1
|
Barthold JE, Cai L, McCreery KP, Fischenich KM, Eckstein KN, Ferguson VL, Emery NC, Breur G, Neu CP. Integrative cartilage repair using acellular allografts for engineered structure and surface lubrication in vivo. NPJ Regen Med 2024; 9:25. [PMID: 39341829 PMCID: PMC11438864 DOI: 10.1038/s41536-024-00367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
The repair of articular cartilage after damage is challenging, and decellularized tissue offers a possible treatment option to promote regeneration. Here, we show that acellular osteochondral allografts improve integrative cartilage repair compared to untreated defects after 6 months in an ovine model. Functional measures of intratissue strain/structure assessed by MRI demonstrate similar biomechanics of implants and native cartilage. Compared to native tissue and defects, the structure, composition, and tribology of acellular allografts preserve surface roughness and lubrication, material properties under compression and relaxation, compositional ratios of collagen:glycosaminoglycan and collagen:phosphate, and relative composition of types I/II collagen. While high cellularity was observed in bone regions and integration zones between cartilage-allografts, recellularization of chondral implants was inconsistent, with cell migration typically less than ~750 µm into the dense decellularized tissue, possibly limiting long-term cellular maintenance. Our results demonstrate the structural and biomechanical efficacy of acellular allografts for at least six months in vivo.
Collapse
Affiliation(s)
- Jeanne E Barthold
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Luyao Cai
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kaitlin P McCreery
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Kristine M Fischenich
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Kevin N Eckstein
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Gert Breur
- Department of Veterinary Clinical Services, Purdue University, West Lafayette, IN, USA
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
2
|
Lu W, Li J. Nano-friction behavior and deformation study of hydroxyapatite in ultra-precision polishing process. J Mol Model 2024; 30:69. [PMID: 38349467 DOI: 10.1007/s00894-024-05863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/02/2024] [Indexed: 03/16/2024]
Abstract
CONTEXT In order to study the effect of ultra-precision machining on the surface quality of hydroxyapatite semiconductor materials as well as the material removal mechanism of hydroxyapatite, the mechanical polishing behaviors of hydroxyapatite at different polishing depths were studied by molecular dynamics method. The results show that the subsurface damage of hydroxyapatite increases with increasing polishing depth. The polishing temperature and the polishing force showed a positive correlation with the polishing depth, and the variation of the polishing force was related to the accumulation-release effect of the potential energy of hydroxyapatite material. In addition, the variation of stresses in hydroxyapatite during polishing is mainly influenced by the thermal softening effect. With a smaller polishing depth, the hydroxyapatite semiconductor material has fewer structural defects, fewer atoms undergoing phase transitions, lower surface roughness, and better surface quality. Therefore, to ensure the long-lasting service life of hydroxyapatite semiconductor materials, a small polishing depth should be used in ultra-precision machining. Additionally, this study also provides a theoretical reference for future research on the mechanical properties of hydroxyapatite-based composites. METHODS A Large-Scale Atomic/Molecular Parallel Simulator (LAMMPS) was utilized to perform molecular dynamics simulations. The output was visualized and analyzed by the Open Visualization Tools (OVITO) software. The intermolecular interactions were described by the polymer consistent force-field and the 12/6 Lennard-Jones potential functions. The workpiece was polished under a micro-canonical ensemble with the temperature settled at 300 K. Periodic boundary conditions were adopted and the velocity-Verlet algorithm was used to integrate the atomic motion with a timestep of 0.1 femtoseconds (fs).
Collapse
Affiliation(s)
- Weixi Lu
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang, 550025, China
| | - Jiachun Li
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, China.
