1
|
Azizi N, Oskooee AR, Farhadi E, Saadat M. Highly efficient removal of trace heavy metals by high surface area ordered dithiocarbamate-functionalized magnetic mesoporous silica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112503-112516. [PMID: 37831267 DOI: 10.1007/s11356-023-30290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
The study describes synthesizing and characterizing a novel dithiocarbamate-functionalized magnetic nanocomposite. This nanocomposite exhibits several desirable properties, including a large pore diameter of 2.55 nm, a high surface area of 1149 m2/g, and excellent capturing capabilities. The synthesis process involves the preparation of highly porous magnetic nanocomposites, followed by functionalization with dithiocarbamate functional groups through a reaction with carbon disulfide and amine. The synthesized nanocomposite was thoroughly characterized using various techniques, including X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The performance of the mesoporous nanocomposite as an adsorbent for removing Pb(II), Cd(II), and Cu(II) cations from contaminated water was evaluated. The study finds that the maximum removal efficiency for Pb(II), Cd(II), and Cu(II) cations is achieved at pH values above 4. The optimal contact time for achieving 100% removal efficiency of the mentioned cations ranged between 60 and 120 min. Within this time range, the adsorbent exhibited efficient capture of the heavy metal cations from contaminated water. Additionally, the appropriate amount of adsorbent required for complete elimination of the heavy metal cations is determined. For Cd(II), the optimal dosage was found to be 50 mg of the adsorbent. For Cu(II), the optimal dosage was determined to be 40 mg. Finally, for Pb(II), the optimal dosage was 30 mg. The adsorbent's regeneration capability was demonstrated, showing that it could be reused for five consecutive runs.
Collapse
Affiliation(s)
- Najmedin Azizi
- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | | | - Elham Farhadi
- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Mostafa Saadat
- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| |
Collapse
|
2
|
Sigel A, Sigel H, Sigel RKO. Coordination Chemistry of Nucleotides and Antivirally Active Acyclic Nucleoside Phosphonates, including Mechanistic Considerations. Molecules 2022; 27:2625. [PMID: 35565975 PMCID: PMC9103026 DOI: 10.3390/molecules27092625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
Considering that practically all reactions that involve nucleotides also involve metal ions, it is evident that the coordination chemistry of nucleotides and their derivatives is an essential corner stone of biological inorganic chemistry. Nucleotides are either directly or indirectly involved in all processes occurring in Nature. It is therefore no surprise that the constituents of nucleotides have been chemically altered-that is, at the nucleobase residue, the sugar moiety, and also at the phosphate group, often with the aim of discovering medically useful compounds. Among such derivatives are acyclic nucleoside phosphonates (ANPs), where the sugar moiety has been replaced by an aliphatic chain (often also containing an ether oxygen atom) and the phosphate group has been replaced by a phosphonate carrying a carbon-phosphorus bond to make the compounds less hydrolysis-sensitive. Several of these ANPs show antiviral activity, and some of them are nowadays used as drugs. The antiviral activity results from the incorporation of the ANPs into the growing nucleic acid chain-i.e., polymerases accept the ANPs as substrates, leading to chain termination because of the missing 3'-hydroxyl group. We have tried in this review to describe the coordination chemistry (mainly) of the adenine nucleotides AMP and ATP and whenever possible to compare it with that of the dianion of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA2- = adenine(N9)-CH2-CH2-O-CH2-PO32) [or its diphosphate (PMEApp4-)] as a representative of the ANPs. Why is PMEApp4- a better substrate for polymerases than ATP4-? There