1
|
Orozco-Osorio YA, Gaita-Anturi AV, Ossa-Orozco CP, Arias-Acevedo M, Uribe D, Paucar C, Vasquez AF, Saldarriaga W, Ramirez JG, Lopera A, García C. Utilization of Additive Manufacturing Techniques for the Development of a Novel Scaffolds with Magnetic Properties for Potential Application in Enhanced Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402419. [PMID: 39004887 DOI: 10.1002/smll.202402419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Indexed: 07/16/2024]
Abstract
This study focuses on designing and evaluating scaffolds with essential properties for bone regeneration, such as biocompatibility, macroporous geometry, mechanical strength, and magnetic responsiveness. The scaffolds are made using 3D printing with acrylic resin and iron oxides synthesized through solution combustion. Utilizing triply periodic minimal surfaces (TPMS) geometry and mask stereolithography (MSLA) printing, the scaffolds achieve precise geometrical features. The mechanical properties are enhanced through resin curing, and magnetite particles from synthesized nanoparticles and alluvial magnetite are added for magnetic properties. The scaffolds show a balance between stiffness, porosity, and magnetic responsiveness, with maximum compression strength between 4.8 and 9.2 MPa and Young's modulus between 58 and 174 MPa. Magnetic properties such as magnetic coercivity, remanence, and saturation are measured, with the best results from scaffolds containing synthetic iron oxides at 1% weight. The viscosity of the mixtures used for printing is between 350 and 380 mPas, and contact angles between 90° and 110° are achieved. Biocompatibility tests indicate the potential for clinical trials, though further research is needed to understand the impact of magnetic properties on cellular interactions and optimize scaffold design for specific applications. This integrated approach offers a promising avenue for the development of advanced materials capable of promoting enhanced bone regeneration.
Collapse
Affiliation(s)
| | | | | | - María Arias-Acevedo
- Instituto Tecnológico Metropolitano, Calle 73 #76A-354, Campus Robledo, Medellín, Antioquia, 50034, Colombia
| | - Diego Uribe
- Instituto Tecnológico Metropolitano, Calle 73 #76A-354, Campus Robledo, Medellín, Antioquia, 50034, Colombia
| | - Carlos Paucar
- Universidad Nacional de Colombia sede Medellín, Carrera 65 # 59A-100, Medellin, Antioquia, 050034, Colombia
| | | | - Wilmer Saldarriaga
- Universidad Nacional de Colombia sede Medellín, Carrera 65 # 59A-100, Medellin, Antioquia, 050034, Colombia
| | | | - Alex Lopera
- Grupo de Nanoestructuras y Física Aplicada (NANOUPAR), Universidad Nacional de Colombia, La Paz, 202017, Colombia
| | - Claudia García
- Universidad Nacional de Colombia sede Medellín, Carrera 65 # 59A-100, Medellin, Antioquia, 050034, Colombia
| |
Collapse
|
2
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
3
|
Jiang Z, Chen L, Huang L, Yu S, Lin J, Li M, Gao Y, Yang L. Bioactive Materials That Promote the Homing of Endogenous Mesenchymal Stem Cells to Improve Wound Healing. Int J Nanomedicine 2024; 19:7751-7773. [PMID: 39099796 PMCID: PMC11297574 DOI: 10.2147/ijn.s455469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024] Open
Abstract
Endogenous stem cell homing refers to the transport of endogenous mesenchymal stem cells (MSCs) to damaged tissue. The paradigm of using well-designed biomaterials to induce resident stem cells to home in to the injured site while coordinating their behavior and function to promote tissue regeneration is known as endogenous regenerative medicine (ERM). ERM is a promising new avenue in regenerative therapy research, and it involves the mobilizing of endogenous stem cells for homing as the principal means through which to achieve it. Comprehending how mesenchymal stem cells home in and grasp the influencing factors of mesenchymal stem cell homing is essential for the understanding and design of tissue engineering. This review summarizes the process of MSC homing, the factors influencing the homing process, analyses endogenous stem cell homing studies of interest in the field of skin tissue repair, explores the integration of endogenous homing promotion strategies with cellular therapies and details tissue engineering strategies that can be used to modulate endogenous homing of stem cells. In addition to providing more systematic theories and ideas for improved materials for endogenous tissue repair, this review provides new perspectives to explore the complex process of tissue remodeling to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Montemurro T, Lavazza C, Montelatici E, Budelli S, La Rosa S, Barilani M, Mei C, Manzini P, Ratti I, Cimoni S, Brasca M, Prati D, Saporiti G, Astori G, Elice F, Giordano R, Lazzari L. Off-the-Shelf Cord-Blood Mesenchymal Stromal Cells: Production, Quality Control, and Clinical Use. Cells 2024; 13:1066. [PMID: 38920694 PMCID: PMC11202005 DOI: 10.3390/cells13121066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Background Recently, mesenchymal stromal cells (MSCs) have gained recognition for their clinical utility in transplantation to induce