1
|
Yu X, Hu Y, Cao Z, Yan M, Xin J, Zheng S, Wan J, Cao X. Computational design and preparation of water-compatible noncovalent imprinted microspheres. J Chromatogr A 2024; 1725:464876. [PMID: 38718697 DOI: 10.1016/j.chroma.2024.464876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/15/2024]
Abstract
Herein, 2,4-dichlorophenoxyacetic acid (2,4-D) was used as a model template in a rational design strategy to produce water-compatible noncovalent imprinted microspheres. The proposed approach involved computational modelling for screening functional monomers and a simple method for preparing monodisperse and highly cross-linked microspheres. The fabricated non-imprinted polymer (NIP) and 2,4-d-imprinted polymer (2,4-d-MIP) were characterised, and their adsorption capabilities in an aqueous environment were evaluated. Results reveal that the pseudo-second-order kinetics model was appropriate for representing the adsorption of 2,4-D on NIP and 2,4-d-MIP, with R2 values of 0.97 and 0.99, respectively. The amount of 2,4-D adsorbed on 2,4-d-MIP (97.75 mg g-1) was considerably higher than those of phenoxyacetic acid (35.77 mg g-1), chlorogenic acid (9.72 mg g-1), spiramycin (1.56 mg g-1) and tylosin (1.67 mg g-1). Furthermore, it exhibited strong resistance to protein adsorption in an aqueous medium. These findings confirmed the feasibility of the proposed approach, providing a reference for the development of water-compatible noncovalent imprinted polymers.
Collapse
Affiliation(s)
- Xue Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China; State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, PR China
| | - Yawen Hu
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, PR China
| | - Zanxia Cao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Mengxia Yan
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Jianhui Xin
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Shuyun Zheng
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, PR China.
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, PR China.
| |
Collapse
|
2
|
Zhang W, Li Q, Zhang H. Efficient Optosensing of Hippuric Acid in the Undiluted Human Urine with Hydrophilic "Turn-On"-Type Fluorescent Hollow Molecularly Imprinted Polymer Microparticles. Molecules 2023; 28:molecules28031077. [PMID: 36770744 PMCID: PMC9920520 DOI: 10.3390/molecules28031077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
The development of complex biological sample-compatible fluorescent molecularly imprinted polymers (MIPs) with improved performances is highly important for their real-world bioanalytical and biomedical applications. Herein, we report on the first hydrophilic "turn-on"-type fluorescent hollow MIP microparticles capable of directly, highly selectively, and rapidly optosensing hippuric acid (HA) in the undiluted human urine samples. These fluorescent hollow MIP microparticles were readily obtained through first the synthesis of core-shell-corona-structured nitrobenzoxadiazole (NBD)-labeled hydrophilic fluorescent MIP microspheres by performing one-pot surface-initiated atom transfer radical polymerization on the preformed "living" silica particles and subsequent removal of their silica core via hydrofluoric acid etching. They showed "turn-on" fluorescence and high optosensing selectivity and sensitivity toward HA in the artificial urine (the limit of detection = 0.097 μM) as well as outstanding photostability and reusability. Particularly, they exhibited much more stable aqueous dispersion ability, significantly faster optosensing kinetics, and higher optosensing sensitivity than their solid counterparts. They were also directly used for quantifying HA in the undiluted human urine with good recoveries (96.0%-102.0%) and high accuracy (RSD ≤ 4.0%), even in the presence of several analogues of HA. Such fluorescent hollow MIP microparticles hold much promise for rapid and accurate HA detection in the clinical diagnostic field.
Collapse
|
3
|
Ostovan A, Arabi M, Wang Y, Li J, Li B, Wang X, Chen L. Greenificated Molecularly Imprinted Materials for Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203154. [PMID: 35734896 DOI: 10.1002/adma.202203154] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular imprinting technology (MIT) produces artificial binding sites with precise complementarity to substrates and thereby is capable of exquisite molecular recognition. Over five decades of evolution, it is predicted that the resulting host imprinted materials will overtake natural receptors for research and application purposes, but in practice, this has not yet been realized due to the unsustainability of their life cycles (i.e., precursors, creation, use, recycling, and end-of-life). To address this issue, greenificated molecularly imprinted polymers (GMIPs) are a new class of plastic antibodies that have approached sustainability by following one or more of the greenification principles, while also demonstrating more far-reaching applications compared to their natural counterparts. In this review, the most recent developments in the delicate design and advanced application of GMIPs in six fast-growing and emerging fields are surveyed, namely biomedicine/therapy, catalysis, energy harvesting/storage, nanoparticle detection, gas sensing/adsorption, and environmental remediation. In addition, their distinct features are highlighted, and the optimal means to utilize these features for attaining incredibly far-reaching applications are discussed. Importantly, the obscure technical challenges of the greenificated MIT are revealed, and conceivable solutions are offered. Lastly, several perspectives on future research directions are proposed.