are three reasons: (i) PMEA2- with its anti-like conformation (like AMP2-) fits well into the active site of the enzyme. (ii) The phosphonate group has an enhanced metal ion affinity because of its increased basicity. (iii) The ether oxygen forms a 5-membered chelate with the neighboring phosphonate and favors thus coordination at the Pα group. Research on ANPs containing a purine residue revealed that the kind and position of the substituent at C2 or C6 has a significant influence on the biological activity. For example, the shift of the (C6)NH2 group in PMEA to the C2 position leads to 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer with only a moderate antiviral activity. Removal of (C6)NH2 favors N7 coordination, e.g., of Cu2+, whereas the ether O atom binding of Cu2+ in PMEA facilitates N3 coordination via adjacent 5- and 7-membered chelates, giving rise to a Cu(PMEA)cl/O/N3 isomer. If the metal ions (M2+) are M(α,β)-M(γ)-coordinated at a triphosphate chain, transphosphorylation occurs (kinases, etc.), whereas metal ion binding in a M(α)-M(β,γ)-type fashion is relevant for polymerases. It may be noted that with diphosphorylated PMEA, (PMEApp4-), the M(α)-M(β,γ) binding is favored because of the formation of the 5-membered chelate involving the ether O atom (see above). The self-association tendency of purines leads to the formation of dimeric [M2(ATP)]2(OH)- stacks, which occur in low concentration and where one half of the molecule undergoes the dephosphorylation reaction and the other half stabilizes the structure-i.e., acts as the "enzyme" by bridging the two ATPs. In accord herewith, one may enhance the reaction rate by adding AMP2- to the [Cu2(ATP)]2(OH)- solution, as this leads to the formation of mixed stacked Cu3(ATP)(AMP)(OH)- species, in which AMP2- takes over the structuring role, while the other "half" of the molecule undergoes dephosphorylation. It may be added that Cu3(ATP)(PMEA) or better Cu3(ATP)(PMEA)(OH)- is even a more reactive species than Cu3(ATP)(AMP)(OH)-. - The matrix-assisted self-association and its significance for cell organelles with high ATP concentrations is summarized and discussed, as is, e.g., the effect of tryptophanate (Trp-), which leads to the formation of intramolecular stacks in M(ATP)(Trp)3- complexes (formation degree about 75%). Furthermore, it is well-known that in the active-site cavities of enzymes the dielectric constant, compared with bulk water, is reduced; therefore, we have summarized and discussed the effect of a change in solvent polarity on the stability and structure of binary and ternary complexes: Opposite effects on charged O sites and neutral N sites are observed, and this leads to interesting insights.
Collapse
Affiliation(s)
- Astrid Sigel
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland;
| | - Helmut Sigel
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland;
| | - Roland K. O. Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
3
|
Stereochemical Geometries and Photoluminescence in Pseudo-Halido-Zinc(II) Complexes. Structural Comparison between the Corresponding Cadmium(II) Analogs. INORGANICS 2021. [DOI: 10.3390/inorganics9070053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Six pseudohalide zinc(II) containing a variety of N-donor auxiliary amines were structurally characterized. These include two mononuclear trigonal bipyramidal [Zn(NTB)(N3)]ClO4·½H2O (3) and [Zn(TPA)(NCS)]ClO4 (4), two distorted octahedral [Zn(1,8-damnph)2(dca)2] (5) and [Zn(8-amq)2(dca)2] (6a) as well as two 1D polymeric chains catena-[Zn(isq)2(μ1,5-dca)2] (7) and catena-[Zn(N,N-Me2en)2(μ1,5-dca)]dca (8), where NTB = tris(2-benzimidazolylmethyl)amine, TPA = tris(2-pyridylmethyl)amine, 1,8-damnph = 1,8-diaminonaphthalene, 8-amq = 8-amino-quinoline, isq = isoquinoline (isq) and N,N-Me2en = N,N-dimethylethylenediamine. In general, with the exception of 6 and 8, the complexes exhibited luminescence emission in MeOH associated with red shift of the emission maxima, and the strongest visible fluorescence peak was detected at 421 nm (λex = 330 nm) in the case of Complex 5.