tolerance and to improve/replace pharmacological immunosuppression. Cord blood (CB)-derived MSCs are particularly attractive for their immunological naivety and peculiar anti-inflammatory and anti-apoptotic properties. OBJECTIVES The objective of this study was to obtain an inventory of CB MSCs able to support large-scale advanced therapy medicinal product (ATMP)-based clinical trials. STUDY DESIGN We isolated MSCs by plastic adherence in a GMP-compliant culture system. We established a well-characterized master cell bank and expanded a working cell bank to generate batches of finished MSC(CB) products certified for clinical use. The MSC(CB) produced by our facility was used in approved clinical trials or for therapeutic use, following single-patient authorization as an immune-suppressant agent. RESULTS We show the feasibility of a well-defined MSC manufacturing process and describe the main indications for which the MSCs were employed. We delve into a regulatory framework governing advanced therapy medicinal products (ATMPs), emphasizing the need of stringent quality control and safety assessments. From March 2012 to June 2023, 263 of our Good Manufacturing Practice (GMP)-certified MSC(CB) preparations were administered as ATMPs in 40 subjects affected by Graft-vs.-Host Disease, nephrotic syndrome, or bronco-pulmonary dysplasia of the newborn. There was no infusion-related adverse event. No patient experienced any grade toxicity. Encouraging preliminary outcome results were reported. Clinical response was registered in the majority of patients treated under therapeutic use authorization. CONCLUSIONS Our 10 years of experience with MSC(CB) described here provides valuable insights into the use of this innovative cell product in immune-mediated diseases.
Collapse
Affiliation(s)
- Tiziana Montemurro
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Cristiana Lavazza
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Elisa Montelatici
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Silvia Budelli
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Salvatore La Rosa
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Mario Barilani
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Cecilia Mei
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Paolo Manzini
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Ilaria Ratti
- Milano Cord Blood Bank and Center of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (I.R.); (S.C.); (M.B.); (D.P.)
| | - Silvia Cimoni
- Milano Cord Blood Bank and Center of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (I.R.); (S.C.); (M.B.); (D.P.)
| | - Manuela Brasca
- Milano Cord Blood Bank and Center of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (I.R.); (S.C.); (M.B.); (D.P.)
| | - Daniele Prati
- Milano Cord Blood Bank and Center of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (I.R.); (S.C.); (M.B.); (D.P.)
| | - Giorgia Saporiti
- Bone Marrow Transplantation and Cellular Therapy Center, Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Giuseppe Astori
- Laboratory of Advanced Cellular Therapies and Haematology Unit, San Bortolo Hospital, AULSS8 “Berica”, 36100 Vicenza, Italy; (G.A.); (F.E.)
| | - Francesca Elice
- Laboratory of Advanced Cellular Therapies and Haematology Unit, San Bortolo Hospital, AULSS8 “Berica”, 36100 Vicenza, Italy; (G.A.); (F.E.)
| | - Rosaria Giordano
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Lorenza Lazzari
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| |
Collapse
|
5
|
Song H, Hao D, Zhou J, Farmer D, Wang A. Development of pro-angiogenic skin substitutes for wound healing. Wound Repair Regen 2024; 32:208-216. [PMID: 38308588 DOI: 10.1111/wrr.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 02/05/2024]
Abstract
Wounds pose significant challenges to public health, primarily due to the loss of the mechanical integrity and barrier function of the skin and impaired angiogenesis, causing physical morbidities and psychological trauma to affect patients. Reconstructing the vasculature of the wound bed is crucial for promoting wound healing, reducing scar formation and enhancing the quality of life for patients. The development of pro-angiogenic skin substitutes has emerged as a promising strategy to facilitate vascularization and expedite the healing process of burn wounds. This review provides an overview of the various types of skin substitutes employed in wound healing, explicitly emphasising those designed to enhance angiogenesis. Synthetic scaffolds, biological matrices and tissue-engineered constructs incorporating stem cells and primary cells, cell-derived extracellular vesicles (EVs), pro-angiogenic growth factors and peptides, as well as gene therapy-based skin substitutes are thoroughly examined. The review summarises the existing challenges, future directions and potential innovations in pro-angiogenic dressing for skin substitutes. It highlights the need for continued research to develop new technologies and combine multiple strategies and factors, and to overcome obstacles and advance the field, ultimately leading to improved outcomes for wound patients.
