1
|
Feng Y, Chen X, He RR, Liu Z, Lvov YM, Liu M. The Horizons of Medical Mineralogy: Structure-Bioactivity Relationship and Biomedical Applications of Halloysite Nanoclay. ACS NANO 2024. [PMID: 39016265 DOI: 10.1021/acsnano.4c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Medical mineralogy explores the interactions between natural minerals and living organisms such as cells, tissues, and organs and develops therapeutic and diagnostic applications in drug delivery, medical devices, and healthcare materials. Many minerals (especially clays) have been recognized for pharmacological activities and therapeutic potential. Halloysite clay (Chinese medicine name: Chishizhi), manifested as one-dimensional aluminum silicate nanotubes (halloysite nanotubes, HNTs), has gained applications in hemostasis, wound repair, gastrointestinal diseases, tissue engineering, detection and sensing, cosmetics, and daily chemicals formulations. Various biomedical applications of HNTs are derived from hollow tubular structures, high mechanical strength, good biocompatibility, bioactivity, and unique surface characteristics. This natural nanomaterial is safe, abundantly available, and may be processed with environmentally safe green chemistry methods. This review describes the structure and physicochemical properties of HNTs relative to bioactivity. We discuss surface area, porosity and surface defects, hydrophilicity, heterogeneity and charge of external and internal surfaces, as well as biosafety. The paper provides comprehensive guidance for the development of this tubule nanoclay and its advanced biomedical applications for clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiangyu Chen
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuri M Lvov
- Institute for Micromanufacturing and Biomedical Engineering Program, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| |
Collapse
|
2
|
Liu M, Fakhrullin R, Stavitskaya A, Vinokurov V, Lama N, Lvov Y. Micropatterning of biologically derived surfaces with functional clay nanotubes. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2327276. [PMID: 38532983 PMCID: PMC10964834 DOI: 10.1080/14686996.2024.2327276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/03/2024] [Indexed: 03/28/2024]
Abstract
Micropatterning of biological surfaces performed via assembly of nano-blocks is an efficient design method for functional materials with complex organic-inorganic architecture. Halloysite clay nanotubes with high aspect ratios and empty lumens have attracted widespread interest for aligned biocompatible composite production. Here, we give our vision of advances in interfacial self-assembly techniques for these natural nanotubes. Highly ordered micropatterns of halloysite, such as coffee rings, regular strips, and concentric circles, can be obtained through high-temperature evaporation-induced self-assembly in a confined space and shear-force brush-induced orientation. Assembly of these clay nanotubes on biological surfaces, including the coating of human or animal hair, wool, and cotton, was generalized with the indication of common features. Halloysite-coated microfibers promise new approaches in cotton and hair dyeing, medical hemostasis, and flame-retardant tissue applications. An interfacial halloysite assembly on oil microdroplets (Pickering emulsion) and its core-shell structure (functionalization with quantum dots) was described in comparison with microfiber nanoclay coatings. In addition to being abundantly available in nature, halloysite is also biosafe, which makes its spontaneous surface micropatterning prospective for high-performance materials, and it is a promising technique with potential for an industrial scale-up.
Collapse
Affiliation(s)
- Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou, P. R. China
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Anna Stavitskaya
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, Moscow, Russian Federation
| | - Vladimir Vinokurov
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, Moscow, Russian Federation
| | - Nisha Lama
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| |
Collapse
|
3
|
Chen C, Wu D, Wang Z, Liu L, He J, Li J, Chu B, Wang S, Yu B, Liu W. Peptide-Based Hydrogel Scaffold Facilitates Articular Cartilage Damage Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11336-11348. [PMID: 38407027 DOI: 10.1021/acsami.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Articular cartilage injury is a common disease in clinical medicine. Because of its special physiological structure and lack of blood, lymph, and nerves, its ability to regenerate once damaged is very limited. In this study, we designed and synthesized a series of self- and coassembled cartilage-inducing functional peptide molecules and constructed a coassembled functional peptide hydrogel based on phenylboronic acid-o-dihydroxy "click chemistry" cross-linking to promote aggregation and signal transduction of mesenchymal stem cells (MSCs) in the early stage and differentiation toward cartilage, thereby promoting the repair of cartilage damage. Three functional peptide molecules were produced using solid-phase peptide synthesis technology, yielding a purity higher than 95%. DOPA-FEFEFEFEGHSNGLPL (DFP) and PBA-FKFKFKFKGHAVDI (BFP) were coassembled at near-neutral pH to form hydrogels (C Gels) based on phenylboronic acid-o-dihydroxy click chemistry cross-linking and effectively loaded transforming growth factor (TGF)-β1 with a release period of up to 2 weeks. Furthermore, chondrocytes and bone marrow mesenchymal stem cells (BMSCs) were cocultured with functional peptide hydrogels, and the results displayed that the coassembled functional peptide hydrogel group C Gels significantly promoted the proliferation of chondrocytes and MSCs. The chondrocyte markers collagen type I, collagen type II, and glycosaminoglycan (GAG) in the coassembled functional peptide hydrogel group were significantly higher than those in the control group, indicating that it can induce the differentiation of MSCs into cartilage. In vivo experiments demonstrated that the size and thickness of the new cartilage in the compound gel group were the most beneficial to cartilage regeneration. These results indicated that peptide hydrogels are a promising therapeutic option for cartilage regeneration.