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Wen Y, Wang B, Shi P, Chu X, Shi S, Yao Y, Zhang L, Zhang F. A Metabolomics Study of Feces Revealed That a Disturbance of Selenium-Centered Metabolic Bioprocess Was Involved in Kashin-Beck Disease, an Osteoarthropathy Endemic to China. Nutrients 2023; 15:4651. [PMID: 37960304 PMCID: PMC10650499 DOI: 10.3390/nu15214651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Background: Kashin-Beck disease (KBD) is a distinct osteoarthropathy in China with an unclear pathogenesis. This study aims to explore whether perturbations in the intestine metabolome could be linked to KBD individuals. Methods: An investigation was conducted in KBD endemic villages and fecal samples were collected. After applying inclusion and exclusion criteria, a total of 75 subjects were enrolled for this study, including 46 KBD (including 19 Grade I KBD and 27 Grade II KBD) and 29 controls. Untargeted metabolomics analysis was performed on the platform of UHPLC-MS. PLS-DA and OPLS-DA were conducted to compare the groups and identify the differential metabolites (DMs). Pathway analysis was conducted on MPaLA platform to explore the functional implication of the DMs. Results: Metabolomics analysis showed that compared with the control group, KBD individuals have a total of 584 differential metabolites with dysregulated levels such as adrenic acid (log2FC = -1.87, VIP = 4.84, p = 7.63 × 10-7), hydrogen phosphate (log2FC = -2.57, VIP = 1.27, p = 1.02 × 10-3), taurochenodeoxycholic acid (VIP = 1.16, log2FC = -3.24, p = 0.03), prostaglandin E3 (VIP = 1.17, log2FC = 2.67, p = 5.61 × 10-4), etc. Pathway analysis revealed several significantly perturbed pathways associated with KBD such as selenium micronutrient network (Q value = 3.11 × 10-3, Wikipathways), metabolism of lipids (Q value = 8.43 × 10-4, Reactome), free fatty acid receptors (Q value = 3.99 × 10-3, Reactome), and recycling of bile acids and salts (Q value = 2.98 × 10-3, Reactome). Subgroup comparisons found a total of 267 differential metabolites were shared by KBD vs. control, KBD II vs. control, and KBD I vs. control, while little difference was found between KBD II and KBD I (only one differential metabolite detected). Conclusions: KBD individuals showed distinct metabolic features characterized by perturbations in lipid metabolism and selenium-related bioprocesses. Our findings suggest that the loss of nutrients metabolism balance in intestine was involved in KBD pathogenesis. Linking the nutrients metabolism (especially selenium and lipid) to KBD cartilage damage should be a future direction of KBD study.
Collapse
Affiliation(s)
- Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Bingyi Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Panxing Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
- Medical Department, The First Affiliated Hospital of Air Force Medical University, Xi’an 710032, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (B.W.); (P.S.); (X.C.); (S.S.); (Y.Y.); (L.Z.); (F.Z.)
| |
Collapse
|
4
|
Mondal S, Park S, Choi J, Vu TTH, Doan VHM, Vo TT, Lee B, Oh J. Hydroxyapatite: A journey from biomaterials to advanced functional materials. Adv Colloid Interface Sci 2023; 321:103013. [PMID: 37839281 DOI: 10.1016/j.cis.2023.103013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Hydroxyapatite (HAp), a well-known biomaterial, has witnessed a remarkable evolution over the years, transforming from a simple biocompatible substance to an advanced functional material with a wide range of applications. This abstract provides an overview of the significant advancements in the field of HAp and its journey towards becoming a multifunctional material. Initially recognized for its exceptional biocompatibility and bioactivity, HAp gained prominence in the field of bone tissue engineering and dental applications. Its ability to integrate with surrounding tissues, promote cellular adhesion, and facilitate osseointegration made it an ideal candidate for various biomedical implants and coatings. As the understanding of HAp grew, researchers explored its potential beyond traditional biomaterial applications. With advances in material synthesis and engineering, HAp began to exhibit unique properties that extended its utility to other disciplines. Researchers successfully tailored the composition, morphology, and surface characteristics of HAp, leading to enhanced mechanical strength, controlled drug release capabilities, and improved biodegradability. These modifications enabled the utilization of HAp in drug delivery systems, biosensors, tissue engineering scaffolds, and regenerative medicine applications. Moreover, the exceptional biomineralization properties of HAp allowed for the incorporation of functional ions and molecules during synthesis, leading to the development of bioactive coatings and composites with specific therapeutic functionalities. These functionalized HAp materials have demonstrated promising results in antimicrobial coatings, controlled release systems for growth factors and therapeutic agents, and even as catalysts in chemical reactions. In recent years, HAp nanoparticles and nanostructured materials have emerged as a focal point of research due to their unique physicochemical properties and potential for targeted drug delivery, imaging, and theranostic applications. The ability to manipulate the size, shape, and surface chemistry of HAp at the nanoscale has paved the way for innovative approaches in personalized medicine and regenerative therapies. This abstract highlights the exceptional evolution of HAp, from a traditional biomaterial to an advanced functional material. The exploration of novel synthesis methods, surface modifications, and nanoengineering techniques has expanded the horizon of HAp applications, enabling its integration into diverse fields ranging from biomedicine to catalysis. Additionally, this manuscript discusses the emerging prospects of HAp-based materials in photocatalysis, sensing, and energy storage, showcasing its potential as an advanced functional material beyond the realm of biomedical applications. As research in this field progresses, the future holds tremendous potential for HAp-based materials to revolutionize medical treatments and contribute to the advancement of science and technology.