Collapse
Affiliation(s)
- Hengyue Song
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Dake Hao
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Diana Farmer
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Aijun Wang
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Biomedical Engineering, UC Davis, Davis, California, USA
| |
Collapse
|
6
|
Hao D, Lin J, Liu R, Pivetti C, Yamashiro K, Schutzman LM, Sageshima J, Kwong M, Bahatyrevich N, Farmer DL, Humphries MD, Lam KS, Panitch A, Wang A. A bio-instructive parylene-based conformal coating suppresses thrombosis and intimal hyperplasia of implantable vascular devices. Bioact Mater 2023; 28:467-479. [PMID: 37408799 PMCID: PMC10318457 DOI: 10.1016/j.bioactmat.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Implantable vascular devices are widely used in clinical treatments for various vascular diseases. However, current approved clinical implantable vascular devices generally have high failure rates primarily due to their surface lacking inherent functional endothelium. Here, inspired by the pathological mechanisms of vascular device failure and physiological functions of native endothelium, we developed a new generation of bioactive parylene (poly(p-xylylene))-based conformal coating to address these challenges of the vascular devices. This coating used a polyethylene glycol (PEG) linker to introduce an endothelial progenitor cell (EPC) specific binding ligand LXW7 (cGRGDdvc) onto the vascular devices for preventing platelet adhesion and selectively capturing endogenous EPCs. Also, we confirmed the long-term stability and function of this coating in human serum. Using two vascular disease-related large animal models, a porcine carotid artery interposition model and a porcine carotid artery-jugular vein arteriovenous graft model, we demonstrated that this coating enabled rapid generation of self-renewable "living" endothelium on the blood contacting surface of the expanded polytetrafluoroethylene (ePTFE) grafts after implantation. We expect this easy-to-apply conformal coating will present a promising avenue to engineer surface properties of "off-the-shelf" implantable vascular devices for long-lasting performance in the clinical settings.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Jonathan Lin
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Christopher Pivetti
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Kaeli Yamashiro
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Linda M. Schutzman
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Junichiro Sageshima
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Mimmie Kwong
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Nataliya Bahatyrevich
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Misty D. Humphries
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Alyssa Panitch
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| |
Collapse
|
7
|
Nitti P, Narayanan A, Pellegrino R, Villani S, Madaghiele M, Demitri C. Cell-Tissue Interaction: The Biomimetic Approach to Design Tissue Engineered Biomaterials. Bioengineering (Basel) 2023; 10:1122. [PMID: 37892852 PMCID: PMC10604880 DOI: 10.3390/bioengineering10101122] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The advancement achieved in Tissue Engineering is based on a careful and in-depth study of cell-tissue interactions. The choice of a specific biomaterial in Tissue Engineering is fundamental, as it represents an interface for adherent cells in the creation of a microenvironment suitable for cell growth and differentiation. The knowledge of the biochemical and biophysical properties of the extracellular matrix is a useful tool for the optimization of polymeric scaffolds. This review aims to analyse the chemical, physical, and biological parameters on which are possible to act in Tissue Engineering for the optimization of polymeric scaffolds and the most recent progress presented in this field, including the novelty in the modification of the scaffolds' bulk and surface from a chemical and physical point of view to improve cell-biomaterial interaction. Moreover, we underline how understanding the impact of scaffolds on cell fate is of paramount importance for the successful advancement of Tissue Engineering. Finally, we conclude by reporting the future perspectives in this field in continuous development.
Collapse
Affiliation(s)
- Paola Nitti
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.N.); (R.P.); (S.V.); (M.M.); (C.D.)
| | | | | | | | | | | |
Collapse
|
8
|
Shen Y, Wang J, Li Y, Yang CT, Zhou X. Modified Bacteriophage for Tumor Detection and Targeted Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040665. [PMID: 36839030 PMCID: PMC9963578 DOI: 10.3390/nano13040665] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 05/07/2023]
Abstract
Malignant tumor is one of the leading causes of death in human beings. In recent years, bacteriophages (phages), a natural bacterial virus, have been genetically engineered for use as a probe for the detection of antigens that are highly expressed in tumor cells and as an anti-tumor reagent. Furthermore, phages can also be chemically modified and assembled with a variety of nanoparticles to form a new organic/inorganic composite, thus extending the application of phages in biological detection and tumor therapeutic. This review summarizes the studies on genetically engineered and chemically modified phages in the diagnosis and targeting therapy of tumors in recent years. We discuss the advantages and limitations of modified phages in practical applications and propose suitable application scenarios based on these modified phages.
Collapse
Affiliation(s)
- Yuanzhao Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jingyu Wang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuting Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chih-Tsung Yang
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Adelaide, SA 5095, Australia
- Correspondence: (X.Z.); (C.-T.Y.)
