through the face mask filter. However, if the resistance to air flow through the filter is high some air (and accompanied particles) will leak through the filter-skin interface. In this paper I will present a model study of the side-leakage problem.
Collapse
Affiliation(s)
- B N J Persson
- PGI-1, FZ Jülich, Jülich, Germany.
- Multiscale Consulting, Wolfshovener str. 2, 52428, Jülich, Germany.
| |
Collapse
|