Collapse
Affiliation(s)
- Sudip Mondal
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Thi Thu Ha Vu
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Truong Tien Vo
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Byeongil Lee
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| | - Junghwan Oh
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
5
|
Sui C, Robinson TE, Williams RL, Eisenstein NM, Grover LM. Triggered metabolism of adenosine triphosphate as an explanation for the chemical heterogeneity of heterotopic ossification. Commun Chem 2023; 6:227. [PMID: 37857687 PMCID: PMC10587346 DOI: 10.1038/s42004-023-01015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Heterotopic ossification (HO), the pathological formation of bone in soft tissues, is a debilitating condition, as well as one of the few instances of de novo bone formation in adults. Chemical mapping of HO tissue showed distinct islands of calcium phosphate within phosphate-deficient, calcium-rich regions, suggesting a transition to apatitic bone mineral from a non-phosphatic precursor. The transition of amorphous calcium carbonate (ACC), a generally suggested bone-mineral precursor, in physiological conditions was thus investigated. Here, we show that adenosine triphosphate (ATP), present in high amounts in forming bone, stabilised ACC for weeks in physiological conditions and that enzymatic degradation of ATP triggered rapid crystallisation into apatite, through an amorphous calcium phosphate phase. It is suggested that this localised enzymatic degradation could explain the chemical heterogeneity seen in HO and may also represent a pathway to physiological bone mineralisation.
Collapse
Affiliation(s)
- Cong Sui
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Thomas E Robinson
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard L Williams
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Neil M Eisenstein
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Liam M Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
6
|
Ryu JH, Mangal U, Lee MJ, Seo JY, Jeong IJ, Park JY, Na JY, Lee KJ, Yu HS, Cha JK, Kwon JS, Choi SH. Effect of strontium substitution on functional activity of phosphate-based glass. Biomater Sci 2023; 11:6299-6310. [PMID: 37551440 DOI: 10.1039/d3bm00610g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Phosphate-based glass (PBG) is a bioactive agent, composed of a glass network with phosphate as the primary component and can be substituted with various therapeutic ions for functional enhancement. Strontium (Sr) has been shown to stimulate osteogenic activity and inhibit pro-inflammatory responses. Despite this potential, there are limited studies that focus on the proportion of Sr substituted and its impact on the functional activity of resulting Sr-substituted PBG (PSr). In this study, focusing on the cellular biological response we synthesized and investigated the functional activity of PSr by characterizing its properties and comparing the effect of Sr substitution on cellular bioactivity. Moreover, we benchmarked the optimal composition against 45S5 bioactive glass (BG). Our results showed that PSr groups exhibited a glass structure and phosphate network like that of PBG. The release of Sr and P was most stable for PSr6, which showed favorable cell viability. Furthermore, PSr6 elicited excellent early osteogenic marker expression and inhibition of pro-inflammatory cytokine expression, which was significant compared to BG. In addition, compared to BG, PSr6 had markedly higher expression of osteopontin in immunocytochemistry, higher ALP expression in osteogenic media, and denser alizarin red staining in vitro. We also observed a comparable in vivo regenerative response in a 4-week rabbit calvaria defect model. Therefore, based on the results of this study, PSr6 could be identified as the functionally optimized composition with the potential to be applied as a valuable bioactive component of existing biomaterials used for bone regeneration.
Collapse
Affiliation(s)
- Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myung-Jin Lee
- Department of Dental Hygiene, Division of Health Science, Baekseok University, 1 Baekseokdaehak-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31065, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Il Jun Jeong
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin-Young Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Yeong Na
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyung-Seog Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
The roles of heteromorphic crystals and organic compounds in the formation of the submandibular stones. Heliyon 2022; 8:e12329. [PMID: 36582680 PMCID: PMC9792800 DOI: 10.1016/j.heliyon.2022.e12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Objective The study aimed to analyze the formation process of submandibular stones based on the theory of biological mineralization and inorganic crystal structure variation. Study design From January 2021 to December 2021, patients with submandibular stones treated in the Affiliated Hospital of Stomatology, Sun Yat-sen University (Guangzhou, China) were selected. According to the criterion of maximum transverse diameter ≥3 mm, a total of five submandibular stones meeting the requirement were included. After the surface of sample stones were washed, they were cut along the maximum transverse diameter. Next, the study employed Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and polycrystalline X-ray Diffraction (XRD) to analyze the composition and structure of submandibular stones. Results Five submandibular stones were included. The organic and inorganic compounds showed a rhythmic or irregular distribution. Submandibular stones were highly occupied with carbon (C), oxygen (O), calcium (Ca), and phosphorus (P). Hydroxyapatite (HAP) was the primary inorganic component. In addition, the precursor of HAP, namely Amorphous Calcium Phosphate (ACP), was also found. Tetrahedral Substitution Index (TSI) and Ca/P ratio reflected the degree of structural variation in HAP crystal, which fluctuated from 5.62-90.71 and 1.10-1.35, respectively. Conclusions The development of submandibular stones was influenced by inorganic crystals' chemical and structural variation as well as the organics' regulation towards the inorganic. The isomorphic substitution was accompanied by the occurrence of inorganic crystals, resulting in the crystal structure change. Organics might influence the appearance, aggregation, and mineralization of HAP during its formation.