Collapse
|
4
|
Synthesis, characterization and DFT studies of water stable Cd(II) metal–organic clusters with better adsorption property towards the organic pollutant in waste water. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Blindauer CA, Holý A, Operschall BP, Sigel A, Song B, Sigel H. Metal Ion‐Coordinating Properties in Aqueous Solutions of the Antivirally Active Nucleotide Analogue (
S
)‐9‐[3‐Hydroxy‐2‐(phosphonomethoxy)propyl]adenine (HPMPA) – Quantification of Complex Isomeric Equilibria. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Claudia A. Blindauer
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
- Department of Chemistry Inorganic Chemistry University of Warwick Coventry CV4 7AL UK
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry Centre of Novel Antivirals and Antineoplastics Academy of Sciences 16610 Prague Czech Republic
| | - Bert P. Operschall
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| | - Astrid Sigel
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| | - Bin Song
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
- Centre of Novel Antivirals and Antineoplastics Vertex Pharmaceuticals Inc. 02210 Boston MA USA
| | - Helmut Sigel
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| |
Collapse
|
6
|
Diez-Castellnou M, Salassa G, Mancin F, Scrimin P. The Zn(II)-1,4,7-Trimethyl-1,4,7-Triazacyclononane Complex: A Monometallic Catalyst Active in Two Protonation States. Front Chem 2019; 7:469. [PMID: 31334218 PMCID: PMC6616306 DOI: 10.3389/fchem.2019.00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
In this paper, the unusual reactivity of the complex Zn(II)-1,4,7-trimethyl-1, 4,7-triazacyclononane (2) in the transesterification of the RNA-model substrate, HPNP (3), is reported. The dependence of the reactivity (k2) with pH does not follow the characteristic bell-shape profile typical of complexes with penta-coordinated metal centers. By the contrary, two reactive species, featuring different deprotonation states, are present, with the tri-aqua complex being more reactive than the mono-hydroxy-diaqua one. Apparently, such a difference arises from the total complex charge which plays an important role in the stability of the transition state/s of the reactions. Relevant insight on the reaction mechanism were hence obtained.
Collapse
Affiliation(s)
| | - Giovanni Salassa
- Département de Chimie Physique, Université de Genève, Genève, Switzerland
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| | - Paolo Scrimin
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| |
Collapse
|
7
|
Low Molecular Weight Fluorescent Probes (LMFPs) to Detect the Group 12 Metal Triad. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7020022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fluorescence sensing, of d-block elements such as Cu2+, Fe3+, Fe2+, Cd2+, Hg2+, and Zn2+ has significantly increased since the beginning of the 21st century. These particular metal ions play essential roles in biological, industrial, and environmental applications, therefore, there has been a drive to measure, detect, and remediate these metal ions. We have chosen to highlight the low molecular weight fluorescent probes (LMFPs) that undergo an optical response upon coordination with the group 12 triad (Zn2+, Cd2+, and Hg2+), as these metals have similar chemical characteristics but behave differently in the environment.
Collapse
|
8
|
Effect of benzoic acid substituents and additional functional groups of ancillary ligands in modulating the nuclearity and aggregation behavior of transition metal carboxylates. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Blindauer CA, Sigel A, Operschall BP, Holý A, Sigel H. Metal-ion binding properties of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (HPMPC, Cidofovir). A nucleotide analogue with activity against DNA viruses. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Sigel A, Operschall BP, Sigel RKO, Sigel H. Metal ion complexes of nucleoside phosphorothioates reflecting the ambivalent properties of lead(ii). NEW J CHEM 2018. [DOI: 10.1039/c7nj04989g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lead(ii)-lone pair leads to ambivalency: hemidirected (distorted, non-spherical) coordination spheres result from electronegative O-coordination and holodirected (symmetric, spherical) ones from less electronegative S-coordination.
