1
|
Balaji N, Kukal S, Bhat A, Pradhan N, Minocha S, Kumar S. A quartet of cancer stem cell niches in hepatocellular carcinoma. Cytokine Growth Factor Rev 2024; 79:39-51. [PMID: 39217065 DOI: 10.1016/j.cytogfr.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular Carcinoma (HCC), the most prevalent type of primary liver cancer, is known for its aggressive behavior and poor prognosis. The Cancer Stem Cell theory, which postulates the presence of a small population of self-renewing cells called Cancer Stem Cells (CSCs), provides insights into various clinical and molecular features of HCC such as tumor heterogeneity, metabolic adaptability, therapy resistance, and recurrence. These CSCs are nurtured in the tumor microenvironment (TME), where a mix of internal and external factors creates a tumor-supportive niche that is continuously evolving both spatially and temporally, thus enhancing the tumor's complexity. This review details the origins of hepatic CSCs (HCSCs) and the factors influencing their stem-like qualities. It highlights the reciprocal crosstalk between HCSCs and the TME (hypoxic, vascular, invasive, and immune niches), exploring the signaling pathways involved and how these interactions control the malignant traits of CSCs. Additionally, it discusses potential therapeutic approaches targeting the HCSC niche and their possible uses in clinical practice.
Collapse
Affiliation(s)
- Neha Balaji
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Samiksha Kukal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Anjali Bhat
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Nikita Pradhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.
| | - Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|
2
|
Liu Q, Guo Z, Li G, Zhang Y, Liu X, Li B, Wang J, Li X. Cancer stem cells and their niche in cancer progression and therapy. Cancer Cell Int 2023; 23:305. [PMID: 38041196 PMCID: PMC10693166 DOI: 10.1186/s12935-023-03130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
High recurrence and metastasis rates and poor prognoses are the major challenges of current cancer therapy. Mounting evidence suggests that cancer stem cells (CSCs) play an important role in cancer development, chemoradiotherapy resistance, recurrence, and metastasis. Therefore, targeted CSC therapy has become a new strategy for solving the problems of cancer metastasis and recurrence. Since the properties of CSCs are regulated by the specific tumour microenvironment, the so-called CSC niche, which targets crosstalk between CSCs and their niches, is vital in our pursuit of new therapeutic opportunities to prevent cancer from recurring. In this review, we aim to highlight the factors within the CSC niche that have important roles in regulating CSC properties, including the extracellular matrix (ECM), stromal cells (e.g., associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and mesenchymal stem cells (MSCs)), and physiological changes (e.g., inflammation, hypoxia, and angiogenesis). We also discuss recent progress regarding therapies targeting CSCs and their niche to elucidate developments of more effective therapeutic strategies to eliminate cancer.
Collapse
Affiliation(s)
- Qiuping Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Zongliang Guo
- Department of General Surgery, Shanxi Province Cancer Hospital, Affiliated of Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Guoyin Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Yunxia Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Bing Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Jinping Wang
- Department of Ultrasound, Shanxi Province People's Hospital, Taiyuan, 030012, Shanxi, China.
| | - Xiaoyan Li
- Department of blood transfusion, Shanxi Provincial People's Hospital, Taiyuan, 030032, Shanxi, China.
- Department of central laboratory, Shanxi Provincial People's Hospital, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
3
|
He YF, Wang XL, Deng SP, Wang YL, Huang QQ, Lin S, Lyu GR. Latest progress in low-intensity pulsed ultrasound for studying exosomes derived from stem/progenitor cells. Front Endocrinol (Lausanne) 2023; 14:1286900. [PMID: 38089611 PMCID: PMC10715436 DOI: 10.3389/fendo.2023.1286900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Stem cells have self-renewal, replication, and multidirectional differentiation potential, while progenitor cells are undifferentiated, pluripotent or specialized stem cells. Stem/progenitor cells secrete various factors, such as cytokines, exosomes, non-coding RNAs, and proteins, and have a wide range of applications in regenerative medicine. However, therapies based on stem cells and their secreted exosomes present limitations, such as insufficient source materials, mature differentiation, and low transplantation success rates, and methods addressing these problems are urgently required. Ultrasound is gaining increasing attention as an emerging technology. Low-intensity pulsed ultrasound (LIPUS) has mechanical, thermal, and cavitation effects and produces vibrational stimuli that can lead to a series of biochemical changes in organs, tissues, and cells, such as the release of extracellular bodies, cytokines, and other signals. These changes can alter the cellular microenvironment and affect biological behaviors, such as cell differentiation and proliferation. Here, we discuss the effects of LIPUS on the biological functions of stem/progenitor cells, exosomes, and non-coding RNAs, alterations involved in related pathways, various emerging applications, and future perspectives. We review the roles and mechanisms of LIPUS in stem/progenitor cells and exosomes with the aim of providing a deeper understanding of LIPUS and promoting research and development in this field.