Collapse
|
8
|
Jing X, Xiong Z, Lin Z, Sun T. The Application of Black Phosphorus Nanomaterials in Bone Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14122634. [PMID: 36559127 PMCID: PMC9787998 DOI: 10.3390/pharmaceutics14122634] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Recently, research on and the application of nanomaterials such as graphene, carbon nanotubes, and metal-organic frameworks has become increasingly popular in tissue engineering. In 2014, a two-dimensional sheet of black phosphorus (BP) was isolated from massive BP crystals. Since then, BP has attracted significant attention as an emerging nanomaterial. BP possesses many advantages such as light responsiveness, electrical conductivity, degradability, and good biocompatibility. Thus, it has broad prospects in biomedical applications. Moreover, BP is composed of phosphorus, which is a key bone tissue component with good biocompatibility and osteogenic repair ability. Thereby, BP exhibits excellent advantages for application in bone tissue engineering. In this review, the structure and the physical and chemical properties of BP are described. In addition, the current applications of BP in bone tissue engineering are reviewed to aid the future research and application of BP.
Collapse
Affiliation(s)
- Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zekang Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zian Lin
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
9
|
Eid R, Maatouk E, Samrani AE, Azzi V, Bassil J. Characterisation of Zinc-bearing sulphate phases formed during the synthesis of phosphoric acid and Zinc removal by the ligands of Opuntia ficus-indica. ENVIRONMENTAL TECHNOLOGY 2022; 43:4125-4136. [PMID: 34125654 DOI: 10.1080/09593330.2021.1943001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Phosphogypsum (PG) is a solid waste generated from phosphate fertilisers industries. It represents a serious threat to the aquatic and terrestrial environment because of its acidity and its high content in heavy metals and radionuclides. The aim of this work is to describe the formation of PG during the synthesis of the phosphoric acid, the entrapment of Zinc (Zn) in PG and its lixiviation in presence of a natural organic matter extracted as powder from the cladodes of Opuntia ficus-indica (OFI) using physical and chemical characterisation techniques such as FTIR, XRD, SEM-EDX, laser diffraction, and AAS. The formation of PG mainly occurs in the pH range between 4.6 and 3 and it accompanies the transformation of H2(PO4)- into phosphoric acid H3PO4. The maximal Zn incorporation within the PG was reached at pH 6 and decreased progressively with pH. Zinc was found to have a great tendency to migrate from PG particles to OFI's suspensions since a maximum Zn removal percentage of 93% was achieved.
Collapse
Affiliation(s)
- Roukaya Eid
- Faculty of Science II, Platform for Research and Analysis in Environmental Sciences (Doctoral School of Science and Technology), Laboratory of Geoscience, Geo-resources, and Environment (L2GE), Lebanese University, Fanar, Lebanon
| | - Elias Maatouk
- Faculty of Science II, Platform for Research and Analysis in Environmental Sciences (Doctoral School of Science and Technology), Laboratory of Geoscience, Geo-resources, and Environment (L2GE), Lebanese University, Fanar, Lebanon
| | - Antoine El Samrani
- Faculty of Science II, Platform for Research and Analysis in Environmental Sciences (Doctoral School of Science and Technology), Laboratory of Geoscience, Geo-resources, and Environment (L2GE), Lebanese University, Fanar, Lebanon
| | - Valérie Azzi
- Faculty of Science II, Platform for Research and Analysis in Environmental Sciences (Doctoral School of Science and Technology), Laboratory of Geoscience, Geo-resources, and Environment (L2GE), Lebanese University, Fanar, Lebanon
- Soil and Soilless Unit, Lebanese Agriculture Research Institute (LARI), Fanar, Lebanon
| | - Joseph Bassil
- Faculty of Science II, Platform for Research and Analysis in Environmental Sciences (Doctoral School of Science and Technology), Laboratory of Geoscience, Geo-resources, and Environment (L2GE), Lebanese University, Fanar, Lebanon
| |
Collapse
|
10
|
Milborne B, Murrell L, Cardillo-Zallo I, Titman J, Briggs L, Scotchford C, Thompson A, Layfield R, Ahmed I. Developing Porous Ortho- and Pyrophosphate-Containing Glass Microspheres; Structural and Cytocompatibility Characterisation. Bioengineering (Basel) 2022; 9:611. [PMID: 36354522 PMCID: PMC9687370 DOI: 10.3390/bioengineering9110611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 04/04/2024] Open
Abstract
Phosphate-based glasses (PBGs) are promising materials for bone repair and regeneration as they can be formulated to be compositionally similar to the inorganic components of bone. Alterations to the PBG formulation can be used to tailor their degradation rates and subsequent release of biotherapeutic ions to induce cellular responses, such as osteogenesis. In this work, novel invert-PBGs in the series xP2O5·(56 - x)CaO·24MgO·20Na2O (mol%), where x is 40, 35, 32.5 and 30 were formulated to contain pyro (Q1) and orthophosphate (Q0) species. These PBGs were processed into highly porous microspheres (PMS) via flame spheroidisation, with ~68% to 75% porosity levels. Compositional and structural analysis using EDX and 31P-MAS NMR revealed that significant depolymerisation occurred with reducing phosphate content which increased further when PBGs were processed into PMS. A decrease from 50% to 0% in Q2 species and an increase from 6% to 35% in Q0 species was observed for the PMS when the phosphate content decreased from 40 to 30 mol%. Ion release studies also revealed up to a four-fold decrease in cations and an eight-fold decrease in phosphate anions released with decreasing phosphate content. In vitro bioactivity studies revealed that the orthophosphate-rich PMS had favourable bioactivity responses after 28 days of immersion in simulated body fluid (SBF). Indirect and direct cell culture studies confirmed that the PMS were cytocompatible and supported cell growth and proliferation over 7 days of culture. The P30 PMS with ~65% pyro and ~35% ortho phosphate content revealed the most favourable properties and is suggested to be highly suitable for bone repair and regeneration, especially for orthobiologic applications owing to their highly porous morphology.