Collapse
Affiliation(s)
- Changsheng Chen
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Deguang Wu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, P. R. China
| | - Zhen Wang
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Lanlan Liu
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Jinmei He
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Jian Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, P. R. China
| | - Bin Chu
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, P. R. China
| | - Song Wang
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, P. R. China
| | - Weiqiang Liu
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
4
|
Zhang H, Zhang B, Cai C, Zhang K, Wang Y, Wang Y, Yang Y, Wu Y, Ba X, Hoogenboom R. Water-dispersible X-ray scintillators enabling coating and blending with polymer materials for multiple applications. Nat Commun 2024; 15:2055. [PMID: 38448434 PMCID: PMC10917805 DOI: 10.1038/s41467-024-46287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
Developing X-ray scintillators that are water-dispersible, compatible with polymeric matrices, and processable to flexible substrates is an important challenge. Herein, Tb3+-doped Na5Lu9F32 is introduced as an X-ray scintillating material with steady-state X-ray light yields of 15,800 photons MeV-1, which is generated as nanocrystals on halloysite nanotubes. The obtained product exhibits good water-dispersibility and highly sensitive luminescence to X-rays. It is deposited onto a polyurethane foam to afford a composite foam material with dose-dependent radioluminescence. Moreover, the product is dispersed into polymer matrixes in aqueous solution to prepare rigid or flexible scintillator screen for X-ray imaging. As a third example, it is incorporated multilayer hydrogels for information camouflage and multilevel encryption. Encrypted information can be recognized only by X-ray irradiation, while the false information is read out under UV light. Altogether, we demonstrate that the water-dispersible scintillators are highly promising for aqueous processing of radioluminescent, X-ray imaging, and information encrypting materials.
Collapse
Affiliation(s)
- Hailei Zhang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, 071002, Baoding, China.
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, 281-S4, 9000, Gent, Belgium.
| | - Bo Zhang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, 071002, Baoding, China
| | - Chongyang Cai
- College of Physics Science and Technology, Hebei University, 180 Wusi Road, 071002, Baoding, China
| | - Kaiming Zhang
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, 281-S4, 9000, Gent, Belgium
| | - Yu Wang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, 071002, Baoding, China
| | - Yuan Wang
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, 071002, Baoding, China
| | - Yanmin Yang
- College of Physics Science and Technology, Hebei University, 180 Wusi Road, 071002, Baoding, China.
| | - Yonggang Wu
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, 071002, Baoding, China
| | - Xinwu Ba
- College of Chemistry & Materials Science, Hebei University, 180 Wusi Road, 071002, Baoding, China
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, 281-S4, 9000, Gent, Belgium.
| |
Collapse
|
5
|
Pellerito C, Presentato A, Lazzara G, Cavallaro G, Alduina R, Fiore T. New Biocide Based on Tributyltin(IV) Ferulate-Loaded Halloysite Nanotubes for Preserving Historical Paper Artworks. Molecules 2023; 28:7953. [PMID: 38138442 PMCID: PMC10745945 DOI: 10.3390/molecules28247953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Combining biologically active compounds with nanocarriers is an emerging and promising strategy for enhancing the activities of molecules while reducing their levels of toxicity. Green nanomaterials have recently gained momentum in developing protocols for treating and preserving artifacts. In this study, we designed a functional biohybrid material by incorporating tributyltin(IV) ferulate (TBT-F) into halloysite nanotubes (HNTs), generating a new formulation called HNT/TBT-F. The primary objective was to develop a formulation with robust antimicrobial properties and reinforcing features for treating paper with artistic and historical value. To characterize HNT/TBT-F, assess the HNT's loading capacity, and investigate the TBT-F release kinetics from the nanotubes, various analytical techniques, including UV-Vis and infrared spectroscopies, thermogravimetry, and microscopy analysis, were employed. Furthermore, we evaluated the antimicrobial potential of TBT-F and HNT/TBT-F against Kocuria rhizophila, a bacterial strain known for its opportunistic behavior and a cause of artifact biodeterioration. HNT/TBT-F exhibited a significantly stronger bactericidal effect than TBT-F alone against K. rhizophila cells growing planktonically or those forming a biofilm. This enhanced performance could relate to the confinement of TBT-F within the nanotubes, which likely improved its physical-chemical stability and increased the local concentration of TBT-F upon contact with the bacterial cells. Additionally, we evaluated the mechanical properties of a paper treated with HNT/TBT-F, assessing any potential alterations in its color. The findings of this study highlight the favorable attributes of the HNT/TBT-F formulation and its potential for developing protocols aimed at consolidating and preserving culturally significant paper objects.