Collapse
Affiliation(s)
- Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
4
|
Basak S, Venkatram R, Singhal RS. Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Yu X, Liao J, Zeng H, Wan J, Cao X. Synthesis of water-compatible noncovalent imprinted microspheres for acidic or basic biomolecules designed based on molecular dynamics. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Hou H, Jin Y, Sheng L, Huang Y, Zhao R. One-step synthesis of well-defined molecularly imprinted nanospheres for the class-selective recognition and separation of β-blockers in human serum. J Chromatogr A 2022; 1673:463204. [PMID: 35689880 DOI: 10.1016/j.chroma.2022.463204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 01/20/2023]
Abstract
β-blockers are a class of medications that are used to treat abnormal heart rhythms and hypertension. Molecularly imprinted polymers (MIPs) capable of selective recognizing and extracting β-blockers from complex biological samples hold great promise in bioanalytical and biomedical applications, but developing such artificial receptor materials is still challenging. Herein, we introduce a simple one-step method for the synthesis of well-defined molecularly imprinted nanospheres in high yield (83.6-94.4%) via reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization for the selective recognition and extraction of the β-blockers from human serum. The prepared MIPs are characterized in terms of morphology, pore properties, binding kinetics, capacity, selectivity, and recognition mechanisms. The uniform nanoscale-imprinted layer favored the rapid mass transfer of β-blockers. The binding studies showed the high adsorption capacity (126.8 μmol/g) and selectivity of the developed nanomaterial. The investigation on the recognition mechanism reveals that multiple driving forces participate in the binding between MIP and β-blockers, where hydrogen bonding plays as the dominating role for the specific recognition. The MIP was successfully applied for the direct enrichment of five β-blockers from human serum with HPLC recoveries ranging from 82.9 to 100.3% and RSD of 0.5-6.9% (n = 3).
Collapse
Affiliation(s)
- Huiqing Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Le Sheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Abstract
The development of an elution-free solid-phase extraction (SPE) process is of special interest in sample pretreatment. Due to the phase-change merits at relatively low temperatures and easy dissolution in n-hexane, wax spheres show great potential in this field. However, the conventional wax spheres possess a low affinity towards the target analytes when they are used as SPE adsorbents. In this study, using octadecanoic acid as the functional monomer and wax as the matrix, molecularly imprinted wax (MIW) spheres were successfully prepared. The obtained MIW spheres displayed remarkable molecular recognition ability and high selectivity towards the template. Interestingly, the as-synthesized molecularly imprinted wax (MIW) could be dissolved in n-hexane or melted by heating for subsequent fluorescence and mass spectrum analysis without the target elution process. Moreover, the melted MIW exhibited high repeatability, sensitivity and specificity for solid-state fluorescence detection. We believe that the imprinting method presented in this study will open a new window in analytical chemistry.
Collapse
Affiliation(s)
- Long Jiang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
8
|
Shi X, Zhang W, Zhang H. Biological sample-compatible Au nanoparticle-containing fluorescent molecularly imprinted polymer microspheres by combining RAFT polymerization and Au-thiol chemistry. J Mater Chem B 2022; 10:6673-6681. [DOI: 10.1039/d2tb00179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of biological sample-compatible fluorescent molecularly imprinted polymers (MIPs) with more functions and/or improved performance is of great importance for various bioanalytical and biomedical applications, but remains challenging. Herein,...
Collapse
|
9
|
Reville EK, Sylvester EH, Benware SJ, Negi SS, Berda EB. Customizable molecular recognition: advancements in design, synthesis, and application of molecularly imprinted polymers. Polym Chem 2022. [DOI: 10.1039/d1py01472b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecularly imprinted polymers (MIPs) are unlocking the door to synthetic materials that are capable of molecular recognition.
