1
|
He W, Wang Y, Li X, Ji Y, Yuan J, Yang W, Yan S, Yan J. Sealing the Pandora's vase of pancreatic fistula through entrapping the digestive enzymes within a dextrorotary (D)-peptide hydrogel. Nat Commun 2024; 15:7235. [PMID: 39174548 PMCID: PMC11341566 DOI: 10.1038/s41467-024-51734-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
A variety of therapeutic possibilities have emerged for skillfully regulating protein function or conformation through intermolecular interaction modulation to rectify abnormal biochemical reactions in diseases. Herein, a devised strategy of enzyme coordinators has been employed to alleviate postoperative pancreatic fistula (POPF), which is characterized by the leakage of digestive enzymes including trypsin, chymotrypsin, and lipase. The development of a dextrorotary (D)-peptide supramolecular gel (CP-CNDS) under this notion showcases its propensity for forming gels driven by intermolecular interaction. Upon POPF, CP-CNDS not only captures enzymes from solution into hydrogel, but also effectively entraps them within the internal gel, preventing their exchange with counterparts in the external milieu. As a result, CP-CNDS completely suppresses the activity of digestive enzymes, effectively alleviating POPF. Remarkably, rats with POPF treated with CP-CNDS not only survived but also made a recovery within a mere 3-day period, while mock-treated POPF rats had a survival rate of less than 5 days when experiencing postoperative pancreatic fistula, leak or abscess. Collectively, the reported CP-CNDS provides promising avenues for preventing and treating POPF, while exemplifying precision medicine-guided regulation of protein activity that effectively targets specific pathogenic molecules across multiple diseases.
Collapse
Affiliation(s)
- Wangxiao He
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China.
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Yang Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
- Department of Tumor and Immunology in Precision Medical Institute, Western China Science and Technology Innovation Port, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao Li
- Department of General Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yanlin Ji
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
- Department of Tumor and Immunology in Precision Medical Institute, Western China Science and Technology Innovation Port, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Juzheng Yuan
- Department of Tumor and Immunology in Precision Medical Institute, Western China Science and Technology Innovation Port, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
- Department of General Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wenguang Yang
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Siqi Yan
- Department of Tumor and Immunology in Precision Medical Institute, Western China Science and Technology Innovation Port, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jin Yan
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China.
- Department of Tumor and Immunology in Precision Medical Institute, Western China Science and Technology Innovation Port, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
2
|
Roy A, Hao L, Francisco J, Guan J, Mareedu S, Zhai P, Dodd-O J, Heffernan C, Del Re D, Lee EJA, Kumar VA. Injectable Peptide Hydrogels Loaded with Murine Embryonic Stem Cells Relieve Ischemia In Vivo after Myocardial Infarction. Biomacromolecules 2024; 25:1319-1329. [PMID: 38291600 DOI: 10.1021/acs.biomac.3c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Myocardial infarction (MI) is a major cause of morbidity and mortality worldwide, especially in aging and metabolically unhealthy populations. A major target of regenerative tissue engineering is the restoration of viable cardiomyocytes to preserve cardiac function and circumvent the progression to heart failure post-MI. Amelioration of ischemia is a crucial component of such restorative strategies. Angiogenic β-sheet peptides can self-assemble into thixotropic nanofibrous hydrogels. These syringe aspiratable cytocompatible gels were loaded with stem cells and showed excellent cytocompatibility and minimal impact on the storage and loss moduli of hydrogels. Gels with and without cells were delivered into the myocardium of a mouse MI model (LAD ligation). Cardiac function and tissue remodeling were evaluated up to 4 weeks in vivo. Injectable peptide hydrogels synergized with loaded murine embryonic stem cells to demonstrate enhanced survival after intracardiac delivery during the acute phase post-MI, especially at 7 days. This approach shows promise for post-MI treatment and potentially functional cardiac tissue regeneration and warrants large-scale animal testing prior to clinical translation.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Lei Hao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Jamie Francisco
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Jin Guan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Satvik Mareedu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Joseph Dodd-O
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Corey Heffernan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Dominic Del Re
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Eun Jung A Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, New Jersey 07103, United States
| |
Collapse
|
3
|
Dodd-O J, Roy A, Siddiqui Z, Jafari R, Coppola F, Ramasamy S, Kolloli A, Kumar D, Kaundal S, Zhao B, Kumar R, Robang AS, Li J, Azizogli AR, Pai V, Acevedo-Jake A, Heffernan C, Lucas A, McShan AC, Paravastu AK, Prasad BVV, Subbian S, Král P, Kumar V. Antiviral fibrils of self-assembled peptides with tunable compositions. Nat Commun 2024; 15:1142. [PMID: 38326301 PMCID: PMC10850501 DOI: 10.1038/s41467-024-45193-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