Collapse
Affiliation(s)
- Yi-fang He
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xia-li Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Departments of Medical Imaging, Quanzhou Medical College, Quanzhou, China
| | - Shuang-ping Deng
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-li Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qing-qing Huang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Guo-rong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Departments of Medical Imaging, Quanzhou Medical College, Quanzhou, China
| |
Collapse
|
4
|
Zhang D, Wang X, Lin J, Xiong Y, Lu H, Huang J, Lou X. Multi-frequency therapeutic ultrasound: A review. ULTRASONICS SONOCHEMISTRY 2023; 100:106608. [PMID: 37774469 PMCID: PMC10543167 DOI: 10.1016/j.ultsonch.2023.106608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Focused ultrasound is a noninvasive, radiation-free and real-time therapeutic approach to treat deep-seated targets, which benefits numerous diseases otherwise requiring surgeries. Treatment efficiency is one of the key factors determining therapeutic outcomes, but improving it solely by increasing the total power can be limited by the performance of general ultrasound devices. To address this, multi-frequency therapeutic ultrasound, using additional ultrasound waves of different frequencies on top of the standard single-frequency wave, provides a promising method for treatment efficiency enhancement with limited power. Several applications and numerical works have demonstrated its superiority on treatment enhancement. This paper presents an overview of the mechanisms, implementations, applications and decisive parameters of the multi-frequency therapeutic ultrasound, which could help to pave the way for better understanding and further developing this technology in the future.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyu Wang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jiaji Lin
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Yongqin Xiong
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Haoxuan Lu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jiayu Huang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Liao A, Wang C, Wang B, Lin Y, Chuang H, Liu H, Shih C. Combined use of microbubbles of various sizes and single-transducer dual-frequency ultrasound for safe and efficient inner ear drug delivery. Bioeng Transl Med 2023; 8:e10450. [PMID: 37693043 PMCID: PMC10487305 DOI: 10.1002/btm2.10450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
We have previously applied ultrasound (US) with microbubbles (MBs) to enhance inner ear drug delivery, with most experiments conducted using single-frequency, high-power density US, and multiple treatments. In the present study, the treatment efficacy was enhanced and safety concerns were addressed using a combination of low-power-density, single-transducer, dual-frequency US (I SPTA = 213 mW/cm2) and MBs of different sizes coated with insulin-like growth factor 1 (IGF-1). This study is the first to investigate the drug-coating capacity of human serum albumin (HSA) MBs of different particle sizes and their drug delivery efficiency. The concentration of HSA was adjusted to produce different MB sizes. The drug-coating efficiency was significantly higher for large-sized MBs than for smaller MBs. In vitro Franz diffusion experiments showed that the combination of dual-frequency US and large MB size delivered the most IGF-1 (24.3 ± 0.47 ng/cm2) to the receptor side at the second hour of treatment. In an in vivo guinea pig experiment, the efficiency of IGF-1 delivery into the inner ear was 15.9 times greater in animals treated with the combination of dual-frequency US and large MBs (D-USMB) than in control animals treated with round window soaking (RWS). The IGF-1 delivery efficiency was 10.15 times greater with the combination of single-frequency US and large size MBs (S-USMB) than with RWS. Confocal microscopy of the cochlea showed a stronger distribution of IGF-1 in the basal turn in the D-USMB and S-USMB groups than in the RWS group. In the second and third turns, the D-USMB group showed the greatest IGF-1 distribution. Hearing assessments revealed no significant differences among the D-USMB, S-USMB, and RWS groups. In conclusion, the combination of single-transducer dual-frequency US and suitably sized MBs can significantly reduce US power density while enhancing the delivery of large molecular weight drugs, such as IGF-1, to the inner ear.