Collapse
Affiliation(s)
- Astrid Sigel
- Department of Chemistry
- Inorganic Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Bert P. Operschall
- Department of Chemistry
- Inorganic Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | | | - Helmut Sigel
- Department of Chemistry
- Inorganic Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| |
Collapse
|
11
|
Grauffel C, Chu B, Lim C. An efficient protocol for computing the pKa of Zn-bound water. Phys Chem Chem Phys 2018; 20:29637-29647. [DOI: 10.1039/c8cp05029e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present an efficient and accurate method for computing absolute pKw values in Zn2+ complexes.
Collapse
Affiliation(s)
- Cédric Grauffel
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 115
- Taiwan
| | - Benjamin Chu
- Department of Biomathematics
- David Geffen School of Medicine at UCLA
- USA
| | - Carmay Lim
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 115
- Taiwan
- Department of Chemistry
| |
Collapse
|
12
|
Grauffel C, Lim C. Factors governing when a metal-bound water is deprotonated in proteins. Phys Chem Chem Phys 2018; 20:29625-29636. [DOI: 10.1039/c8cp04776f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We evaluate the extent to which the pKw depends on the type, number, and metal-binding mode of the first-shell ligands, the metal–ligand bond distances, first-shell⋯second-shell H-bonding interactions, and the protein environment.
Collapse
Affiliation(s)
- Cédric Grauffel
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 115
- Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 115
- Taiwan
- Department of Chemistry
| |
Collapse
|
13
|
Wang TP, Su YC, Chen Y, Severance S, Hwang CC, Liou YM, Lu CH, Lin KL, Zhu RJ, Wang EC. Corroboration of Zn( ii)–Mg( ii)-tertiary structure interplays essential for the optimal catalysis of a phosphorothiolate thiolesterase ribozyme. RSC Adv 2018; 8:32775-32793. [PMID: 35547718 PMCID: PMC9086351 DOI: 10.1039/c8ra05083j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022] Open
Abstract
The TW17 ribozyme, a catalytic RNA selected from a pool of artificial RNA, is specific for the Zn2+-dependent hydrolysis of a phosphorothiolate thiolester bond. Here, we describe the organic synthesis of both guanosine α-thio-monophosphate and the substrates required for selecting and characterizing the TW17 ribozyme, and for deciphering the catalytic mechanism of the ribozyme. By successively substituting the substrate originally conjugated to the RNA pool with structurally modified substrates, we demonstrated that the TW17 ribozyme specifically catalyzes phosphorothiolate thiolester hydrolysis. Metal titration studies of TW17 ribozyme catalysis in the presence of Zn2+ alone, Zn2+ and Mg2+, and Zn2+ and [Co(NH3)6]3+ supported our findings that Zn2+ is absolutely required for ribozyme catalysis, and indicated that optimal ribozyme catalysis involves the presence of outer-sphere and one inner-sphere Mg2+. A survey of the TW17 ribozyme activity at various pHs revealed that the activity of the ribozyme critically depends on the alkaline conditions. Moreover, a GNRA tetraloop-containing ribozyme constructed with active catalysis in trans provided catalysis and multiple substrate turnover efficiencies significantly higher than ribozymes lacking a GNRA tetraloop. This research supports the essential roles of Zn2+, Mg2+, and a GNRA tetraloop in modulating the TW17 ribozyme structure for optimal ribozyme catalysis, leading also to the formulation of a proposed reaction mechanism for TW17 ribozyme catalysis. Zn(ii) and Mg(ii) and GAGA tetraloop in the ion atmosphere of the TW17 ribozyme is critical to optimal ribozyme catalysis at alkaline pH.![]()
Collapse
Affiliation(s)
- Tzu-Pin Wang
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
- Kaohsiung Medical University Hospital
| | - Yu-Chih Su
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Yi Chen
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Scott Severance
- Department of Molecular and Cellular Sciences
- Liberty University College of Osteopathic Medicine
- Lynchburg
- USA
| | - Chi-Ching Hwang
- Department of Biochemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Yi-Ming Liou
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Chia-Hui Lu
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Kun-Liang Lin
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Rui Jing Zhu
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Eng-Chi Wang
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| |
Collapse
|
14
|
Kostyukevich Y, Kononikhin A, Kukaev E, Shiea J, Popov I, Nikolaev E. Letter: Supermetallization of peptides and proteins with tetravalent metal Th(IV). EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:39-42. [PMID: 26863074 DOI: 10.1255/ejms.1405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Supermetallization is the recently observed phenomenon of the formation of complex ions of peptide-metal in the gas phase when the peptide accepts an unexpectedly large number of metal atoms. It has been found that supermetallization takes place during electrospray ionization when charged droplets are evaporating at relatively high temperature (ca 400°C). In the present paper, we demonstrate supermetallized complexes of small protein ubiquitin and two peptides with Th(IV). We have observed complexes of ubiquitin with up to five thorium atoms, and attaching each Th(IV) requires the removal of four hydrogen atoms. To our knowledge, this is the first demonstration of gas-phase complexes of peptides and proteins with tetravalent metal atoms..