Collapse
Affiliation(s)
- Ben Milborne
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lauren Murrell
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Jeremy Titman
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Louise Briggs
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Colin Scotchford
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alexander Thompson
- Biodiscovery Institute, Division of Cancer and Stem Cells, University of Nottingham, Nottingham NG7 2RD, UK
| | - Robert Layfield
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
11
|
Liu J, Chen Y, Yao B, Cai S, Li X, Leng Y, Cai X. A novel fluorescent probe based on cyanoacetyl indole derivative for highly selective and sensitive detection of HPO42−. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Bassett DC, Robinson TE, Hill RJ, Grover LM, Barralet JE. Self-assembled calcium pyrophosphate nanostructures for targeted molecular delivery. BIOMATERIALS ADVANCES 2022; 140:213086. [PMID: 35988368 DOI: 10.1016/j.bioadv.2022.213086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nanostructured, inorganic microspheres have many industrial applications, including catalysis, electronics, and particularly drug delivery, with several advantages over their organic counterparts. However, many current production methods require high energy input, use of harmful chemicals, and extensive processing. Here, the self-assembly of calcium pyrophosphate into nanofibre microspheres is reported. This process takes place at ambient temperature, with no energy input, and only salt water as a by-product. The formation of these materials is examined, as is the formation of nanotubes when the system is agitated, from initial precipitate to crystallisation. A mechanism of formation is proposed, whereby the nanofibre intermediates are formed as the system moves from kinetically favoured spheres to thermodynamically stable plates, with a corresponding increase in aspect ratio. The functionality of the nanofibre microspheres as targeted enteric drug delivery vehicles is then demonstrated in vitro and in vivo, showing that the microspheres can pass through the stomach while protecting the activity of a model protein, then release their payload in intestinal conditions.
Collapse
Affiliation(s)
- David C Bassett
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, UK
| | - Thomas E Robinson
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, UK
| | - Reghan J Hill
- Department of Chemical Engineering, McGill University, Canada
| | - Liam M Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, UK.
| | | |
Collapse
|
13
|
Cho Y, Moon M, Holló G, Lagzi I, Yang SH. Bioinspired Control of Calcium Phosphate Liesegang Patterns Using Anionic Polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2515-2524. [PMID: 35148116 PMCID: PMC8892956 DOI: 10.1021/acs.langmuir.1c02980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/28/2022] [Indexed: 05/31/2023]
Abstract
The Liesegang phenomenon is a spontaneous pattern formation, which is a periodic distribution of the precipitate discovered in diffusion-limited systems. Over the past century, it has been experimentally attempted to control the periodicity of patterns and structures of precipitates by varying the concentration of the hydrogel or electrolytes, adding organic or inorganic impurities, and applying an electric or pH field. In this work, the periodic patterns of calcium phosphate were manipulated with an anionic macromolecular additive inspired by bone mineralization in which various noncollagenous proteins are involved in the formation of a polymer-induced liquid precursor. The periodic patterns were systematically controlled by adjusting the amount of poly(acrylic acid), and they were numerically simulated by adjusting the threshold concentration of nucleation. The change of the pattern is explained by improved stability and directional diffusion of the intermediate.