Collapse
Affiliation(s)
- Erinn K. Reville
- Department of Chemistry, University of New Hampshire, 03824, Durham, NH, USA
| | | | - Sarah J. Benware
- Department of Chemistry, University of Wisconsin-Madison, 54706, Madison, WI, USA
| | - Shreeya S. Negi
- Department of Chemistry and Biochemistry, California Polytechnic State University, 93410, San Luis Obispo, CA, USA
| | - Erik B. Berda
- Department of Chemistry, University of New Hampshire, 03824, Durham, NH, USA
| |
Collapse
|
10
|
Water-Compatible Fluorescent Molecularly Imprinted Polymers. Methods Mol Biol 2021. [PMID: 34410662 DOI: 10.1007/978-1-0716-1629-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Preparation of molecularly imprinted polymers (MIPs) capable of directly and selectively recognizing small organic analytes in aqueous samples (particularly in the undiluted complex biological samples) is described. Such water-compatible MIPs can be readily obtained by the controlled grafting of appropriate hydrophilic polymer brushes onto the MIP particle surfaces. Two types of synthetic approaches (i.e., "two-step approach" and "one-step approach") for preparing complex biological sample-compatible hydrophilic fluorescent MIP nanoparticles and their applications for direct, selective, sensitive, and accurate optosensing of an antibiotic (i.e., tetracycline (Tc)) in the undiluted pure bovine/porcine serums are presented.
Collapse
|
11
|
Doxorubicin-loaded biodegradable chitosan–graphene nanosheets for drug delivery applications. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Tu X, Shi X, Zhao M, Zhang H. Molecularly imprinted dispersive solid-phase microextraction sorbents for direct and selective drug capture from the undiluted bovine serum. Talanta 2021; 226:122142. [PMID: 33676693 DOI: 10.1016/j.talanta.2021.122142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/26/2022]
Abstract
The preparation of well-defined new hydrophilic molecularly imprinted polymer (MIP) microspheres and their use as the dispersive solid-phase microextraction (dSPME) sorbents for direct and selective drug (i.e., propranolol) capture from the undiluted bovine serum are described. These MIPs have surface-grafted dense poly(2-hydroxyethyl methacrylate) (PHEMA) brushes with different molecular weights and grafting densities. They were readily prepared via the facile reversible addition-fragmentation chain transfer (RAFT) coupling chemistry. Both the molecular weights and grafting densities of PHEMA brushes showed significant influence on their complex biological sample-compatibility, and only those MIPs bearing PHEMA brushes with high enough molecular weights and grafting densities could selectively recognize propranolol in the undiluted pure milk and bovine serum. In particular, they have proven to be highly versatile dSPME sorbents for directly and selectively capturing propranolol from the undiluted bovine serum with satisfactory recoveries (85.2-97.4%) and high accuracy (RSD = 2.3-3.7%), even in the presence of one analogue of propranolol. The limit of detection was 0.002 μM with a linear correlation coefficient of 0.9994 in the range of 0.01-100 μM. Excellent precision was verified by both the intraday and interday analytical results. Their good reusability was also confirmed. This work demonstrates the high potential of such hydrophilic MIP-based dSPME sorbents for rapid, accurate, and reliable drug determination in complex biological samples.
Collapse
Affiliation(s)
- Xiaozheng Tu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaohui Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Man Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
13
|
Hou Y, Zou Y, Zhou Y, Zhang H. Biological Sample-Compatible Ratiometric Fluorescent Molecularly Imprinted Polymer Microspheres by RAFT Coupling Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12403-12413. [PMID: 32969664 DOI: 10.1021/acs.langmuir.9b03851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ratiometric fluorescent molecularly imprinted polymer (MIP) sensors hold great promise in many bioanalytical areas because of their high sensitivity and selectivity as well as excellent self-referencing and visual detection capability. However, their synthetic strategies are rather limited and the development of such optosensing MIPs that can directly and selectively quantify small organic analytes in complex biological samples remains a formidable challenge owing to the complexity of sample matrices. Herein, a versatile and modular strategy to obtaining well-defined ratiometric fluorescent MIP microspheres capable of directly and selectively detecting an organic herbicide [2,4-dichlorophenoxyacetic acid (2,4-D)] in undiluted pure milks is described. First, it involves the synthesis of uniform "living" polymer particles via RAFT precipitation polymerization, their successive well-controlled grafting of a polymer shell labeled with red CdTe QDs (being inert to 2,4-D) and an MIP shell labeled with green 4-nitrobenzo[c][1,2,5]oxadiazole (NBD) units (showing fluorescence "light-up" upon binding 2,4-D) via surface-initiated RAFT polymerization, and final grafting of hydrophilic poly(N-isopropylacrylamide) brushes via an efficient coupling reaction (i.e., RAFT coupling chemistry). The resulting hydrophilic dual fluorescent MIP particles showed excellent photostability and reusability. They exhibited obvious analyte binding-induced "turn-on"-type ratiometric fluorescence (and color) change and high 2,4-D optosensing selectivity and sensitivity in pure bovine milk (with a detection limit of 0.13 μM). Moreover, they were directly applied to 2,4-D determination in undiluted pure goat milk with good recoveries (96.0-103.2%) and high accuracy (RSD = 1.5-5.5%), even in the presence of several analogues of 2,4-D. The general applicability of our strategy was also demonstrated. This study paves the way for efficiently developing various advanced MIP optosensors (of easily tunable structures and desired properties) highly promising in many bioanalytical applications.