The lasting threat of viral pandemics necessitates the development of tailorable first-response antivirals with specific but adaptive architectures for treatment of novel viral infections. Here, such an antiviral platform has been developed based on a mixture of hetero-peptides self-assembled into functionalized β-sheets capable of specific multivalent binding to viral protein complexes. One domain of each hetero-peptide is designed to specifically bind to certain viral proteins, while another domain self-assembles into fibrils with epitope binding characteristics determined by the types of peptides and their molar fractions. The self-assembled fibrils maintain enhanced binding to viral protein complexes and retain high resilience to viral mutations. This method is experimentally and computationally tested using short peptides that specifically bind to Spike proteins of SARS-CoV-2. This platform is efficacious, inexpensive, and stable with excellent tolerability.
Collapse
Affiliation(s)
- Joseph Dodd-O
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Roya Jafari
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Francesco Coppola
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Santhamani Ramasamy
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Afsal Kolloli
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Dilip Kumar
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Soni Kaundal
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Boyang Zhao
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jeffrey Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Abdul-Rahman Azizogli
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Varun Pai
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Amanda Acevedo-Jake
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Corey Heffernan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- SAPHTx Inc, Newark, NJ, 07104, USA
| | - Alexandra Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy Vaccines and Virotherapy, Biodesign Institute, Arizona State University, 727 E, Tempe, AZ, USA
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - B V Venkataram Prasad
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
- SAPHTx Inc, Newark, NJ, 07104, USA.
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA.
| |
Collapse
|
4
|
Roy A, Dodd-O JB, Robang AS, He D, West O, Siddiqui Z, Aguas ED, Goldberg H, Griffith A, Heffernan C, Hu Y, Paravastu AK, Kumar VA. Self-Assembling Peptides with Insulin-Like Growth Factor Mimicry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:364-375. [PMID: 38145951 DOI: 10.1021/acsami.3c15660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Growth factor (GF) mimicry involves recapitulating the signaling of larger molecules or cells. Although GF mimicry holds considerable promise in tissue engineering and drug design applications, difficulties in targeting the signaling molecule to the site of delivery and dissociation of mimicking peptides from their target receptors continue to limit its clinical application. To address these challenges, we utilized a self-assembling peptide (SAP) platform to generate synthetic insulin-like growth factor (IGF)-signaling, self-assembling GFs. Our peptide hydrogels are biocompatible and bind target IGF receptors in a dose-dependent fashion, activate proangiogenic signaling, and facilitate formation of angiogenic microtubules in vitro. Furthermore, infiltrated hydrogels are stable for weeks to months. We conclude that the enhanced targeting and long-term stability of our SAP/GF mimicry implants may improve the efficacy and safety of future GF mimic therapeutics.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Joseph B Dodd-O
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dongjing He
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Owen West
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Erika Davidoff Aguas
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08544, United States
| | - Hannah Goldberg
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Alexandra Griffith
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Corey Heffernan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yuhang Hu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, New Jersey 07103, United States
| |
Collapse
|
5
|
Kim K, Su Y, Kucine AJ, Cheng K, Zhu D. Guided Bone Regeneration Using Barrier Membrane in Dental Applications. ACS Biomater Sci Eng 2023; 9:5457-5478. [PMID: 37650638 DOI: 10.1021/acsbiomaterials.3c00690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Guided bone regeneration (GBR) is a widely used technique in preclinical and clinical studies due to its predictability. Its main purpose is to prevent the migration of soft tissue into the osseous wound space, while allowing osseous cells to migrate to the site. GBR is classified into two main categories: resorbable and non-resorbable membranes. Resorbable membranes do not require a second surgery but tend to have a short resorption period. Conversely, non-resorbable membranes maintain their mechanical strength and prevent collapse. However, they require removal and are susceptible to membrane exposure. GBR is often used with bone substitute graft materials to fill the defect space and protect the bone graft. The membrane can also undergo various modifications, such as surface modification and biological factor loading, to improve barrier functions and bone regeneration. In addition, bone regeneration is largely related to osteoimmunology, a new field that focuses on the interactions between bone and the immune system. Understanding these interactions can help in developing new treatments for bone diseases and injuries. Overall, GBR has the potential to be a powerful tool in promoting bone regeneration. Further research in this area could lead to advancements in the field of bone healing. This review will highlight resorbable and non-resorbable membranes with cellular responses during bone regeneration, provide insights into immunological response during bone remodeling, and discuss antibacterial features.