Collapse
Affiliation(s)
- Claudia Pellerito
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| | - Alessandro Presentato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (A.P.); (R.A.)
| | - Giuseppe Lazzara
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| | - Giuseppe Cavallaro
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (A.P.); (R.A.)
| | - Tiziana Fiore
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| |
Collapse
|
6
|
Cavallaro G, Lazzara G, Milioto S. Nanocomposites based on halloysite nanotubes and sulphated galactan from red seaweed Gloiopeltis: Properties and delivery capacity of sodium diclofenac. Int J Biol Macromol 2023; 234:123645. [PMID: 36791935 DOI: 10.1016/j.ijbiomac.2023.123645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
We developed novel composite films based on biocompatible components, such as halloysite clay nanotubes and sulphated galactan (Funori) from red seaweed Gloiopeltis. The filling of the nanotubes within the sulphated galactan matrix was carried out by a green protocol (aqueous casting method) assuring that Funori/halloysite nanocomposites can be totally considered as sustainable materials. The amount of halloysite in the composites was systematically changed to explore the effects of the nanofiller concentration on the mesoscopic properties of the films. We observed that the halloysite content significantly affects the initial water contact angle and the light attenuation coefficient of the Funori based films. These results were interpreted according to SEM images, which showed that the surface morphologies of the nanocomposites depend on the halloysite amounts filled within the polymeric matrix. The mechanical characterization of the nanocomposites was conducted by tensile experiments performed using a linear stress ramp. Moreover, tensile tests were conducted in oscillatory regime at variable temperature to investigate the viscoelastic properties of the nanocomposites. Finally, we filled the biopolymeric matrix with halloysite nanotubes containing sodium diclofenac. The drug release kinetics from the nanocomposites at variable halloysite contents were studied to evaluate their suitability as oral dissolving films for pharmaceutical applications.
Collapse
Affiliation(s)
- Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy.
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| |
Collapse
|
7
|
Zhao P, Feng Y, Zhou Y, Tan C, Liu M. Gold@Halloysite nanotubes-chitin composite hydrogel with antibacterial and hemostatic activity for wound healing. Bioact Mater 2023; 20:355-367. [PMID: 35784635 PMCID: PMC9207301 DOI: 10.1016/j.bioactmat.2022.05.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 01/13/2023] Open
Abstract
Infection and healing of wounds after injury has always been an unavoidable problem in daily life, so design of a biomaterial with antibacterial and good wound healing properties is highly needed. Herein, a wound healing hydrogel dressing with halloysite clay and chitin as the main components was prepared, which combines the advantages of the biomacromolecule and clay. Halloysite nanotubes (HNTs) are extremely biocompatible clay materials with a hollow tubular structure, and the inner and outer surfaces of HNTs are composed of SiOx and AlOx layers with different charges. Au nanoparticles with diameter in 5-10 nm were filled into the HNTs' lumen to endow photothermal effect of the clay materials. Au@HNTs was then mixed with chitin solution to prepare flexible composite hydrogel by crosslinking by epichlorohydrin. The antibacterial properties, biocompatibility and hemostatic properties of the hydrogel material were investigated by antibacterial experiments, cell experiments, mouse liver and tail hemostatic experiments. After infecting the back wound of mice with Staphylococcus aureus, the hydrogel was applied to the wound to further verify the killing effect on bacteria and wound healing effect of the hydrogel material in vivo. The Au@HNTs-chitin composite hydrogel exhibits high antibacterial and hemostatic activity as well as promoting wound healing function with low cytotoxicity. This study is significant for the development of high-performance wound dressings based on two commonly used biocompatible materials, which shows promising application in wound sterilization and healing.