Collapse
Affiliation(s)
- Yuxia Hou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yiwei Zou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
14
|
Abstract
Molecularly imprinted polymers (MIPs) are currently widely used and further developed for biological applications. The MIP synthesis procedure is a key process, and a wide variety of protocols exist. The templates that are used for imprinting vary from the smallest glycosylated glycan structures or even amino acids to whole proteins or bacteria. The low cost, quick preparation, stability and reproducibility have been highlighted as advantages of MIPs. The biological applications utilizing MIPs discussed here include enzyme-linked assays, sensors, in vivo applications, drug delivery, cancer diagnostics and more. Indeed, there are numerous examples of how MIPs can be used as recognition elements similar to natural antibodies.
Collapse
|
15
|
Orowitz TE, Ana Sombo PPAA, Rahayu D, Hasanah AN. Microsphere Polymers in Molecular Imprinting: Current and Future Perspectives. Molecules 2020; 25:molecules25143256. [PMID: 32708849 PMCID: PMC7397203 DOI: 10.3390/molecules25143256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) are specific crosslinked polymers that exhibit binding sites for template molecules. MIPs have been developed in various application areas of biology and chemistry; however, MIPs have some problems, including an irregular material shape. In recent years, studies have been conducted to overcome this drawback, with the synthesis of uniform microsphere MIPs or molecularly imprinted microspheres (MIMs). The polymer microsphere is limited to a minimum size of 5 nm and a molecular weight of 10,000 Da. This review describes the methods used to produce MIMs, such as precipitation polymerisation, controlled/'Living' radical precipitation polymerisation (CRPP), Pickering emulsion polymerisation and suspension polymerisation. In addition, some green chemistry aspects and future perspectives will also be given.
Collapse
|
16
|
Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115923] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Xu J, Miao H, Wang J, Pan G. Molecularly Imprinted Synthetic Antibodies: From Chemical Design to Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906644. [PMID: 32101378 DOI: 10.1002/smll.201906644] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/27/2020] [Indexed: 05/25/2023]
Abstract
Billions of dollars are invested into the monoclonal antibody market every year to meet the increasing demand in clinical diagnosis and therapy. However, natural antibodies still suffer from poor stability and high cost, as well as ethical issues in animal experiments. Thus, developing antibody substitutes or mimics is a long-term goal for scientists. The molecular imprinting technique presents one of the most promising strategies for antibody mimicking. The molecularly imprinted polymers (MIPs) are also called "molecularly imprinted synthetic antibodies" (MISAs). The breakthroughs of key technologies and innovations in chemistry and material science in the last decades have led to the rapid development of MISAs, and their molecular affinity has become comparable to that of natural antibodies. Currently, MISAs are undergoing a revolutionary transformation of their applications, from initial adsorption and separation to the rising fields of biomedicine. Herein, the fundamental chemical design of MISAs is examined, and then current progress in biomedical applications is the focus. Meanwhile, the potential of MISAs as qualified substitutes or even to transcend the performance of natural antibodies is discussed from the perspective of frontier needs in biomedicines, to facilitate the rapid development of synthetic artificial antibodies.