Collapse
Affiliation(s)
- Kakyung Kim
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yingchao Su
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Allan J Kucine
- Department of Oral and Maxillofacial Surgery, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York City, New York 10027, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
6
|
Davidoff Aguas E, Azizogli AR, Kashyap J, Dodd-o J, Siddiqui Z, Sy J, Kumar V. Rational Design of de novo CCL2 Binding Peptides. ADVANCED THEORY AND SIMULATIONS 2023; 6:2200810. [PMID: 37122440 PMCID: PMC10139756 DOI: 10.1002/adts.202200810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 12/23/2022]
Abstract
Chronic levels of inflammation lead to autoimmune diseases such as rheumatoid arthritis and atherosclerosis. A key molecular mediator responsible for the progression of these diseases is Chemokine C-C motif ligand 2 (CCL2), a homodimerized cytokine that dissociates into monomeric form and binds to the CCR2 receptor. CCL2, also known as monocyte chemoattractant protein-1 (MCP-1), attracts monocytes to migrate to areas of injury and mature into macrophages, leading to positive feedback inflammation with further release of proinflammatory molecules such as IL-1β and TNF-α. Sequestering CCL2 to prevent its binding to CCR2 may prevent this inflammatory activity. Prior work adapted an α-helical CCL2-binding peptide (WKNFQTI) from murine CCR2 through extracellular loop analysis. Here, higher-affinity peptide binders were computationally designed through homology modeling and energy calculations, yielding an 11-amino acid peptide with high binding affinity. In addition, Rosetta mutations improved binding affinity in silico with blockage of the CCL2 dimerization site. Future work in analyzing binding kinetics and in vivo inflammation abrogation will confirm the accuracy of computational modeling techniques in de novo rational design of CCL2 cytokine binders.
Collapse
Affiliation(s)
| | - Abdul-Rahman Azizogli
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102
| | - Jatin Kashyap
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102
| | - Joseph Dodd-o
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102
| | - Jay Sy
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08544
| | - Vivek Kumar
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, 07103
| |
Collapse
|
7
|
Hernandez A, Hartgerink JD, Young S. Self-assembling peptides as immunomodulatory biomaterials. Front Bioeng Biotechnol 2023; 11:1139782. [PMID: 36937769 PMCID: PMC10014862 DOI: 10.3389/fbioe.2023.1139782] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Self-assembling peptides are a type of biomaterial rapidly emerging in the fields of biomedicine and material sciences due to their promise in biocompatibility and effectiveness at controlled release. These self-assembling peptides can form diverse nanostructures in response to molecular interactions, making them versatile materials. Once assembled, the peptides can mimic biological functions and provide a combinatorial delivery of therapeutics such as cytokines and drugs. These self-assembling peptides are showing success in biomedical settings yet face unique challenges that must be addressed to be widely applied in the clinic. Herein, we describe self-assembling peptides' characteristics and current applications in immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Andrea Hernandez
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, TX, United States
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States
- *Correspondence: Simon Young,
| |
Collapse
|
8
|
Kobayashi Y, Nouet J, Baljinnyam E, Siddiqui Z, Fine DH, Fraidenraich D, Kumar VA, Shimizu E. iPSC-derived cranial neural crest-like cells can replicate dental pulp tissue with the aid of angiogenic hydrogel. Bioact Mater 2022; 14:290-301. [PMID: 35310357 PMCID: PMC8897656 DOI: 10.1016/j.bioactmat.2021.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