Collapse
Affiliation(s)
- Young
Shin Cho
- Department
of Chemistry Education, Korea National University
of Education (KNUE), Chungbuk 28173, Republic of Korea
| | - Miyoung Moon
- Department
of Chemistry Education, Korea National University
of Education (KNUE), Chungbuk 28173, Republic of Korea
| | - Gábor Holló
- MTA-BME
Condensed Matter Physics Research Group, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - István Lagzi
- MTA-BME
Condensed Matter Physics Research Group, Budapest University of Technology and Economics, Budapest H-1111, Hungary
- Department
of Physics, Budapest University of Technology
and Economics, Budapest H-1111, Hungary
| | - Sung Ho Yang
- Department
of Chemistry Education, Korea National University
of Education (KNUE), Chungbuk 28173, Republic of Korea
| |
Collapse
|
14
|
Kozlova TO, Popov AL, Kolesnik IV, Kolmanovich DD, Baranchikov AE, Shcherbakov AB, Ivanov VK. Amorphous and crystalline cerium(IV) phosphates: biocompatible ROS-scavenging sunscreens. J Mater Chem B 2022; 10:1775-1785. [PMID: 35108720 DOI: 10.1039/d1tb02604f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports on a comprehensive study of the UV-shielding properties (namely, the sun protection factor and the factor of protection against UV-A radiation) and cytotoxicity (including photocytotoxicity) of amorphous and crystalline cerium(IV) phosphates. It has been shown that cerium(IV) phosphate NH4Ce2(PO4)3 is characterised by UV-shielding properties that are comparable to those of nanocrystalline TiO2 and CeO2. Moreover, cerium(IV) phosphates did not show toxicity towards cell cultures of NCTC L929 line mouse fibroblasts and human mesenchymal stem cells, in a wide range of concentrations, and even enhanced the proliferative activity of the latter. In a model study of the photoprotective properties of cerium(IV) phosphates on human mesenchymal stem cells, the pronounced protective effect of NH4Ce2(PO4)3 was observed, which was comparable to the shielding action of nanocrystalline CeO2. The results have shown that tetravalent cerium phosphates can be considered as promising UV-filters for sunscreen applications.
Collapse
Affiliation(s)
- T O Kozlova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991, Russia.
| | - A L Popov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - I V Kolesnik
- Lomonosov Moscow State University, Materials Science Department, Moscow 119991, Russia
| | - D D Kolmanovich
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - A E Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991, Russia.
| | - A B Shcherbakov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv D0368, Ukraine
| | - V K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|
15
|
|
16
|
Shin YS, Jo MK, Cho YS, Yang SH. Diffusion-Controlled Crystallization of Calcium Phosphate in a Hydrogel toward a Homogeneous Octacalcium Phosphate/Agarose Composite. ACS OMEGA 2022; 7:1173-1185. [PMID: 35036780 PMCID: PMC8757456 DOI: 10.1021/acsomega.1c05761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/03/2021] [Indexed: 05/08/2023]
Abstract
Diffusion-controlled crystallization in a hydrogel has been investigated to synthesize organic/inorganic hybrid composites and obtain a fundamental understanding of the detailed mechanism of biomineralization. Although calcium phosphate/hydrogel composites have been intensively studied and developed for the application of bone substitutes, the synthesis of homogeneous and integrated composites remains challenging. In this work, diffusion-controlled systems were optimized by manipulating the calcium ion flux at the interface, concentration gradient, and diffusion coefficient to synthesize homogeneous octacalcium phosphate/hydrogel composites with respect to the crystal morphology and density. The ion flux and local pH play an important role in determining the morphology, density, and phase of the crystals. This study suggests a model system that can reveal the relation between local conditions and the resulting crystal phase in diffusion-limited systems and provides a synthetic method for homogeneously organized organic/inorganic composites.
Collapse
|
17
|
Schröder HC, Wang X, Neufurth M, Wang S, Müller WEG. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:83-130. [PMID: 35697938 DOI: 10.1007/978-3-031-01237-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, inorganic polyphosphate (polyP) has attracted increasing attention as a biomedical polymer or biomaterial with a great potential for application in regenerative medicine, in particular in the fields of tissue engineering and repair. The interest in polyP is based on two properties of this physiological polymer that make polyP stand out from other polymers: polyP has morphogenetic activity by inducing cell differentiation through specific gene expression, and it functions as an energy store and donor of metabolic energy, especially in the extracellular matrix or in the extracellular space. No other biopolymer applicable in tissue regeneration/repair is known that is endowed with this combination of properties. In addition, polyP can be fabricated both in the form of a biologically active coacervate and as biomimetic amorphous polyP nano/microparticles, which are stable and are activated by transformation into the coacervate phase after contact with protein/body fluids. PolyP can be used in the form of various metal salts and in combination with various hydrogel-forming polymers, whereby (even printable) hybrid materials with defined porosities and mechanical and biological properties can be produced, which can even be loaded with cells for 3D cell printing or with drugs and support the growth and differentiation of (stem) cells as well as cell migration/microvascularization. Potential applications in therapy of bone, cartilage and eye disorders/injuries and wound healing are summarized and possible mechanisms are discussed.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
18
|
Zhou J, Hu Q, Xiao X, Yao D, Ge S, Ye J, Li H, Cai R, Liu R, Meng F, Wang C, Zhu JK, Lei M, Xing W. Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure. Nat Commun 2021; 12:7040. [PMID: 34857773 PMCID: PMC8639918 DOI: 10.1038/s41467-021-27391-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Phosphate, a key plant nutrient, is perceived through inositol polyphosphates (InsPs) by SPX domain-containing proteins. SPX1 an inhibit the PHR2 transcription factor to maintain Pi homeostasis. How SPX1 recognizes an InsP molecule and represses transcription activation by PHR2 remains unclear. Here we show that, upon binding InsP6, SPX1 can disrupt PHR2 dimers and form a 1:1 SPX1-PHR2 complex. The complex structure reveals that SPX1 helix α1 can impose a steric hindrance when interacting with the PHR2 dimer. By stabilizing helix α1, InsP6 allosterically decouples the PHR2 dimer and stabilizes the SPX1-PHR2 interaction. In doing so, InsP6 further allows SPX1 to engage with the PHR2 MYB domain and sterically block its interaction with DNA. Taken together, our results suggest that, upon sensing the surrogate signals of phosphate, SPX1 inhibits PHR2 via a dual mechanism that attenuates dimerization and DNA binding activities of PHR2.