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.Z.); (C.-T.Y.)
| |
Collapse
|
9
|
Hao D, Liu R, Fernandez TG, Pivetti C, Jackson JE, Kulubya ES, Jiang HJ, Ju HY, Liu WL, Panitch A, Lam KS, Leach JK, Farmer DL, Wang A. A bioactive material with dual integrin-targeting ligands regulates specific endogenous cell adhesion and promotes vascularized bone regeneration in adult and fetal bone defects. Bioact Mater 2023; 20:179-193. [PMID: 35663336 PMCID: PMC9160290 DOI: 10.1016/j.bioactmat.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
Significant progress has been made in designing bone materials capable of directing endogenous cells to promote vascularized bone regeneration. However, current strategies lack regulation of the specific endogenous cell populations for vascularized bone regeneration, thus leading to adverse tissue formation and decreased regenerative efficiency. Here, we engineered a biomaterial to regulate endogenous cell adhesion and promote vascularized bone regeneration. The biomaterial works by presenting two synthetic ligands, LLP2A and LXW7, explicitly targeting integrins α4β1 and αvβ3, respectively, expressed on the surfaces of the cells related to bone formation and vascularization, such as mesenchymal stem cells (MSCs), osteoblasts, endothelial progenitor cells (EPCs), and endothelial cells (ECs). In vitro, the LLP2A/LXW7 modified biomaterial improved the adhesion of MSCs, osteoblasts, EPCs, and ECs via integrin α4β1 and αvβ3, respectively. In an adult rat calvarial bone defect model, the LLP2A/LXW7 modified biomaterial enhanced bone formation and vascularization by synergistically regulating endogenous cells with osteogenic and angiogenic potentials, such as DLX5+ cells, osteocalcin+ cells, CD34+/CD45- cells and CD31+ cells. In a fetal sheep spinal bone defect model, the LLP2A/LXW7 modified biomaterial augmented bone formation and vascularization without any adverse effects. This innovative biomaterial offers an off-the-shelf, easy-to-use, and biologically safe product suitable for vascularized bone regeneration in both fetal and adult disease environments. Two integrin-binding ligands for constructing vascularized bone biomaterial. Extracellular matrix (ECM)-mimicking collagen-based biomaterial with specific integrin binding sites for cell adhesion. Biomaterial regulates adhesion of endogenous stem cells with osteogenic and angiogenic potentials. Biomaterial promotes vascularized bone formation in adult and fetal bone defects without safety issues. An easy-to-make and off-the-shelf biomaterial for treatment of clinical bone diseases.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Tomas Gonzalez Fernandez
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Christopher Pivetti
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Jordan Elizabeth Jackson
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Edwin Samuel Kulubya
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Hong-Jiang Jiang
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Hai-Yang Ju
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Wen-Liang Liu
- Wendeng Orthopaedic Hospital, No. 1 Fengshan Road, Wendeng, 264400, Shandong, China
| | - Alyssa Panitch
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - J. Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
- Corresponding author. Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA, 95817, USA.
| |
Collapse
|
10
|
Hao D, Lu L, Song H, Duan Y, Chen J, Carney R, Li JJ, Zhou P, Nolta J, Lam KS, Leach JK, Farmer DL, Panitch A, Wang A. Engineered extracellular vesicles with high collagen-binding affinity present superior in situ retention and therapeutic efficacy in tissue repair. Theranostics 2022; 12:6021-6037. [PMID: 35966577 PMCID: PMC9373818 DOI: 10.7150/thno.70448] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 07/24/2022] [Indexed: 01/26/2023] Open
Abstract
Although stem cell-derived extracellular vesicles (EVs) have remarkable therapeutic potential for various diseases, the therapeutic efficacy of EVs is limited due to their degradation and rapid diffusion after administration, hindering their translational applications. Here, we developed a new generation of collagen-binding EVs, by chemically conjugating a collagen-binding peptide SILY to EVs (SILY-EVs), which were designed to bind to collagen in the extracellular matrix (ECM) and form an EV-ECM complex to improve EVs' in situ retention and therapeutic efficacy after transplantation. Methods: SILY was conjugated to the surface of mesenchymal stem/stromal cell (MSC)-derived EVs by using click chemistry to construct SILY-EVs. Nanoparticle tracking analysis (NTA), ExoView analysis, cryogenic electron microscopy (cryo-EM) and western-blot analysis were used to characterize the SILY-EVs. Fluorescence imaging (FLI), MTS assay, ELISA and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to evaluate the collagen binding and biological functions of SILY-EVs in vitro. In a mouse hind limb ischemia model, the in vivo imaging system (IVIS), laser doppler perfusion imaging (LDPI), micro-CT, FLI and RT-qPCR were used to determine the SILY-EV retention, inflammatory response, blood perfusion, gene expression, and tissue regeneration. Results:In vitro, the SILY conjugation significantly enhanced EV adhesion to the collagen surface and did not alter the EVs' biological functions. In the mouse hind limb ischemia model, SILY-EVs presented longer in situ retention, suppressed inflammatory responses, and significantly augmented muscle regeneration and vascularization, compared to the unmodified EVs. Conclusion: With the broad distribution of collagen in various tissues and organs, SILY-EVs hold promise to improve the therapeutic efficacy of EV-mediated treatment in a wide range of diseases and disorders. Moreover, SILY-EVs possess the potential to functionalize collagen-based biomaterials and deliver therapeutic agents for regenerative medicine applications.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Lu Lu