The dental pulp has irreplaceable roles in maintaining healthy teeth and its regeneration is a primary aim of regenerative endodontics. This study aimed to replicate the characteristics of dental pulp tissue by using cranial neural crest (CNC)-like cells (CNCLCs); these cells were generated by modifying several steps of a previously established method for deriving NC-like cells from induced pluripotent stem cells (iPSCs). CNC is the anterior region of the neural crest in vertebrate embryos, which contains the primordium of dental pulp cells or odontoblasts. The produced CNCLCs showed approximately 2.5–12,000-fold upregulations of major CNC marker genes. Furthermore, the CNCLCs exhibited remarkable odontoblastic differentiation ability, especially when treated with a combination of the fibroblast growth factors (FGFs) FGF4 and FGF9. The FGFs induced odontoblast marker genes by 1.7–5.0-fold, as compared to bone morphogenetic protein 4 (BMP4) treatment. In a mouse subcutaneous implant model, the CNCLCs briefly fated with FGF4 + FGF9 replicated dental pulp tissue characteristics, such as harboring odontoblast-like cells, a dentin-like layer, and vast neovascularization, induced by the angiogenic self-assembling peptide hydrogel (SAPH), SLan. SLan acts as a versatile biocompatible scaffold in the canal space. This study demonstrated a successful collaboration between regenerative medicine and SAPH technology. Cranial neural crest like cells (CNCLCs) were generated by simplifying a previously established method for deriving neural crest-like cells from iPSCs. The produced CNCLCs showed approximately ∼12,000-fold upregulations of major CNC marker genes. The combination of fibroblast growth factors, FGF4 and FGF9, induced the CNCLCs toward odontoblastic differentiation more effectively than BMP4. In a mice subcutaneous implant model, the CNCLCs replicated the characteristics of dental pulp harboring vast neovascularization with the aid of the angiogenic hydrogel, SLan.
Collapse
|
9
|
Cells and material-based strategies for regenerative endodontics. Bioact Mater 2022; 14:234-249. [PMID: 35310358 PMCID: PMC8897646 DOI: 10.1016/j.bioactmat.2021.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
<p class = "Abstract" style = "margin: 0 cm; line-height: 32px; font-size: 12 pt; font-family: "Times New Roman", serif; color: rgb(0, 0, 0); "><span lang = "EN-US">The carious process leads to inflammation of pulp tissue. Current care options include root canal treatment or apexification. These procedures, however, result in the loss of tooth vitality, sensitivity, and healing. Pulp capping and dental pulp regeneration are continually evolving techniques to regenerate pulp tissue, avoiding necrosis and loss of vitality. Many studies have successfully employed stem/progenitor cell populations, revascularization approaches, scaffolds or material-based strategies for pulp regeneration. Here we outline advantages and disadvantages of different methods and techniques which are currently being used in the field of regenerative endodontics. We also summarize recent findings on efficacious peptide-based materials which target the dental niche.<o:p></o:p></span></p> Pulp infection necessitates removal of necrotic, inflamed and infected tissue. Materials used clinically are inert (such as gutta percha, mineral trioxide aggregate). Recent developments in materials (angiogenic hydrogels, stem cell composites) have tuneable bioactivity. Dental pulp regeneration may now be possible through the use of bioactive systems, that guide regeneration.
Collapse
|
10
|
Guo C, Cao Z, Peng Y, Wu R, Xu H, Yuan Z, Xiong H, Wang Y, Wu Y, Li W, Kong Q, Wang Y, Wu J. Subchondral bone-inspired hydrogel scaffold for cartilage regeneration. Colloids Surf B Biointerfaces 2022; 218:112721. [PMID: 35905590 DOI: 10.1016/j.colsurfb.2022.112721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/09/2022] [Accepted: 07/23/2022] [Indexed: 02/05/2023]
Abstract
Promoting the in situ regeneration of cartilage without additional cells or cytokines remains challenging. Here, inspired by the unique microstructures of subchondral bone, a cell and cytokine free hydrogel scaffold for cartilage regeneration was developed via a strategy of directional lyophilization and postcrosslinking. This strategy achieved intersecting microchannels in an orderly arrangement and an aligned ladder-like texture in a semi-interpenetrating hydrogel network. The resulting hydrogel had similar mechanical properties to the native cartilage extracellular matrix. Incorporating chitosan into the rigid network also endowed the hydrogel with excellent hemostatic properties. By delicately tuning the components and postcrosslinking conditions, the hydrogel was further endowed with suitable swelling and degradation properties for cartilage regeneration. In vitro tests showed that the highly biocompatible hydrogel scaffold could facilitate the migration and chondrogenic differentiation of bone marrow mesenchymal stem cells. In vivo results further verified that the hydrogel could promote the in situ regeneration of cartilage in a rat model of osteochondral defects. In summary, the subchondral bone-like hydrogel revealed promising prospects in cartilage regeneration and a variety of bioremediation applications.