Collapse
Affiliation(s)
- Ai‐Ho Liao
- Graduate Institute of Biomedical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan
- Department of Biomedical EngineeringNational Defense Medical CenterTaipeiTaiwan
| | - Chih‐Hung Wang
- Department of Otolaryngology‐Head and Neck Surgery, Tri‐Service General HospitalNational Defense Medical CenterTaipeiTaiwan
- Graduate Institute of Medical SciencesNational Defense Medical CenterTaipeiTaiwan
| | - Bo‐Han Wang
- Department of Mechanical EngineeringNational Taipei University of TechnologyTaipeiTaiwan
| | - Yi‐Chun Lin
- Graduate Institute of Medical SciencesNational Defense Medical CenterTaipeiTaiwan
| | - Ho‐Chiao Chuang
- Department of Mechanical EngineeringNational Taipei University of TechnologyTaipeiTaiwan
| | - Hao‐Li Liu
- Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Cheng‐Ping Shih
- Department of Otolaryngology‐Head and Neck Surgery, Tri‐Service General HospitalNational Defense Medical CenterTaipeiTaiwan
| |
Collapse
|
6
|
Osum M, Kalkan R. Cancer Stem Cells and Their Therapeutic Usage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:69-85. [PMID: 36689167 DOI: 10.1007/5584_2022_758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cancer stem cells (CSC) have unique characteristics which include self-renewal, multi-directional differentiation capacity, quiescence/dormancy, and tumor-forming capability. These characteristics are referred to as the "stemness" properties. Tumor microenvironment contributes to CSC survival, function, and remaining them in an undifferentiated state. CSCs can form malignant tumors with heterogeneous phenotypes mediated by the tumor microenvironment. Therefore, the crosstalk between CSCs and tumor microenvironment can modulate tumor heterogeneity. CSCs play a crucial role in several biological processes, epithelial-mesenchymal transition (EMT), autophagy, and cellular stress response. In this chapter, we focused characteristics of cancer stem cells, reprogramming strategies cells into CSCs, and then we highlighted the contribution of CSCs to therapy resistance and cancer relapse and their potential of therapeutic targeting of CSCs.
Collapse
Affiliation(s)
- Meryem Osum
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Near East University, Nicosia, Cyprus
| | - Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Cyprus Health and Social Sciences University, Guzelyurt, Cyprus.
| |
Collapse
|
7
|
Yu W, Hu C, Gao H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv Drug Deliv Rev 2021; 178:113909. [PMID: 34352354 DOI: 10.1016/j.addr.2021.113909] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common tumor in women, and the metastasis further increases the malignancy with extremely high mortality. However, there is almost no effective method in the clinic to completely inhibit breast cancer metastasis due to the dynamic multistep process with complex pathways and scattered occurring site. Nowadays, nanomedicines have been evidenced with great potential in treating cancer metastasis. In this review, we summarize the latest research advances of nanomedicines in anti-metastasis treatment. Strategies are categorized according to the metastasis dynamics, including primary tumor, circulating tumor cells, pre-metastatic niches and secondary tumor. In each different stage of metastasis process, nanomedicines are designed specifically with different functions. At the end of the review, we give our perspectives on current limitations and future directions in anti-metastasis therapy. We expect the review provides comprehensive understandings of anti-metastasis therapy for breast cancer, and boosts the clinical translation in the future to improve women's health.