Collapse
Affiliation(s)
- Puxiang Zhao
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Yue Feng
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Youquan Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Cuiying Tan
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| | - Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, China
| |
Collapse
|
8
|
Notarbartolo M, Massaro M, de Melo Barbosa R, Emili C, Liotta LF, Poma P, Raymo FM, Sànchez-Espejo R, Vago R, Viseras-Iborra C, Riela S. Exploring the cellular uptake of hectorite clay mineral and its drug carrier capabilities. Colloids Surf B Biointerfaces 2022; 220:112931. [DOI: 10.1016/j.colsurfb.2022.112931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
9
|
Hemmatpour H, Haddadi-Asl V, Khanipour F, Stuart MC, Lu L, Pei Y, Roghani-Mamaqani H, Rudolf P. Mussel-inspired grafting pH-responsive brushes onto halloysite nanotubes for controlled release of doxorubicin. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Dube S, Rawtani D, Khatri N, Parikh G. A deep delve into the chemistry and biocompatibility of halloysite nanotubes: A new perspective on an idiosyncratic nanocarrier for delivering drugs and biologics. Adv Colloid Interface Sci 2022; 309:102776. [DOI: 10.1016/j.cis.2022.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
|
11
|
Fluorinated graphene nanosheet supported halloysite nanoarchitectonics: Super-wetting coatings for efficient and recyclable oil sorption. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Cherednichenko YV, Konnova SA, Fakhrullin RF. Self-Assembly of Halloysite Nanotubes as a Tool for the Formation of 3D Structures. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Bose N, Rajappan K, Natesan G, Selvam S. DHNTs assimilated TPU/PEG membrane a new combination for evaluation of in-vitro blood-coagulation. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Neeraja Bose
- Department of Chemistry, SRM Institution of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamilnadu, India
| | - Kalaivizhi Rajappan
- Department of Chemistry, SRM Institution of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamilnadu, India
| | - Gowriboy Natesan
- Department of Chemistry, SRM Institution of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamilnadu, India
| | - Sivasankari Selvam
- Department of Chemistry, SRM Institution of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamilnadu, India
| |
Collapse
|
14
|
Glukhova SA, Molchanov VS, Chesnokov YM, Lokshin BV, Kharitonova EP, Philippova OE. Green nanocomposite gels based on binary network of sodium alginate and percolating halloysite clay nanotubes for 3D printing. Carbohydr Polym 2022; 282:119106. [DOI: 10.1016/j.carbpol.2022.119106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
|
15
|
Pereira-Silva M, Martins AM, Sousa-Oliveira I, Ribeiro HM, Veiga F, Marto J, Paiva-Santos AC. Nanomaterials in hair care and treatment. Acta Biomater 2022; 142:14-35. [PMID: 35202853 DOI: 10.1016/j.actbio.2022.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
Hair care and treatment has evolved significantly through the years as new formulations are continuously being explored in an attempt to meet the demand in cosmetic and medicinal fields. While standard hair care procedures include hair washing, aimed at hair cleansing and maintenance, as well as hair dyeing and bleaching formulations for hair embellishment, modern hair treatments are mainly focused on circumventing hair loss conditions, strengthening hair follicle properties and treat hair infestations. In this regard, active compounds (ACs) included in hair cosmetic formulations include a vast array of hair cleansing and hair dye molecules, and typical hair treatments include anti-hair loss ACs (e.g. minoxidil and finasteride) and anti-lice ACs (e.g. permethrin). However, several challenges still persist, as conventional AC formulations exhibit sub-optimal performance and some may present toxicity issues, calling for an improved design of formulations regarding both efficacy and safety. More recently, nano-based strategies encompassing nanomaterials have emerged as promising tailored approaches to improve the performance of ACs incorporated into hair cosmetics and treatment formulations. The interest in using these nanomaterials is based on account of their ability to: (1) increase stability, safety and biocompatibility of ACs; (2) maximize hair affinity, contact and retention, acting as versatile biointerfaces; (3) enable the controlled release of ACs in both hair and scalp, serving as prolonged AC reservoirs; besides offering (4) hair follicle targeting features attending to the possibility of surface tunability. This review covers the breakthrough of nanomaterials for hair cosmetics and hair treatment, focusing on organic nanomaterials (polymer-based and lipid-based nanoparticles) and inorganic nanomaterials (nanosheets, nanotubes and inorganic nanoparticles), as well as their applications, highlighting their potential as innovative multifunctional nanomaterials towards maximized hair care and treatment. STATEMENT OF SIGNIFICANCE: This manuscript is focused on reviewing the nanotechnological strategies investigated for hair care and treatment so far. While conventional formulations exhibit sub-optimal performance and some may present toxicity issues, the selection of improved and suitable nanodelivery systems is of utmost relevance to ensure a proper active ingredient release in both hair and scalp, maximize hair affinity, contact and retention, and provide hair follicle targeting features, warranting stability, efficacy and safety. This innovative manuscript highlights the advantages of nanotechnology-based approaches, particularly as tunable and versatile biointerfaces, and their applications as innovative multifunctional nanomaterials towards maximized hair care and treatment.