Collapse
Affiliation(s)
- Chuan Guo
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenxing Cao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Peng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hu Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhaoyang Yuan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Xiong
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weilong Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingquan Kong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
11
|
Kim K, Siddiqui Z, Acevedo-Jake AM, Roy A, Choudhury M, Grasman J, Kumar V. Angiogenic Hydrogels to Accelerate Early Wound Healing. Macromol Biosci 2022; 22:e2200067. [PMID: 35579914 DOI: 10.1002/mabi.202200067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/19/2022] [Indexed: 11/09/2022]
Abstract
The metabolic disorder diabetes mellitus affects an increasing proportion of the population, a number projected to double by 2060. Non-life-threatening comorbidities contribute to an interrupted healing process which is first delayed, then prolonged, and associated with increased susceptibility to infection and sustained and unresolved inflammation. This leads to chronic non-healing wounds and eventually potential amputation of extremities. Here we examine the use of a bioactive angiogenic peptide-based hydrogel, SLan, to improve early wound healing in diabetic rats, and compare its performance to clinically utilized biosynthetic peptide-based materials such as Puramatrix. Streptozotocin-treated diabetic rats underwent 8 mm biopsy wounding in their dorsum to remove the epithelium, adipose tissues and muscle layer of the skin, and served as a model for diabetic wound healing. Wounds were treated with either Low (1w%) SLan, High (4w%) SLan, PBS, Puramatrix or K2 (an unfunctionalized non-bioactive control sequentially similar to SLan), covered with Tegaderm and monitored on days 0, 3, 7, 10, 14, 17, 21, 28; animals were sacrificed for histomorphic analyses and immunostaining. An LC/MS method developed to detect SLan in plasma allows pharmacokinetic analysis showing no trafficking of peptides from the wound site into the circulation. Low and High SLan groups show similar final outcomes of wound contraction as control groups (Puramatrix, PBS and K2). SLan-treated rats, however, show marked improvement in healing in earlier time points, including increased deposition of new mature blood vessels. Additionally, rats in the Low SLan treatment groups showed significantly improved wound contraction over other groups and significantly improved healing in early time points. Altogether our results suggest this material can be used to "jumpstart" the diabetic wound healing process. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- KaKyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Amanda M Acevedo-Jake
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Marwa Choudhury
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jonathan Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.,Department of Biology, New Jersey Institute of Technology, Newark, NJ, 07102, USA.,Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.,Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, 07102, USA
| |
Collapse
|
12
|
Jin L, Dong H, Sun D, Wang L, Qu L, Lin S, Yang Q, Zhang X. Biological Functions and Applications of Antimicrobial Peptides. Curr Protein Pept Sci 2022; 23:226-247. [DOI: 10.2174/1389203723666220519155942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Despite antimicrobial resistance, which is attributed to the misuse of broad-spectrum antibiotics,
antibiotics can indiscriminately kill pathogenic and beneficial microorganisms. These events
disrupt the delicate microbial balance in both humans and animals, leading to secondary infections
and other negative effects. Antimicrobial peptides (AMPs) are functional natural biopolymers in
plants and animals. Due to their excellent antimicrobial activities and absence of microbial resistance,
AMPs have attracted enormous research attention. We reviewed the antibacterial, antifungal, antiviral,
antiparasitic, as well as antitumor properties of AMPs and research progress on AMPs. In addition,
we highlighted various recommendations and potential research areas for their progress and
challenges in practical applications.