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Hengyue Song
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Yixin Duan
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Jianing Chen
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Randy Carney
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Ping Zhou
- Stem Cell Program, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Jan Nolta
- Stem Cell Program, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - J. Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Diana L Farmer
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Alyssa Panitch
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Aijun Wang
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
11
|
Hao D, Lopez JM, Chen J, Iavorovschi AM, Lelivelt NM, Wang A. Engineering Extracellular Microenvironment for Tissue Regeneration. Bioengineering (Basel) 2022; 9:bioengineering9050202. [PMID: 35621480 PMCID: PMC9137730 DOI: 10.3390/bioengineering9050202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular microenvironment is a highly dynamic network of biophysical and biochemical elements, which surrounds cells and transmits molecular signals. Extracellular microenvironment controls are of crucial importance for the ability to direct cell behavior and tissue regeneration. In this review, we focus on the different components of the extracellular microenvironment, such as extracellular matrix (ECM), extracellular vesicles (EVs) and growth factors (GFs), and introduce engineering approaches for these components, which can be used to achieve a higher degree of control over cellular activities and behaviors for tissue regeneration. Furthermore, we review the technologies established to engineer native-mimicking artificial components of the extracellular microenvironment for improved regenerative applications. This review presents a thorough analysis of the current research in extracellular microenvironment engineering and monitoring, which will facilitate the development of innovative tissue engineering strategies by utilizing different components of the extracellular microenvironment for regenerative medicine in the future.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Juan-Maria Lopez
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Jianing Chen
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Alexandra Maria Iavorovschi
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Nora Marlene Lelivelt
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
12
|
Merlo B, Baldassarro VA, Flagelli A, Marcoccia R, Giraldi V, Focarete ML, Giacomini D, Iacono E. Peptide Mediated Adhesion to Beta-Lactam Ring of Equine Mesenchymal Stem Cells: A Pilot Study. Animals (Basel) 2022; 12:ani12060734. [PMID: 35327131 PMCID: PMC8944785 DOI: 10.3390/ani12060734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In recent years, stem cell therapy has emerged as a promising potential treatment for chronic wounds in both human and veterinary medicine. Particularly, mesenchymal stem cells (MSCs) may be an attractive therapeutic tool for regenerative medicine and tissue engineering because these cells play a critical role in wound repair and tissue regeneration due to their immunosuppressive properties and multipotency. The use of biomaterials with integrin agonists could promote cell adhesion increasing tissue repair processes. This pilot study focuses on the adhesion ability of equine adult (adipose tissue) and fetal adnexa (Wharton’s jelly) derived MSCs mediated by GM18, an α4β1 integrin agonist, alone and combined with a biodegradable polymeric scaffold. Results show that a 24 h exposition to soluble GM18 affects equine MSCs adhesion ability with a donor-related variability and might suggest that WJ-MSCs more easily adhere to poly L-lactic acid (PLLA) nanofibers combined with GM18. These preliminary results need to be confirmed by further studies on the interactions between the different types of equine MSCs and GM18 incorporated PLLA scaffolds before drawing definitive conclusions on which cells and scaffolds could be successfully used for the treatment of decubitus ulcers. Abstract Regenerative medicine applied to skin lesions is a field in constant improvement. The use of biomaterials with integrin agonists could promote cell adhesion increasing tissue repair processes. The aim of this pilot study was to analyze the effect of an α4β1 integrin agonist on cell adhesion of equine adipose tissue (AT) and Wharton’s jelly (WJ) derived MSCs and to investigate their adhesion ability to GM18 incorporated poly L-lactic acid (PLLA) scaffolds. Adhesion assays were performed after culturing AT- and WJ-MSCs with GM18 coating or soluble GM18. Cell adhesion on GM18 containing PLLA scaffolds after 20 min co-incubation was assessed by HCS. Soluble GM18 affects the adhesion of equine AT- and WJ-MSCs, even if its effect is variable between donors. Adhesion to PLLA scaffolds containing GM18 is not significantly influenced by GM18 for AT-MSCs after 20 min or 24 h of culture and for WJ-MSCs after 20 min, but increased cell adhesion by 15% GM18 after 24 h. In conclusion, the α4β1 integrin agonist GM18 affects equine AT- and WJ-MSCs adhesion ability with a donor-related variability. These preliminary results represent a first step in the study of equine MSCs adhesion to PLLA scaffolds containing GM18, suggesting that WJ-MSCs might be more suitable than AT-MSCs. However, the results need to be confirmed by increasing the number of samples before drawing definite conclusions.
Collapse
Affiliation(s)
- Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy; (V.A.B.); (E.I.)
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
- Correspondence:
| | - Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy; (V.A.B.); (E.I.)