Collapse
Affiliation(s)
- Jia Zhou
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinli Hu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinlong Xiao
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Deqiang Yao
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shenghong Ge
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin Ye
- MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Haojie Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Rujie Cai
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Renyang Liu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Chao Wang
- MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Weiman Xing
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
19
|
Dorozhkin SV. Synthetic amorphous calcium phosphates (ACPs): preparation, structure, properties, and biomedical applications. Biomater Sci 2021; 9:7748-7798. [PMID: 34755730 DOI: 10.1039/d1bm01239h] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amorphous calcium phosphates (ACPs) represent a metastable amorphous state of other calcium orthophosphates (abbreviated as CaPO4) possessing variable compositional but rather identical glass-like physical properties, in which there are neither translational nor orientational long-range orders of the atomic positions. In nature, ACPs of a biological origin are found in the calcified tissues of mammals, some parts of primitive organisms, as well as in the mammalian milk. Manmade ACPs can be synthesized in a laboratory by various methods including wet-chemical precipitation, in which they are the first solid phases, precipitated after a rapid mixing of aqueous solutions containing dissolved ions of Ca2+ and PO43- in sufficient amounts. Due to the amorphous nature, all types of synthetic ACPs appear to be thermodynamically unstable and, unless stored in dry conditions or doped by stabilizers, they tend to transform spontaneously to crystalline CaPO4, mainly to ones with an apatitic structure. This intrinsic metastability of the ACPs is of a great biological relevance. In particular, the initiating role that metastable ACPs play in matrix vesicle biomineralization raises their importance from a mere laboratory curiosity to that of a reasonable key intermediate in skeletal calcifications. In addition, synthetic ACPs appear to be very promising biomaterials both for manufacturing artificial bone grafts and for dental applications. In this review, the current knowledge on the occurrence, structural design, chemical composition, preparation, properties, and biomedical applications of the synthetic ACPs have been summarized.
Collapse
|
20
|
Formulation of inherently antimicrobial magnesium oxychloride cement and the effect of supplementation with silver phosphate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112158. [PMID: 34082963 DOI: 10.1016/j.msec.2021.112158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
The growing threat of bacterial resistance to antibiotics is driving an increasing need for new antimicrobial strategies. This work demonstrates the potential of magnesium oxychloride cements (MOC) to be used as inorganic antimicrobial biomaterials for bone augmentation. An injectable formulation was identified at a powder to liquid ratio of 1.4 g mL-1, with an initial setting time below 30 mins and compressive strength of 35 ± 9 MPa. Supplementation with Ag3PO4 to enhance the antimicrobial efficacy of MOC was explored, and shown via real time X-ray diffraction to retard the formation of hydrated oxychloride phases by up to 30%. The antimicrobial efficacy of MOC was demonstrated in vitro against Staphylococcus aureus and Pseudomonas aeruginosa, forming zones of inhibition and significantly reducing viability in broth culture. Enhanced efficacy was seen for silver doped formulations, with complete eradication of detectable viable colonies within 3 h, whilst retaining the cytocompatibility of MOC. Investigating the antimicrobial mode of action revealed that Mg and Ag release and elevated pH contributed to MOC efficacy. Sustained silver release was demonstrated over 14 days, suggesting the Ag3PO4 modified formulation offers two mechanisms of infection treatment, combining the inherent antimicrobial properties of MOC with controlled release of inorganic antimicrobials.