Collapse
Affiliation(s)
- Yury Kostyukevich
- Skolkovo Institute of Science and Technology Novaya St., 100, Skolkovo 143025 Russian Federation. Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij pr. 38 k.2, 119334 Moscow, Russia. Emanuel Institute for Biochemical Physics Russian Academy of Sciences Kosygina st. 4, 119334 Moscow, Russia. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia..
| | - Alexey Kononikhin
- Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij pr. 38 k.2, 119334 Moscow, Russia. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia..
| | - Eugene Kukaev
- Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij pr. 38 k.2, 119334 Moscow, Russia. Emanuel Institute for Biochemical Physics Russian Academy of Sciences Kosygina st. 4, 119334 Moscow, Russia. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia..
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Igor Popov
- Emanuel Institute for Biochemical Physics Russian Academy of Sciences Kosygina st. 4, 119334 Moscow, Russia. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia..
| | - Eugene Nikolaev
- Skolkovo Institute of Science and Technology Novaya St., 100, Skolkovo 143025 Russian Federation. Institute for Energy Problems of Chemical Physics Russian Academy of Sciences Leninskij pr. 38 k.2, 119334 Moscow, Russia. Emanuel Institute for Biochemical Physics Russian Academy of Sciences Kosygina st. 4, 119334 Moscow, Russia. Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Moscow Region, Russia..
| |
Collapse
|
15
|
Kim MC, Lee SY. Carbonic anhydrase-mimetic bolaamphiphile self-assembly for CO2 hydration and sequestration. Chemistry 2014; 20:17019-24. [PMID: 25332095 DOI: 10.1002/chem.201404765] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 11/06/2022]
Abstract
A biomimetic catalyst was prepared through the self-assembly of a bolaamphiphilic molecule with histidine moieties for the sequestration of carbon dioxide. The histidyl bolaamphiphilic molecule bis(N-α-amidohistidine)-1,7-heptane dicarboxylate has been synthesized and self-assembled to produce analogues of the active sites of carbonic anhydrase (CA) after association with Zn(2+) ions. Spectroscopic analysis demonstrated the coordination of the Zn(2+) ions with histidine imidazole moieties, which is the core conformation of CA active sites. The Zn-associated self-assembly worked as a CA-mimetic catalyst that shows catalytic activity for CO2 hydration. Evaluation of the kinetics of using para-nitrophenylacetate revealed that the kinetic parameters of the CA-mimetic catalyst were maximized at the optimal Zn concentration and that excess Zn ions resulted in deteriorated catalytic activity. The performance of the CA-mimetic catalyst was enhanced by changing the pH value and temperature of the reaction, which implies that the hydrolysis of the substrate is the rate-determining step. The catalyst-assisted sequestration of CO2 was demonstrated by CaCO3 precipitation upon the addition of Ca(2+) ions. This study offers an easy way to prepare enzyme analogues for CO2 sequestration through the self-assembly of bolaamphiphile molecules with designer biochemical moieties.