- IRET Foundation, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy
| | - Alessandra Flagelli
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
| | - Romina Marcoccia
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
| | - Valentina Giraldi
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, BO, Italy
| | - Maria Letizia Focarete
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, BO, Italy
| | - Daria Giacomini
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, BO, Italy
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy; (V.A.B.); (E.I.)
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
| |
Collapse
|
13
|
Fischer NG, Kobe AC, Dai J, He J, Wang H, Pizarek JA, De Jong DA, Ye Z, Huang S, Aparicio C. Tapping basement membrane motifs: Oral junctional epithelium for surface-mediated soft tissue attachment to prevent failure of percutaneous devices. Acta Biomater 2022; 141:70-88. [PMID: 34971784 PMCID: PMC8898307 DOI: 10.1016/j.actbio.2021.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023]
Abstract
Teeth, long-lasting percutaneous organs, feature soft tissue attachment through adhesive structures, hemidesmosomes, in the junctional epithelium basement membrane adjacent to teeth. This soft tissue attachment prevents bacterial infection of the tooth despite the rich - and harsh - microbial composition of the oral cavity. Conversely, millions of percutaneous devices (catheters, dental, and orthopedic implants) fail from infection yearly. Standard of care antibiotic usage fuels antimicrobial resistance and is frequently ineffective. Infection prevention strategies, like for dental implants, have failed in generating durable soft tissue adhesion - like that seen with the tooth - to prevent bacterial colonization at the tissue-device interface. Here, inspired by the impervious natural attachment of the junctional epithelium to teeth, we synthesized four cell adhesion peptide (CAPs) nanocoatings, derived from basement membranes, to promote percutaneous device soft tissue attachment. The two leading nanocoatings upregulated integrin-mediated hemidesmosomes, selectively increased keratinocyte proliferation compared to fibroblasts, which cannot form hemidesmosomes, and expression of junctional epithelium adhesive markers. CAP nanocoatings displayed marked durability under simulated clinical conditions and the top performer CAP nanocoating was validated in a percutaneous implant murine model. Basement membrane CAP nanocoatings, inspired by the tooth and junctional epithelium, may provide an alternative anti-infective strategy for percutaneous devices to mitigate the worldwide threat of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: Prevention and management of medical device infection is a significant healthcare challenge. Overzealous antibiotic use has motivated alternative material innovations to prevent infection. Here, we report implant cell adhesion peptide nanocoatings that mimic a long-lasting, natural "medical device," the tooth, through formation of cell adhesive structures called hemidesmosomes. Such nanocoatings sidestep the use of antimicrobial or antibiotic elements to form a soft-tissue seal around implants. The top performing nanocoatings prompted expression of hemidesmosomes and defensive factors to mimic the tooth and was validated in an animal model. Application of cell adhesion peptide nanocoatings may provide an alternative to preventing, rather that necessarily treating, medical device infection across a range of device indications, like dental implants.
Collapse
Affiliation(s)
- Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Alexandra C Kobe
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Jinhong Dai
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Jiahe He
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Hongning Wang
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - John A Pizarek
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States; United States Navy Dental Corps, Naval Medical Leader and Professional Development Command, 8955 Wood Road Bethesda, MD 20889, United States
| | - David A De Jong
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Zhou Ye
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States.
| |
Collapse
|
14
|
Mohammadalizadeh Z, Bahremandi-Toloue E, Karbasi S. Recent advances in modification strategies of pre- and post-electrospinning of nanofiber scaffolds in tissue engineering. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
The Unique Properties of Placental Mesenchymal Stromal Cells: A Novel Source of Therapy for Congenital and Acquired Spinal Cord Injury. Cells 2021; 10:cells10112837. [PMID: 34831060 PMCID: PMC8616037 DOI: 10.3390/cells10112837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Spinal cord injury (SCI) is a devasting condition with no reliable treatment. Spina bifida is the most common cause of congenital SCI. Cell-based therapies using mesenchymal stem/stromal cells (MSCS) have been largely utilized in SCI. Several clinical trials for acquired SCI use adult tissue-derived MSC sources, including bone-marrow, adipose, and umbilical cord tissues. The first stem/stromal cell clinical trial for spina bifida is currently underway (NCT04652908). The trial uses early gestational placental-derived mesenchymal stem/stromal cells (PMSCs) during the fetal repair of myelomeningocele. PMSCs have been shown to exhibit unique neuroprotective, angiogenic, and antioxidant properties, all which are promising applications for SCI. This review will summarize the unique properties and current applications of PMSCs and discuss their therapeutic role for acquired SCI.