Collapse
|
21
|
Hughes EAB, Jones‐Salkey O, Forey P, Chipara M, Grover LM. Exploring the Formation of Calcium Orthophosphate‐Pyrophosphate Chemical Gardens. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Erik A. B. Hughes
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
- NIHR Surgical Reconstruction and Microbiology Research Centre Queen Elizabeth Hospital Birmingham UK
| | - Owen Jones‐Salkey
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
| | - Prescillia Forey
- Ensaia Université De Lorraine 34 Cours Léopold, CS 25233 F-54052 Nancy France
| | - Miruna Chipara
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
| | - Liam M. Grover
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
22
|
Vidavsky N, Kunitake JAMR, Estroff LA. Multiple Pathways for Pathological Calcification in the Human Body. Adv Healthc Mater 2021; 10:e2001271. [PMID: 33274854 PMCID: PMC8724004 DOI: 10.1002/adhm.202001271] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization of skeletal components (e.g., bone and teeth) is generally accepted to occur under strict cellular regulation, leading to mineral-organic composites with hierarchical structures and properties optimized for their designated function. Such cellular regulation includes promoting mineralization at desired sites as well as inhibiting mineralization in soft tissues and other undesirable locations. In contrast, pathological mineralization, with potentially harmful health effects, can occur as a result of tissue or metabolic abnormalities, disease, or implantation of certain biomaterials. This progress report defines mineralization pathway components and identifies the commonalities (and differences) between physiological (e.g., bone remodeling) and pathological calcification formation pathways, based, in part, upon the extent of cellular control within the system. These concepts are discussed in representative examples of calcium phosphate-based pathological mineralization in cancer (breast, thyroid, ovarian, and meningioma) and in cardiovascular disease. In-depth mechanistic understanding of pathological mineralization requires utilizing state-of-the-art materials science imaging and characterization techniques, focusing not only on the final deposits, but also on the earlier stages of crystal nucleation, growth, and aggregation. Such mechanistic understanding will further enable the use of pathological calcifications in diagnosis and prognosis, as well as possibly provide insights into preventative treatments for detrimental mineralization in disease.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Jennie A M R Kunitake
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| |
Collapse
|
23
|
Abstract
Inorganic phosphate is a vital constituent of cells and cell membranes, body fluids, and hard tissues. It is a major intracellular divalent anion, participates in many genetic, energy and intermediary metabolic pathways, and is important for bone health. Although we usually think of phosphate mostly in terms of its level in the serum, it is needed for many biological and structural functions of the body. Availability of adequate calcium and inorganic phosphate in the right proportions at the right place is essential for proper acquisition, biomineralization, and maintenance of mass and strength of the skeleton. The three specialized mineralized tissues, bones, teeth, and ossicles, differ from all other tissues in the human body because of their unique ability to mineralize, and the degree and process of mineralization in these tissues also differ to suit the specific functions: locomotion, chewing, and hearing, respectively. Biomineralization is a dynamic, complex, and lifelong process by which precipitations of inorganic calcium and inorganic phosphate divalent ions form biological hard tissues. Understanding the biomineralization process is important for the management of diseases caused by both defective and abnormal mineralization. Hypophosphatemia results in mineralization defects and osteomalacia, and hyperphosphatemia is implicated in abnormal excess calcification and/or ossification, but the exact mechanisms underlying these processes are not fully understood. In this review, we summarize available evidence on the role of phosphate in biomineralization. Other manuscripts in this issue of the journal deal with other relevant aspects of phosphate homeostasis, phosphate signaling and sensing, and disorders resulting from hypo- and hyperphosphatemic states.
Collapse
Affiliation(s)
| | - Sudhaker D Rao
- Division of Endocrinology, Diabetes, and Bone & Mineral Disorders, Henry Ford Hospital, New Center One; Suite # 800, Detroit, MI, 48202, USA.
- Bone & Mineral Research Laboratory, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
24
|
DOTA-ZOL: A Promising Tool in Diagnosis and Palliative Therapy of Bone Metastasis-Challenges and Critical Points in Implementation into Clinical Routine. Molecules 2020; 25:molecules25132988. [PMID: 32629930 PMCID: PMC7412164 DOI: 10.3390/molecules25132988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/17/2023] Open
Abstract
The novel compound 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-ZOL (DOTA-conjugated zoledronic acid) is a promising candidate for the diagnosis and therapy of bone metastasis. The combination of the published methodology for this bisphosphonate with pharmaceutical and regulatory requirements turned out to be unexpectedly challenging. The scope of this work is the presentation and discussion of problems encountered during this process. Briefly, the radiolabelling process and purification, as well as the quality control published, did not meet the expectations. The constant effort setting up an automated radiolabelling procedure resulted in (a) an enhanced manual method using coated glass reactors, (b) a combination of three different reliable radio thin-layer chromatography (TLC) methods instead of the published and (c) a preliminary radio high-pressure liquid chromatography (HPLC) method for identification of the compound. Additionally, an automated radiolabelling process was developed, but it requires further improvement, e.g., in terms of a reactor vessel or purification of the crude product. The published purification method was found to be unsuitable for clinical routine, and an intense screening did not lead to a satisfactory result; here, more research is necessary. To sum up, implementation of DOTA-ZOL was possible but revealed a lot of critical points, of which not all could be resolved completely yet.
Collapse
|