Collapse
|
8
|
Huang B, Yan X, Li Y. Cancer Stem Cell for Tumor Therapy. Cancers (Basel) 2021; 13:cancers13194814. [PMID: 34638298 PMCID: PMC8508418 DOI: 10.3390/cancers13194814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although many methods have been applied in clinical treatment for tumors, they still always show a poor prognosis. Molecule targeted therapy has revolutionized tumor therapy, and a proper target must be found urgently. With a crucial role in tumor development, metastasis and recurrence, cancer stem cells have been found to be a feasible and potential target for tumor therapy. We list the unique biological characteristics of cancer stem cells and summarize the recent strategies to target cancer stem cells for tumor therapy, through which we hope to provide a comprehensive understanding of cancer stem cells and find a better combinational strategy to target cancer stem cells for tumor therapy. Abstract Tumors pose a significant threat to human health. Although many methods, such as operations, chemotherapy and radiotherapy, have been proposed to eliminate tumor cells, the results are unsatisfactory. Targeting therapy has shown potential due to its specificity and efficiency. Meanwhile, it has been revealed that cancer stem cells (CSCs) play a crucial role in the genesis, development, metastasis and recurrence of tumors. Thus, it is feasible to inhibit tumors and improve prognosis via targeting CSCs. In this review, we provide a comprehensive understanding of the biological characteristics of CSCs, including mitotic pattern, metabolic phenotype, therapeutic resistance and related mechanisms. Finally, we summarize CSCs targeted strategies, including targeting CSCs surface markers, targeting CSCs related signal pathways, targeting CSC niches, targeting CSC metabolic pathways, inducing differentiation therapy and immunotherapy (tumor vaccine, CAR-T, oncolytic virus, targeting CSCs–immune cell crosstalk and immunity checkpoint inhibitor). We highlight the potential of immunity therapy and its combinational anti-CSC therapies, which are composed of different drugs working in different mechanisms.
Collapse
Affiliation(s)
- Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Xin Yan
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Correspondence: ; Tel.: +86-138-9361-5421
| |
Collapse
|
9
|
Fadera S, Chen PY, Liu HL, Lee IC. Induction Therapy of Retinoic Acid with a Temozolomide-Loaded Gold Nanoparticle-Associated Ultrasound Effect on Glioblastoma Cancer Stem-Like Colonies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32845-32855. [PMID: 34235925 DOI: 10.1021/acsami.1c09634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive glioma. The treatment response is always low, and the condition is typically rapidly fatal. The undifferentiated and self-renewal characteristics of cancer stem cells (CSCs) have been reported, and their potential contribution may cause tumor initiation, recurrence, metastasis, and therapeutic resistance. In particular, glioblastoma stem-like cells exhibit highly invasive properties and drug resistance, serving as a model for the development of novel therapeutic strategies. Induction therapy provides an alternative therapeutic strategy to eliminate the stem cell properties of CSCs and enhance therapeutic sensitivity. The differentiated cells may lose their self-renewal ability, downregulate stem cell-related genes and drug resistance genes, and enhance anticancer drug sensitivity. Therefore, the purpose of this study is to establish a niche for glioblastoma stem-like cell selection as a platform and facilitate the assessment of differentiation therapy on GBM cancer stem-like colonies by retinoic acid (RA) with temozolomide (TMZ)-loaded gold nanoparticles (GNPs) associated with low-intensity ultrasound (LIUS). Herein, a hyaluronic acid-based material system was used to isolate GBM cancer stem-like colonies. Colony formation, size determination, stem cell-related marker expression, and GBM cancer stem-like cell marker expression with the culture period were identified. The effect of TMZ on GBM stem-like colonies on HA-based material systems was also determined, and the results revealed that drug resistance was highly enhanced in GBM colonies compared with that in the control cell population. In addition, GBM colonies also exhibited a significant increase in breast cancer resistance protein expression, which is consistent with the drug resistance effect. Furthermore, several factors, including LIUS, RA, and GNPs, were used to determine the possibility of induction therapy. RA with TMZ-loaded GNP-associated LIUS stimulation exhibited a significant and synergistic effect on the differentiation effect and drug sensitivity enhancement. The GBM cancer stem-like colony system presents an opportunity for the development of new therapeutic strategies, and this study provides an alternative differentiation therapy for malignant tumors.