Collapse
|
16
|
Sartori A, Bugatti K, Portioli E, Baiula M, Casamassima I, Bruno A, Bianchini F, Curti C, Zanardi F, Battistini L. New 4-Aminoproline-Based Small Molecule Cyclopeptidomimetics as Potential Modulators of α 4β 1 Integrin. Molecules 2021; 26:molecules26196066. [PMID: 34641610 PMCID: PMC8512764 DOI: 10.3390/molecules26196066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 02/01/2023] Open
Abstract
Integrin α4β1 belongs to the leukocyte integrin family and represents a therapeutic target of relevant interest given its primary role in mediating inflammation, autoimmune pathologies and cancer-related diseases. The focus of the present work is the design, synthesis and characterization of new peptidomimetic compounds that are potentially able to recognize α4β1 integrin and interfere with its function. To this aim, a collection of seven new cyclic peptidomimetics possessing both a 4-aminoproline (Amp) core scaffold grafted onto key α4β1-recognizing sequences and the (2-methylphenyl)ureido-phenylacetyl (MPUPA) appendage, was designed, with the support of molecular modeling studies. The new compounds were synthesized through SPPS procedures followed by in-solution cyclization maneuvers. The biological evaluation of the new cyclic ligands in cell adhesion assays on Jurkat cells revealed promising submicromolar agonist activity in one compound, namely, the c[Amp(MPUPA)Val-Asp-Leu] cyclopeptide. Further investigations will be necessary to complete the characterization of this class of compounds.
Collapse
Affiliation(s)
- Andrea Sartori
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.S.); (K.B.); (E.P.); (A.B.); (C.C.); (F.Z.)
| | - Kelly Bugatti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.S.); (K.B.); (E.P.); (A.B.); (C.C.); (F.Z.)
| | - Elisabetta Portioli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.S.); (K.B.); (E.P.); (A.B.); (C.C.); (F.Z.)
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (M.B.); (I.C.)
| | - Irene Casamassima
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (M.B.); (I.C.)
| | - Agostino Bruno
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.S.); (K.B.); (E.P.); (A.B.); (C.C.); (F.Z.)
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy;
| | - Claudio Curti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.S.); (K.B.); (E.P.); (A.B.); (C.C.); (F.Z.)
| | - Franca Zanardi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.S.); (K.B.); (E.P.); (A.B.); (C.C.); (F.Z.)
| | - Lucia Battistini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (A.S.); (K.B.); (E.P.); (A.B.); (C.C.); (F.Z.)
- Correspondence: ; Tel.: +39-0521-906040
| |
Collapse
|
17
|
Mishra YG, Manavathi B. Focal adhesion dynamics in cellular function and disease. Cell Signal 2021; 85:110046. [PMID: 34004332 DOI: 10.1016/j.cellsig.2021.110046] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Acting as a bridge between the cytoskeleton of the cell and the extra cellular matrix (ECM), the cell-ECM adhesions with integrins at their core, play a major role in cell signalling to direct mechanotransduction, cell migration, cell cycle progression, proliferation, differentiation, growth and repair. Biochemically, these adhesions are composed of diverse, yet an organised group of structural proteins, receptors, adaptors, various enzymes including protein kinases, phosphatases, GTPases, proteases, etc. as well as scaffolding molecules. The major integrin adhesion complexes (IACs) characterised are focal adhesions (FAs), invadosomes (podosomes and invadopodia), hemidesmosomes (HDs) and reticular adhesions (RAs). The varied composition and regulation of the IACs and their signalling, apart from being an integral part of normal cell survival, has been shown to be of paramount importance in various developmental and pathological processes. This review per-illustrates the recent advancements in the research of IACs, their crucial roles in normal as well as diseased states. We have also touched on few of the various methods that have been developed over the years to visualise IACs, measure the forces they exert and study their signalling and molecular composition. Having such pertinent roles in the context of various pathologies, these IACs need to be understood and studied to develop therapeutical targets. We have given an update to the studies done in recent years and described various techniques which have been applied to study these structures, thereby, providing context in furthering research with respect to IAC targeted therapeutics.
Collapse
Affiliation(s)
- Yasaswi Gayatri Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
18
|
Bucci R, Vaghi F, Erba E, Romanelli A, Gelmi ML, Clerici F. Peptide grafting strategies before and after electrospinning of nanofibers. Acta Biomater 2021; 122:82-100. [PMID: 33326882 DOI: 10.1016/j.actbio.2020.11.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
Nanofiber films produced by electrospinning currently provide a promising platform for different applications. Although nonfunctionalized nanofiber films from natural or synthetic polymers are extensively used, electrospun materials combined with peptides are gaining more interest. In fact, the selection of specific peptides improves the performance of the material for biological applications and mainly for tissue engineering, mostly by maintaining similar mechanical properties with respect to the simple polymer. The main drawback in using peptides blended with a polymer is the quick release of the peptides. To avoid this problem, covalent linking of the peptide is more beneficial. Here, we reviewed synthetic protocols that enable covalent grafting of peptides to polymers before or after the electrospinning procedures to obtain more robust electrospun materials. Applications and the performance of the new material compared to that of the starting polymer are discussed.