Collapse
Affiliation(s)
- Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Hao Dong
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Linkai Qu
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Sue Lin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology
and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
13
|
La Manna S, De Benedictis I, Marasco D. Proteomimetics of Natural Regulators of JAK-STAT Pathway: Novel Therapeutic Perspectives. Front Mol Biosci 2022; 8:792546. [PMID: 35047557 PMCID: PMC8762217 DOI: 10.3389/fmolb.2021.792546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
The JAK-STAT pathway is a crucial cellular signaling cascade, including an intricate network of Protein-protein interactions (PPIs) responsible for its regulation. It mediates the activities of several cytokines, interferons, and growth factors and transduces extracellular signals into transcriptional programs to regulate cell growth and differentiation. It is essential for the development and function of both innate and adaptive immunities, and its aberrant deregulation was highlighted in neuroinflammatory diseases and in crucial mechanisms for tumor cell recognition and tumor-induced immune escape. For its involvement in a multitude of biological processes, it can be considered a valuable target for the development of drugs even if a specific focus on possible side effects associated with its inhibition is required. Herein, we review the possibilities to target JAK-STAT by focusing on its natural inhibitors as the suppressor of cytokine signaling (SOCS) proteins. This protein family is a crucial checkpoint inhibitor in immune homeostasis and a valuable target in immunotherapeutic approaches to cancer and immune deficiency disorders.
Collapse
Affiliation(s)
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
14
|
Acevedo-Jake A, Shi S, Siddiqui Z, Sanyal S, Schur R, Kaja S, Yuan A, Kumar VA. Preclinical Efficacy of Pro- and Anti-Angiogenic Peptide Hydrogels to Treat Age-Related Macular Degeneration. Bioengineering (Basel) 2021; 8:190. [PMID: 34940343 PMCID: PMC8698576 DOI: 10.3390/bioengineering8120190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
Pro-angiogenic and anti-angiogenic peptide hydrogels were evaluated against the standard of care wet age-related macular degeneration (AMD) therapy, Aflibercept (Eylea®). AMD was modeled in rats (laser-induced choroidal neovascularization (CNV) model), where the contralateral eye served as the control. After administration of therapeutics, vasculature was monitored for 14 days to evaluate leakiness. Rats were treated with either a low or high concentration of anti-angiogenic peptide hydrogel (0.02 wt% 8 rats, 0.2 wt% 6 rats), or a pro-angiogenic peptide hydrogel (1.0 wt% 7 rats). As controls, six rats were treated with commercially available Aflibercept and six with sucrose solution (vehicle control). Post lasering, efficacy was determined over 14 days via fluorescein angiography (FA) and spectral-domain optical coherence tomography (SD-OCT). Before and after treatment, the average areas of vascular leak per lesion were evaluated as well as the overall vessel leakiness. Unexpectedly, treatment with pro-angiogenic peptide hydrogel showed significant, immediate improvement in reducing vascular leak; in the short term, the pro-angiogenic peptide performed better than anti-angiogenic peptide hydrogel and was comparable to Aflibercept. After 14 days, both the pro-angiogenic and anti-angiogenic peptide hydrogels show a trend of improvement, comparable to Aflibercept. Based on our results, both anti-angiogenic and pro-angiogenic peptide hydrogels may prove good therapeutics in the future to treat wet AMD over a longer-term treatment period.
Collapse
Affiliation(s)
- Amanda Acevedo-Jake
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (A.A.-J.); (Z.S.)
| | - Siyu Shi
- Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (A.A.-J.); (Z.S.)
| | - Sreya Sanyal
- Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Rebecca Schur
- Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA; (R.S.); (A.Y.)
| | - Simon Kaja
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland;
- Department of Ophthalmology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Alex Yuan
- Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA; (R.S.); (A.Y.)
| | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (A.A.-J.); (Z.S.)
- Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA;
- Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ 07102, USA
| |
Collapse
|
15
|
Kim K, Mahajan A, Patel K, Syed S, Acevedo‐Jake AM, Kumar VA. Materials and Cytokines in the Healing of Diabetic Foot Ulcers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- KaKyung Kim
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Aryan Mahajan
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Kamiya Patel
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Shareef Syed
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Amanda M. Acevedo‐Jake
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Vivek A. Kumar
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
- Department of Chemical, Biological and Pharmaceutical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| |
Collapse
|
16
|
Wang TT, Xia YY, Gao JQ, Xu DH, Han M. Recent Progress in the Design and Medical Application of In Situ Self-Assembled Polypeptide Materials. Pharmaceutics 2021; 13:753. [PMID: 34069645 PMCID: PMC8160760 DOI: 10.3390/pharmaceutics13050753] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Inspired by molecular self-assembly, which is ubiquitous in natural environments and biological systems, self-assembled peptides have become a research hotspot in the biomedical field due to their inherent biocompatibility and biodegradability, properties that are afforded by the amide linkages forming the peptide backbone. This review summarizes the biological advantages, principles, and design strategies of self-assembled polypeptide systems. We then focus on the latest advances in in situ self-assembly of polypeptides in medical applications, such as oncotherapy, materials science, regenerative medicine, and drug delivery, and then briefly discuss their potential challenges in clinical treatment.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China;
| | - Yi-Yi Xia
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.X.); (J.-Q.G.)
| | - Jian-Qing Gao
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.X.); (J.-Q.G.)
| | - Dong-Hang Xu
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China;
| | - Min Han
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.X.); (J.-Q.G.)
| |
Collapse
|
17
|
Fu K, Wu H, Su Z. Self-assembling peptide-based hydrogels: Fabrication, properties, and applications. Biotechnol Adv 2021; 49:107752. [PMID: 33838284 DOI: 10.1016/j.biotechadv.2021.107752] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/02/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
The hierarchical formation of self-assembling peptide-based hydrogels (SAPHs) starts from peptide to nanofibers, following with the entanglement into hydrogels with nanofibrous network. Such characteristic structure and extraordinary biocompatibility, and the peptide components endow the SAPHs with diverse applications in biotechnological field. Therefore, the thorough comprehension of SAPHs is significant to broadening their application. In this review, fabrication, properties, and biological applications of the SAPHs are introduced, and the factors influencing the synthesis process as well as the properties of the SAPHs products are also systematically explained. Meanwhile, we conclude the problems to be solved and provide our perspective to the future development of SAPHs in the biotechnology.
Collapse
Affiliation(s)
- Kun Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanguang Wu
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Institute of Fashion Technology, 100029 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
18
|
Crowe KM, Siddiqui Z, Harbour V, Kim K, Syed S, Paul R, Roy A, Naik R, Mitchell K, Mahajan A, Sarkar B, Kumar VA. Evaluation of Injectable Naloxone-Releasing Hydrogels. ACS APPLIED BIO MATERIALS 2020; 3:7858-7864. [PMID: 35019526 DOI: 10.1021/acsabm.0c01016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The opioid epidemic in the United States is a serious public health crisis affecting over 1.7 million Americans. In the last two decades, almost 450 000 people have died from an opioid overdose, with nearly 20% of these deaths occurring in 2017 and 2018 alone. During an overdose, overstimulation of the μ-opioid receptor leads to severe and potentially fatal respiratory depression. Naloxone is a competitive μ-opioid-receptor antagonist that is widely used to displace opioids and rescue from an overdose. Here, we describe the development of a slow-release, subcutaneous naloxone formulation for potential management of opioid overdose, chronic pain, and opioid-induced constipation. Naloxone is loaded into self-assembling peptide hydrogels for controlled drug release. The mechanical, chemical, and structural properties of the nanofibrous hydrogel enable subcutaneous administration and slow, diffusion-based release kinetics of naloxone over 30 days in vitro. The naloxone hydrogel scaffold showed cytocompatibility and did not alter the β-sheet secondary structure or thixotropic properties characteristic of self-assembling peptide hydrogels. Our results show that this biocompatible and injectable self-assembling peptide hydrogel may be useful as a vehicle for tunable, sustained release of therapeutic naloxone. This therapy may be particularly suited for preventing renarcotization in patients who refuse additional medical assistance following an overdose.
Collapse
Affiliation(s)
- Kaytlyn M Crowe
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Victoria Harbour
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - KaKyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Shareef Syed
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Reshma Paul
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Ruhi Naik
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Kayla Mitchell
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Aryan Mahajan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States.,Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States.,Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, New Jersey 07102, United States
| |
Collapse
|