Collapse
Affiliation(s)
- Min-Chul Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120749 (Korea), Fax: (+82) 2-312-6401
| | | |
Collapse
|
16
|
Zastrow M, Pecoraro VL. Designing hydrolytic zinc metalloenzymes. Biochemistry 2014; 53:957-78. [PMID: 24506795 PMCID: PMC3985962 DOI: 10.1021/bi4016617] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/23/2014] [Indexed: 12/15/2022]
Abstract
Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up.
Collapse
Affiliation(s)
| | - Vincent L. Pecoraro
- Department of Chemistry, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| |
Collapse
|
17
|
Banerjee S, Rajakannu P, Butcher RJ, Murugavel R. Auxiliary ligand-aided tuning of aggregation of transition metal benzoates: isolation of four different types of coordination polymers. CrystEngComm 2014. [DOI: 10.1039/c4ce01043d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The position of benzoic acid substituents and the ability of the auxiliary ligand to act as a chelating or a bridging ligand drive metal benzoates to assemble either as discrete or as polymeric complexes.
Collapse
Affiliation(s)
- Subarna Banerjee
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400 076, India
| | - Palanisamy Rajakannu
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400 076, India
| | | | - Ramaswamy Murugavel
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400 076, India
| |
Collapse
|
18
|
Non-covalently aggregated zinc and cadmium complexes derived from substituted aromatic carboxylic acids: Synthesis, spectroscopy, and structural studies. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Oheix E, Spencer N, Gethings LA, Peacock AFA. Conformational Study of an Artificial Metal-Dependent Regulation Site for Use in Designer Proteins. Z Anorg Allg Chem 2013; 639:1370-1383. [PMID: 25995524 PMCID: PMC4431501 DOI: 10.1002/zaac.201300131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/21/2013] [Indexed: 11/07/2022]
Abstract
This report describes the dimerisation of glutathione, and by extension, other cysteine-containing peptides or protein fragments, with a 5, 5'-disubstituted-2, 2'-bipyridine or 6, 6"-disubstituted-2, 2':6',2"-terpyridine unit. The resulting bipy-GS2 and terpy-GS2 were investigated as potential metal ion dependent switches in aqueous solution, and were found to predominantly adopt the transoïd conformation at physiological pH. Metal complexation with CuII and ZnII at this pH has been studied by UV/Vis, CD, NMR and ion-mobility mass spectrometry. ZnII titrations are consistent with the formation of a 1:1 ZnII:terpy-GS2 complex at pH 7.4, but bipy-GS2 was shown to form both 1:1 and 1:2 complexes with the former being predominant under dilute micromolar conditions. Formation constants for the resulting 1:1 complexes were determined to be log KM 6.86 (bipy-GS2 ) and 6.22 (terpy-GS2 ), consistent with a higher affinity for the unconstrained bipyridine, compared to the strained terpyridine. CuII coordination involves the initial formation of 1:1 complexes, followed by 1.5Cu:1bipy-GS2 and 2Cu:1terpy-GS2 complexes at micromolar concentrations. Binding constants for formation of the 1:1 complexes (log KM 12.5 (bipy-GS2 ); 8.04 and 7.14 (terpy-GS2 )) indicate a higher affinity for CuII than ZnII. Finally, ion-mobility MS studies detected the free ligands in their protonated form, and were consistent with the formation of two different Cu adducts with different conformations in the gas-phase. We illustrate that the bipyridine and terpyridine dimerisation units can behave like conformational switches in response to Cu/Zn complexation, and propose that in future these can be employed in synthetic biology with larger peptide or protein fragments, to control large scale folding and related biological function.