Collapse
Affiliation(s)
- Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Margarida Martins
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Inês Sousa-Oliveira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Helena Margarida Ribeiro
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Joana Marto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
16
|
Lisuzzo L, Cavallaro G, Milioto S, Lazzara G. Halloysite nanotubes as nanoreactors for heterogeneous micellar catalysis. J Colloid Interface Sci 2022; 608:424-434. [PMID: 34626986 DOI: 10.1016/j.jcis.2021.09.146] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023]
Abstract
HYPOTHESIS Electrostatic attractions between the anionic head group of sodium alkylsulphates and the positively charged inner surface of halloysite nanotubes (HNTs) drive to the formation of tubular inorganic micelles, which might be employed as nanoreactors for the confinement of non polar compounds in aqueous media. On this basis, sodium alkylsulphates/halloysite hybrids could be efficient nanocatalysts for organic reactions occurring in water. EXPERIMENTS Sodium decylsulphate (NaDeS) and sodium dodecylsulphate (NaDS) were selected for the functionalization of the halloysite cavity. The composition, the structure and the surface charge properties of the hybrid nanotubes were determined. The actual formation of inorganic micelles was explored by studying the microviscosity and polarity characteristics of the surfactant modified nanotubes through fluorescence spectroscopy experiments using DiPyme as probe. The performances of the sodium alkylsulphates/halloysite composites as micellar catalysts for the Belousov-Zhabotinsky (BZ) reaction were investigated. FINDINGS The halloysite functionalization with sodium alkylsulphates generated the formation of hydrophobic microdomains with an enhanced microviscosity. Compared to the surfactant conventional micelles, the functionalized nanotubes induced larger enhancements on the rate constant of the BZ reaction. This is the first report on the surfactant/halloysite hybrids showing their efficiencies as reusable nanocatalysts, which are dependent on their peculiar microviscosity and polarity properties.
Collapse
Affiliation(s)
- Lorenzo Lisuzzo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy.
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| |
Collapse
|
17
|
Song Q, Zhu J, Niu X, Wang J, Dong G, Shan M, Zhang B, Matsuyama H, Zhang Y. Interfacial assembly of micro/nanoscale nanotube/silica achieves superhydrophobic melamine sponge for water/oil separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119920] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Tripaldi L, Callone E, D'Arienzo M, Dirè S, Giannini L, Mascotto S, Meyer A, Scotti R, Tadiello L, Di Credico B. Silica hairy nanoparticles: a promising material for self-assembling processes. SOFT MATTER 2021; 17:9434-9446. [PMID: 34611686 DOI: 10.1039/d1sm01085a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
"Hairy" nanoparticles (HNPs), i.e. inorganic NPs functionalized with polymer chains, are promising building blocks for the synthesis of advanced nanocomposite (NC) materials having several technological applications. Recent evidence shows that HNPs self-organize in a variety of anisotropic structures, resulting in an improvement of the functional properties of the materials, in which are embedded. In this paper, we propose a three-step colloidal synthesis of spherical SiO2-HNPs, with controlled particle morphology and surface chemistry. In detail, the SiO2 core, synthesized by a modified Stöber method, was first functionalized with a short-chain amino-silane, which acts as an anchor, and then covered by maleated polybutadiene (PB), a rubbery polymer having low glass transition temperature, rarely considered until now. An extensive investigation by a multi-technique analysis demonstrates that the synthesis of SiO2-HNPs is simple, scalable, and potentially applicable to different kind of NPs and polymers. Morphological analysis shows the overall distribution of SiO2-HNPs with a certain degree of spatial organization, suggesting that the polymer coating induces a modification of NP-NP interactions. The role of the surface PB brushes in influencing the special arrangement of SiO2-HNPs was observed also in cis-1,4-polybutadiene (cis-PB), since the resulting NC exhibited the particle packing in "string-like" superstructures. This confirms the tendency of SiO2-HNPs to self-assemble and create alternative structures in polymer NCs, which may impart them peculiar functional properties.