Collapse
Affiliation(s)
- Jingjing Xu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
- Sino-European School of Technology of Shanghai University, Shanghai University, Shanghai, CN-200444, P. R. China
| | - Haohan Miao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Jixiang Wang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| |
Collapse
|
18
|
Xu S, Zou Y, Zhang H. Well-defined hydrophilic "turn-on"-type ratiometric fluorescent molecularly imprinted polymer microspheres for direct and highly selective herbicide optosensing in the undiluted pure milks. Talanta 2020; 211:120711. [PMID: 32070587 DOI: 10.1016/j.talanta.2020.120711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 11/16/2022]
Abstract
Molecularly imprinted polymer (MIP)-based optosensing materials capable of direct, reliable, and highly selective detection of small organic analytes in complex aqueous samples hold great promise in many bioanalytical applications, but their development remains a challenging task. Addressing this issue, well-defined hydrophilic "turn-on"-type ratiometric fluorescent MIP microspheres are developed via a versatile and modular strategy based on the controlled/"living" radical polymerization method. Its general principle was demonstrated by the synthesis of red CdTe quantum dot (QD)-labeled silica particles with surface-bound atom transfer radical polymerization (ATRP)-initiating groups via the one-pot sol-gel reaction and their successive grafting of a thin fluorescent 2,4-D (an organic herbicide)-MIP layer (labeled with green organic fluorophores bearing both nitrobenzoxadiazole (NBD) and urea interacting groups) and hydrophilic poly(glyceryl monomethacrylate) (PGMMA) brushes via surface-initiated ATRP. The introduction of PGMMA brushes and rationally selected dual fluorescence labeling (i.e., red CdTe QDs being inert to 2,4-D and green NBD showing fluorescence "light-up" upon binding 2,4-D) onto MIP particles afforded them excellent complex aqueous sample-compatibility (due to their largely enhanced hydrophilicity) and analyte binding-induced "turn-on"-type ratiometric fluorescence changes, respectively. Such advanced MIP particles proved to be promising optosensing materials, which had a detection limit of 0.13 μM and showed obvious fluorescent color change upon binding different concentrations of 2,4-D in the undiluted pure milk. Moreover, they were successfully applied for direct and highly selective quantification of 2,4-D in the undiluted pure goat and bovine milks with good recoveries (97.9%-104.5%), even in the presence of several analogues of 2,4-D.
Collapse
Affiliation(s)
- Sijia Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Yiwei Zou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
19
|
Montagna V, Haupt K, Gonzato C. RAFT coupling chemistry: a general approach for post-functionalizing molecularly imprinted polymers synthesized by radical polymerization. Polym Chem 2020. [DOI: 10.1039/c9py01629e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe a straightforward protocol for the surface functionalization of free-radically synthesized imprinted nanoparticles via polymer grafting.
Collapse
Affiliation(s)
- Valentina Montagna
- Sorbonne Universités
- Université de Technologie de Compiègne
- UMR CNRS 7025 Enzyme and Cell Engineering Laboratory
- Cedex
- France
| | - Karsten Haupt
- Sorbonne Universités
- Université de Technologie de Compiègne
- UMR CNRS 7025 Enzyme and Cell Engineering Laboratory
- Cedex
- France
| | - Carlo Gonzato
- Sorbonne Universités
- Université de Technologie de Compiègne
- UMR CNRS 7025 Enzyme and Cell Engineering Laboratory
- Cedex
- France
| |
Collapse
|
20
|
Zhang B, Ke J, Vakil JR, Cummings SC, Digby ZA, Sparks JL, Ye Z, Zanjani MB, Konkolewicz D. Dual-dynamic interpenetrated networks tuned through macromolecular architecture. Polym Chem 2019. [DOI: 10.1039/c9py01387c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled polymerization is used to make well defined polymers that are assembled into dynamic interpenetrated network materials. Self-healing, toughness and stress relaxation are imparted into the material through the dynamic linkages.
Collapse
Affiliation(s)
- Borui Zhang
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | - Jun Ke
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | - Jafer R. Vakil
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | - Sean C. Cummings
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | - Zachary A. Digby
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | - Jessica L. Sparks
- Department of Chemical
- Paper and Biomedical Engineering
- Miami University
- Oxford
- USA
| | - Zhijiang Ye
- Department of Mechanical and Manufacturing Engineering
- Miami University
- Oxford
- USA
| | - Mehdi B. Zanjani
- Department of Mechanical and Manufacturing Engineering
- Miami University
- Oxford
- USA
| | | |
Collapse
|