Collapse
Affiliation(s)
- Siaka Fadera
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung branch 20401, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
10
|
Chen L, Ma H, Li K, Song X, Zeng X. Liver extracellular matrix hydrogel-based three-dimensional culture system of HepG2 cells to enhance cancer stem cell properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112119. [PMID: 34082936 DOI: 10.1016/j.msec.2021.112119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/04/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
Both extracellular matrix (ECM) components and three-dimensional (3D) structure play important roles in the expression and maintenance of cancer stem cell (CSC) properties. Considering the excellent biophysical and biochemical properties of hydrogels, the objective of this study was to develop a 3D cell culture system based on liver ECM hydrogel (LEMH) to enhance CSC properties. Results showed that LEMH was devoid of cellular materials but contained the main components of the liver ECM. HepG2 hepatocellular carcinoma cells cultured in LEMH displayed cluster growth and formed multilayer 3D cell structures with increased expression of hepatocyte-specific genes compared to two-dimensional (2D) cells. In addition, enhanced CSC characteristics, including migration, self-renewal and drug-resistance, were observed in 3D cells. More importantly, inhibitory effects of epigallocatechin gallate on CSC self-renewal and metastatic characteristics were observed, confirming the applicability of the LEMH-based 3D model for the research and development of CSC-specific drugs. These findings suggest that LEMH-based 3D culture offers a simple and efficient platform to enhance CSC properties in vitro, thereby providing a novel approach for exploring CSC-specific agents and chemotherapeutic drugs.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| | - Huijing Ma
- Library, Xinyang Normal University, Xinyang 464000, China
| | - Kaiming Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xinqiang Song
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; College of Medicine, Xinyang Normal University, Xinyang 464000, China
| | - Xiansi Zeng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
11
|
Li Y, Chen Z, Ge S. Sonoporation: Underlying Mechanisms and Applications in Cellular Regulation. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ultrasound combined with microbubble-mediated sonoporation has been applied to enhance drug or gene intracellular delivery. Sonoporation leads to the formation of openings in the cell membrane, triggered by ultrasound-mediated oscillations and destruction of microbubbles. Multiple mechanisms
are involved in the occurrence of sonoporation, including ultrasonic parameters, microbubbles size, and the distance of microbubbles to cells. Recent advances are beginning to extend applications through the assistance of contrast agents, which allow ultrasound to connect directly to cellular
functions such as gene expression, cellular apoptosis, differentiation, and even epigenetic reprogramming. In this review, we summarize the current state of the art concerning microbubble‐cell interactions and sonoporation effects leading to cellular functions.
Collapse
Affiliation(s)
- Yue Li
- First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhiyi Chen
- First Affiliated Hospital of University of South China, Hengyang, China
| | - Shuping Ge
- Department of Pediatrics, St Christopher’s Hospital for Children, Tower Health and Drexel University, Philadelphia, PA (S.G.)
| |
Collapse
|
12
|
Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 2021; 6:62. [PMID: 33589595 PMCID: PMC7884707 DOI: 10.1038/s41392-020-00430-1] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) show a self-renewal capacity and differentiation potential that contribute to tumor progression and therapy resistance. However, the underlying processes are still unclear. Elucidation of the key hallmarks and resistance mechanisms of CSCs may help improve patient outcomes and reduce relapse by altering therapeutic regimens. Here, we reviewed the identification of CSCs, the intrinsic and extrinsic mechanisms of therapy resistance in CSCs, the signaling pathways of CSCs that mediate treatment failure, and potential CSC-targeting agents in various tumors from the clinical perspective. Targeting the mechanisms and pathways described here might contribute to further drug discovery and therapy.
Collapse
Affiliation(s)
- He-Ming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Fadera S, Cheng NC, Young TH, Lee IC. In vitro study of SDF-1α-loaded injectable and thermally responsive hydrogels for adipose stem cell therapy by SDF-1/CXCR4 axis. J Mater Chem B 2020; 8:10360-10372. [PMID: 33108417 DOI: 10.1039/d0tb01961e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cell-based approaches have become a promising therapeutic strategy for treating ischemic diseases. The aim of this study was to develop injectable hydrogel systems for the local release of stromal cell-derived factor-1α (SDF-1α) to recruit adipose stem cells (ASCs) that express CXCR4 to achieve stem cell therapy and therapeutic angiogenesis. Thermoresponsive and injectable chitosan (CS)/β-glycerophosphate disodium salt pentahydrate (βGP) hydrogels with different concentrations of hyaluronic acid (HA) were designed and fabricated to achieve local and sustained release of SDF-1α for ASC recruitment. Herein, the material structures, physical properties, gelation temperature, and gelation time of hydrogels with different compositions were determined. The incorporation of 0.9% HA in CS-based hydrogels not only enhanced the gelation time but also increased the strength of the hydrogels. In addition, the results revealed that the thermoresponsive and injectable CS/βGP/HA hydrogels showed good biocompatibility. In addition, the in vitro release profiles showed that the hydrogels achieved sustained release of SDF-1α over 7 days and enhanced ASC migration. The results revealed that the hydrogels with HA enhanced the sustained release effect compared with the hydrogel without HA, indicating that the HA content regulated the physical and release properties of the injectable hydrogels. Therefore, thermoresponsive and injectable CS/βGP/HA hydrogels may provide an alternative for treating ischemic diseases via SDF-1/CXCR4 axis for ASC recruitment and retention.