Collapse
Affiliation(s)
- Laura Tripaldi
- Dept. of Materials Science, INSTM, University of Milano-Bicocca, Via R. Cozzi, 55, 20125 Milano, Italy.
| | - Emanuela Callone
- Klaus Müller Magnetic Resonance Lab., Dept. Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Massimiliano D'Arienzo
- Dept. of Materials Science, INSTM, University of Milano-Bicocca, Via R. Cozzi, 55, 20125 Milano, Italy.
| | - Sandra Dirè
- Klaus Müller Magnetic Resonance Lab., Dept. Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Luca Giannini
- Pirelli Tyre SpA, Viale Sarca, 222, 20126, Milano, Italy
| | - Simone Mascotto
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Andreas Meyer
- Institut für Physikalische Chemie, Universität Hamburg, Grindelallee 177, 20146 Hamburg, Germany
| | - Roberto Scotti
- Dept. of Materials Science, INSTM, University of Milano-Bicocca, Via R. Cozzi, 55, 20125 Milano, Italy.
| | | | - Barbara Di Credico
- Dept. of Materials Science, INSTM, University of Milano-Bicocca, Via R. Cozzi, 55, 20125 Milano, Italy.
| |
Collapse
|
19
|
Liu H, Wang Y, Luo Y, Guo M, Feng Y, Liu M. Tunable coffee-ring formation of halloysite nanotubes by evaporating sessile drops. SOFT MATTER 2021; 17:9514-9527. [PMID: 34617549 DOI: 10.1039/d1sm01150b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Halloysite nanotubes (HNTs) are one-dimensional clay nanomaterials with a length of 200-1000 nm and a diameter of ∼50 nm. Understanding the self-assembly behavior of such unique nanoparticles is important to develop their applications in functional devices. In this study, the "coffee-ring" patterns of HNTs are investigated which are formed by evaporation of the sessile droplets of HNT aqueous dispersion on different substrates. The coffee-ring pattern with various dimensions was characterized using a polarizing microscope (POM), a scanning electron microscope (SEM), and a 3D optical profilometer. The diameter, height, and area of the coffee-ring patterns depend on the concentration of HNT dispersion, the droplet volume, and surface wettability. POM and SEM results suggested that the nanotubes were highly ordered in the edge and the middle of the coffee-ring. The coffee-ring effect of HNTs could be suppressed by increasing the evaporation temperature of substrates or adding polymer additives. In addition, multiple-ring patterns consistent with protein rings surrounding HNT rings were formed, which can be utilized to detect the presence of proteins in biological samples. This work illustrated the relationship between the formation of coffee-ring patterns and the experimental conditions, which provided an additional research chance and allowed application development for HNTs using the liquid droplet self-assembly.
Collapse
Affiliation(s)
- Hongzhong Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Yao Wang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Yumin Luo
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Min Guo
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Yue Feng
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
20
|
Karolina Pierchala M, Kadumudi FB, Mehrali M, Zsurzsan TG, Kempen PJ, Serdeczny MP, Spangenberg J, Andresen TL, Dolatshahi-Pirouz A. Soft Electronic Materials with Combinatorial Properties Generated via Mussel-Inspired Chemistry and Halloysite Nanotube Reinforcement. ACS NANO 2021; 15:9531-9549. [PMID: 33983022 DOI: 10.1021/acsnano.0c09204] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soft and electrically active materials are currently being utilized for intelligent systems, including electronic skin, cybernetics, soft robotics, and wearable devices. However, fabricating materials that fulfill the complex requirements of such advanced applications remains a challenge. These attributes include electronic, adhesive, self-healing, flexible, moldable, printable, and strong mechanical properties. Inspired by the recent interest in transforming monofunctional materials into multifunctional ones through nanoreinforcement and mussel-inspired chemistry, we have designed a simple two-step methodology based on halloysite nanotube (HNT) and polydopamine (PDA) to address the grand challenges in the field. In brief, HNTs were coated with PDA and embedded within a poly(vinyl alcohol) (PVA)-based polymeric matrix in combination with ferric ions (Fe3+). The final composite displayed a 3-fold increase in electrical conductivity, a 20-fold increase in mechanical stiffness, and a 7-fold increase in energy dissipation in comparison to their nonfunctional counterparts, which arose from a combination of nanotube alignment and mussel-inspired chemistry. Moreover, the developed composite could elongate up to 30000% of its original length, maintain its electrical properties after 600% strain, self-heal within seconds (both electrically and mechanically), and display strain-sensitivity. Finally, it was 3D-printable and thus amenable for engineering of customized wearable electronics.