Collapse
|
19
|
Biazar E, Kamalvand M, Avani F. Recent advances in surface modification of biopolymeric nanofibrous scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1857383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farzaneh Avani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
20
|
Hao D, Liu R, Gao K, He C, He S, Zhao C, Sun G, Farmer DL, Panitch A, Lam KS, Wang A. Developing an Injectable Nanofibrous Extracellular Matrix Hydrogel With an Integrin αvβ3 Ligand to Improve Endothelial Cell Survival, Engraftment and Vascularization. Front Bioeng Biotechnol 2020; 8:890. [PMID: 32850742 PMCID: PMC7403189 DOI: 10.3389/fbioe.2020.00890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023] Open
Abstract
Endothelial cell (EC) transplantation via injectable collagen hydrogel has received much attention as a potential treatment for various vascular diseases. However, the therapeutic effect of transplanted ECs is limited by their poor viability, which partially occurs as a result of cellular apoptosis triggered by the insufficient cell-extracellular matrix (ECM) engagement. Integrin binding to the ECM is crucial for cell anchorage to the surrounding matrix, cell spreading and migration, and further activation of intracellular signaling pathways. Although collagen contains several different types of integrin binding sites, it still lacks sufficient specific binding sites for ECs. Previously, using one-bead one-compound (OBOC) combinatorial technology, we identified LXW7, an integrin αvβ3 ligand, which possessed a strong binding affinity to and enhanced functionality of ECs. In this study, to improve the EC-matrix interaction, we developed an approach to molecularly conjugate LXW7 to the collagen backbone, via a collagen binding peptide SILY, in order to increase EC specific integrin binding sites on the collagen hydrogel. Results showed that in the in vitro 2-dimensional (2D) culture model, the LXW7-treated collagen surface significantly improved EC attachment and survival and decreased caspase 3 activity in an ischemic-mimicking environment. In the in vitro 3-dimensional (3D) culture model, LXW7-modified collagen hydrogel significantly improved EC spreading, proliferation, and survival. In a mouse subcutaneous implantation model, LXW7-modified collagen hydrogel improved the engraftment of transplanted ECs and supported ECs to form vascular network structures. Therefore, LXW7-functionalized collagen hydrogel has shown promising potential to improve vascularization in tissue regeneration and may be used as a novel tool for EC delivery and the treatment of vascular diseases.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Kewa Gao
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Chuanchao He
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Siqi He
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Cunyi Zhao
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, United States
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Alyssa Panitch
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
21
|
Hao D, Swindell HS, Ramasubramanian L, Liu R, Lam KS, Farmer DL, Wang A. Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified With Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization. Front Bioeng Biotechnol 2020; 8:633. [PMID: 32671037 PMCID: PMC7329993 DOI: 10.3389/fbioe.2020.00633] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
The network structure and biological components of natural extracellular matrix (ECM) are indispensable for promoting tissue regeneration. Electrospun nanofibrous scaffolds have been widely used in regenerative medicine to provide structural support for cell growth and tissue regeneration due to their natural ECM mimicking architecture, however, they lack biological functions. Extracellular vesicles (EVs) are potent vehicles of intercellular communication due to their ability to transfer RNAs, proteins, and lipids, thereby mediating significant biological functions in different biological systems. Matrix-bound nanovesicles (MBVs) are identified as an integral and functional component of ECM bioscaffolds mediating significant regenerative functions. Therefore, to engineer EVs modified electrospun scaffolds, mimicking the structure of the natural EV-ECM complex and the physiological interactions between the ECM and EVs, will be attractive and promising in tissue regeneration. Previously, using one-bead one-compound (OBOC) combinatorial technology, we identified LLP2A, an integrin α4β1 ligand, which had a strong binding to human placenta-derived mesenchymal stem cells (PMSCs). In this study, we isolated PMSCs derived EVs (PMSC-EVs) and demonstrated they expressed integrin α4β1 and could improve endothelial cell (EC) migration and vascular sprouting in an ex vivo rat aortic ring assay. LLP2A treated culture surface significantly improved PMSC-EV attachment, and the PMSC-EV treated culture surface significantly enhanced the expression of angiogenic genes and suppressed apoptotic activity. We then developed an approach to enable "Click chemistry" to immobilize LLP2A onto the surface of electrospun scaffolds as a linker to immobilize PMSC-EVs onto the scaffold. The PMSC-EV modified electrospun scaffolds significantly promoted EC survival and angiogenic gene expression, such as KDR and TIE2, and suppressed the expression of apoptotic markers, such as caspase 9 and caspase 3. Thus, PMSC-EVs hold promising potential to functionalize biomaterial constructs and improve the vascularization and regenerative potential. The EVs modified biomaterial scaffolds can be widely used for different tissue engineering applications.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Hila Shimshi Swindell
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Lalithasri Ramasubramanian
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|