Collapse
Affiliation(s)
- Siaka Fadera
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S Rd, Taipei 100, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, 1 Jen-Ai Rd, Taipei 100, Taiwan.
| | - I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
14
|
Lu X, Zhang Y, Xie G, Ding Y, Cong H, Xuan S. Exosomal non‑coding RNAs: Novel biomarkers with emerging clinical applications in gastric cancer (Review). Mol Med Rep 2020; 22:4091-4100. [PMID: 33000279 PMCID: PMC7533435 DOI: 10.3892/mmr.2020.11519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common types of malignant tumor and it demonstrates high mortality rates. The majority of cases of GC are diagnosed at an advanced stage, which seriously endangers the health of the patient. Therefore, discovering a novel diagnostic method for GC is a current priority. Exosomes are 40 to 150-nm-diameter vesicles consisting of a lipid bilayer secreted by a variety of cells that exist in multiple different types of body fluids. Exosomes contain diverse types of active substances, including RNAs, proteins and lipids, and play important roles in tumor cell communication, metastasis and neovascularization, as well as tumor growth. Non-coding RNAs (ncRNAs) do not code proteins, and instead have roles in a variety of genetic mechanisms, such as regulating the structure, expression and stability of RNAs, and modulating the translation and function of proteins. In recent years, exosomal ncRNAs have become a novel focus in research. An increasing number of studies have demonstrated that exosomal ncRNAs can be used in the prediction and treatment of GC. The present review briefly discusses the role of exosomal ncRNAs as a potential biomarker, and summarizes important regulatory genes involved in the development and progression of GC.
Collapse
Affiliation(s)
- Xu Lu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yu Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guangfei Xie
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ye Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shihai Xuan
- Department of Laboratory Medicine, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, P.R. China
| |
Collapse
|
15
|
Low-frequency dual-frequency ultrasound-mediated microbubble cavitation for transdermal minoxidil delivery and hair growth enhancement. Sci Rep 2020; 10:4338. [PMID: 32152413 PMCID: PMC7062896 DOI: 10.1038/s41598-020-61328-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ultrasound (US) has been found to rejuvenate and invigorate the hair follicles, increase the size of hair shafts, and promote new hair growth. Our present study found that dual-frequency US-mediated microbubble (MB) cavitation significantly enhanced minoxidil (Mx) delivery in both in vitro and in vivo models, while increasing the hair growth efficacy compared to single-frequency US sonication. The in vitro experiments showed that cavitation activity was enhanced more significantly during dual-frequency sonication than single-frequency sonication in higher concentration of MBs. The pigskin penetration depth in the group in which dual-frequency US was combined with MBs was 1.54 and 2.86 times greater than for single-frequency US combined with MBs and in the control group, respectively; the corresponding increases in the release rate of Mx at 18 hours in in vitro Franz-diffusion-cell experiments were 24.9% and 43.7%. During 21 days of treatment in C57BL/6J mice experiments, the growth rate at day 11 in the group in which dual-frequency US was combined with MBs increased by 2.07 times compared to single-frequency US combined with MBs. These results indicate that dual-frequency US-mediated MB cavitation can significantly increase both skin permeability and transdermal drug delivery. At the same US power density, hair growth was greater in the group with dual-frequency US plus MBs than in the group with single-frequency US plus MBs, without damaging the skin in mice.
Collapse
|