Collapse
Affiliation(s)
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mehdi Mehrali
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Health Technology, Technical University of Denmark, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs. Lyngby, Denmark
| | - Tiberiu-Gabriel Zsurzsan
- Department of Electrical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Paul J Kempen
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marcin Piotr Serdeczny
- Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jon Spangenberg
- Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Health Technology, Technical University of Denmark, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs. Lyngby, Denmark
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Health Technology, Technical University of Denmark, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs. Lyngby, Denmark
- Radboud Institute for Molecular Life Sciences, Department of Dentistry - Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525EX Nijmegen, The Netherlands
| |
Collapse
|
21
|
Understanding the Effects of Crosslinking and Reinforcement Agents on the Performance and Durability of Biopolymer Films for Cultural Heritage Protection. Molecules 2021; 26:molecules26113468. [PMID: 34200367 PMCID: PMC8201363 DOI: 10.3390/molecules26113468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/24/2022] Open
Abstract
In the last two decades, the naturally occurring polysaccharides, such as chitosan and pectin, have gained great attention having potential applications in different sectors, from biomedical to new generation packaging. Currently, the chitosan and pectic have been proposed as suitable materials also for the formulation of films and coatings for cultural heritage protection, as well as packaging films. Therefore, the formulation of biopolymer films, considering only naturally occurring polymers and additives, is a current challenging trend. This work reports on the formulation of chitosan (CS), pectin (PC), and chitosan:pectin (CS:PC) films, also containing natural crosslinking and reinforcement agents, such as citric acid (CA) and halloysite nanotubes (HNT), through the solvent casting technique. The produced films are characterized through water contact angle measurements, infrared and UV–visible spectroscopy and tensile test, while the durability of the CS:PC films is evaluated subjecting the film to accelerated UVB exposure and monitoring the photo-oxidation degradation in time though infrared spectroscopy. All obtained results suggest that both crosslinking and reinforcement agents have beneficial effects on the wettability, rigidity, and photo-oxidation resistance of biopolymer films. Therefore, these biopolymer films, also containing naturally occurring additives, have good properties and performance and they are suitable as coverage films for cultural heritage protection.
Collapse
|
22
|
Restoration of a XVII Century’s predella reliquary: From Physico-Chemical Characterization to the Conservation Process. FORESTS 2021. [DOI: 10.3390/f12030345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report on the restoration of a XVII century’s predella reliquary, which is a part of a larger setup that includes a wall reliquary and a wooden crucified Christ, both belonging to the church of “Madre Maria SS. Assunta”, in Polizzi Generosa, Sicily, Italy. The historical/artistic and paleographic research was flanked successfully by the scientific objective characterization of the materials. The scientific approach was relevant in the definition of the steps for the restoration of the artefact. The optical microscopy was used for the identification of the wood species. Electron microscopy and elemental mapping by energy-dispersive X-ray (EDX) was successful in the identification of the layered structure for the gilded surface. The hyperspectral imaging method was successfully employed for an objective chemical mapping of the surface composition. We proved that the scientific approach is necessary for a critical and objective evaluation of the conservation state and it is a necessary step toward awareness of the historical, liturgical, spiritual and artistic value. In the second part of this work, we briefly describe the conservation protocol and the use of a weak nanocomposite glue. In particular, a sustainable approach was considered and therefore mixtures of a biopolymer from natural resources, such as funori from algae, and naturally occurring halloysite nanotubes were considered. Tensile tests provided the best composition for this green nanocomposite glue.
Collapse
|
23
|
Synthesis and Characterization of Nanomaterial Based on Halloysite and Hectorite Clay Minerals Covalently Bridged. NANOMATERIALS 2021; 11:nano11020506. [PMID: 33671328 PMCID: PMC7922904 DOI: 10.3390/nano11020506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022]
Abstract
Halloysite is an aluminosilicate clay with a predominantly hollow tubular structure (HNTs) able to act as a nanocontainer for the encapsulation of several chemicals. However, HNTs possess low affinity for metal ions in their pristine form and they need to be modified for improving their adsorption capabilities. Therefore, to overcome this issue herein we report a straightforward approach for the covalent modification of the external surface of halloysite nanotubes with hectorite clay. Compared to halloysite, hectorite possesses a lamellar structure with higher cation exchange capacity. The covalent linkage between the two clays was verified by several techniques (FTIR spectroscopy, 13C CP-MAS NMR, TGA, ζ-potential, DLS, and XRD measurements) and the morphology was imaged by TEM investigations. As proof of concept the adsorption ability of the obtained nanomaterial in comparison to pristine clays was proved using ciprofloxacin and silver ions chosen as models for their different chemical characteristics.
Collapse
|
24
|
Abu El-Soad AM, Lazzara G, Pestov AV, Cavallaro G, Martemyanov NA, Kovaleva EG. Effect of Polarity of Solvent on Silanization of Halloysite Nanoclay Using (3-Glycidyloxy propyl) Trimethoxy Silane. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01868-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Abstract
The numerous biological applications of nanoparticles in general and nano-clays in particular are rooted in understanding and harnessing their dynamic nano-bio interface. Among clays, the intrinsically-mesoporous halloysite nanotubes (HNTs) have emerged in recent years as promising nanomaterials. The diverse interactions of these nanotubes with living cells, encompassing electrostatic, van der Waals, and ion exchange, along with cellular response, are crucial in determining the behaviour of HNTs in biological systems. Thus, rational engineering of the nanotube properties allows for vast applications ranging from bacteria encapsulation for bioremediation, through algae flocculation for aquaculture, to intracellular drug delivery. This review summarizes the many aspects of the nano-bio interface of HNTs with different cell types (bacteria, algae and fungi, and mammalian cells), highlighting biocompatibility/bio-adverse properties, interaction mechanisms, and the latest cutting-edge technologies.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| | | |
Collapse
|
26
|
Humayun A, Luo Y, Elumalai A, Mills DK. Differential antimicrobial and cellular response of electrolytically metalized halloysite nanotubes having different amounts of surface metallization. MATERIALS ADVANCES 2020; 1:1705-1715. [PMID: 35813570 PMCID: PMC9262339 DOI: 10.1039/d0ma00134a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We demonstrate an electrolytic method to metalize the outer surface of halloysite nanotubes (HNTs). Different metal HNT (mHNT) combinations (copper, silver, zinc) were produced with metal content in the 5-30 wt% range. mHNTs were characterized using a Scanning Electron Microscope (SEM), energy-dispersive spectroscopy (EDS), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). Different amounts of surface/lumen metal content of a system can confer differing antimicrobial/cellular response; hence, it is essential to assess the antimicrobial/cellular response as a function of metal content. Cellular response after exposure to mHNTs was studied in Staphylococcus aureus and pre-osteoblasts, respectively. Coated mHNTs could easily be identified using the characterization methods, and contrasting bacterial and cellular responses were obtained, which we propose was due to the extent of metallization. These findings demonstrate the potential of this method for creating metal-coated HNTs and suggest they have potential as an implant coating solution.
Collapse
Affiliation(s)
- Ahmed Humayun
- School of Biological Sciences and the Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Carson Taylor Hall, Room 128, Ruston, LA, 71272, USA. ; Tel: +1-318-257-2640
| | - Yangyang Luo
- School of Biological Sciences and the Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Carson Taylor Hall, Room 128, Ruston, LA, 71272, USA. ; Tel: +1-318-257-2640
| | - Anusha Elumalai
- School of Biological Sciences and the Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Carson Taylor Hall, Room 128, Ruston, LA, 71272, USA. ; Tel: +1-318-257-2640
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71272, USA
| | - David K Mills
- School of Biological Sciences and the Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Carson Taylor Hall, Room 128, Ruston, LA, 71272, USA. ; Tel: +1-318-257-2640
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71272, USA
| |
Collapse
|
27
|
Cavallaro G, Milioto S, Lazzara G. Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3677-3689. [PMID: 32202430 PMCID: PMC7997573 DOI: 10.1021/acs.langmuir.0c00573] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Indexed: 05/27/2023]
Abstract
The peculiar surfaces of halloysite nanotubes and their biocompatibility are attracting the interest of researchers based on the wide range of attainable applications. The large aspect ratio of this nanotubular material ensures promising properties as a reinforcing agent in polymeric matrixes, such as cellulose and its derivatives, that entail strengthening due to, for instance, aging-induced degradation. The halloysite cavity has a suitable size for hosting a large variety of active species such as deacidifying (calcium hydroxide) and flame retardant agents (fluorinated surfactants) for a controlled and sustained release relevant to the conservation of cultural heritage. Additionally, anionic surfactants can be selectively adsorbed at the inner surface generating inorganic micelles able to solubilize hydrophobic species in a controlled cleaning protocol. We briefly discuss how the natural halloysite nanotubes can be supportive in various conservation processes of cultural heritage and present an outlook for future perspectives.
Collapse
|