Collapse
Affiliation(s)
- Emmanuel Oheix
- School of Chemistry, University of BirminghamEdgbaston, B15 2TT, UK
| | - Neil Spencer
- School of Chemistry, University of BirminghamEdgbaston, B15 2TT, UK
| | - Lee A Gethings
- Waters CorporationAtlas Park, Simonsway, Wythenshawe, Manchester, M22 5PP, UK
| | - Anna F A Peacock
- School of Chemistry, University of BirminghamEdgbaston, B15 2TT, UK
| |
Collapse
|
20
|
Loos P, Ronco C, Riedrich M, Arndt HD. Unified Azoline and Azole Syntheses by Optimized Aza-Wittig Chemistry. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Complex formation of cadmium with sugar residues, nucleobases, phosphates, nucleotides, and nucleic acids. Met Ions Life Sci 2013; 11:191-274. [PMID: 23430775 DOI: 10.1007/978-94-007-5179-8_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cadmium(II), commonly classified as a relatively soft metal ion, prefers indeed aromatic-nitrogen sites (e.g., N7 of purines) over oxygen sites (like sugar-hydroxyl groups). However, matters are not that simple, though it is true that the affinity of Cd(2+) towards ribose-hydroxyl groups is very small; yet, a correct orientation brought about by a suitable primary binding site and a reduced solvent polarity, as it is expected to occur in a folded nucleic acid, may facilitate metal ion-hydroxyl group binding very effectively. Cd(2+) prefers the guanine(N7) over the adenine(N7), mainly because of the steric hindrance of the (C6)NH(2) group in the adenine residue. This Cd(2+)-(N7) interaction in a guanine moiety leads to a significant acidification of the (N1)H meaning that the deprotonation reaction occurs now in the physiological pH range. N3 of the cytosine residue, together with the neighboring (C2)O, is also a remarkable Cd(2+) binding site, though replacement of (C2)O by (C2)S enhances the affinity towards Cd(2+) dramatically, giving in addition rise to the deprotonation of the (C4)NH(2) group. The phosphodiester bridge is only a weak binding site but the affinity increases further from the mono- to the di- and the triphosphate. The same also holds for the corresponding nucleotides. Complex stability of the pyrimidine-nucleotides is solely determined by the coordination tendency of the phosphate group(s), whereas in the case of purine-nucleotides macrochelate formation takes place by the interaction of the phosphate-coordinated Cd(2+) with N7. The extents of the formation degrees of these chelates are summarized and the effect of a non-bridging sulfur atom in a thiophosphate group (versus a normal phosphate group) is considered. Mixed ligand complexes containing a nucleotide and a further mono- or bidentate ligand are covered and it is concluded that in these species N7 is released from the coordination sphere of Cd(2+). In the case that the other ligand contains an aromatic residue (e.g., 2,2'-bipyridine or the indole ring of tryptophanate) intramolecular stack formation takes place. With buffers like Tris or Bistris mixed ligand complexes are formed. Cd(2+) coordination to dinucleotides and to dinucleoside monophosphates provides some insights regarding the interaction between Cd(2+) and nucleic acids. Cd(2+) binding to oligonucleotides follows the principles of coordination to its units. The available crystal studies reveal that N7 of purines is the prominent binding site followed by phosphate oxygens and other heteroatoms in nucleic acids. Due to its high thiophilicity, Cd(2+) is regularly used in so-called thiorescue experiments, which lead to the identification of a direct involvement of divalent metal ions in ribozyme catalysis.
Collapse
|
22
|
Multiligand zinc(II) hydroxide complexes: Zn(OH)2X2Y and Zn(OH)2X1,2Y2; X=H2O, CH3OH and Y=NH3, C5H5N. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2011.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Jabłońska-Wawrzycka A, Stadnicka K, Masternak J, Zienkiewicz M. Novel eight-coordinated Cd(II) complexes with two homologous pyridine alcohols. Crystal structure, spectroscopic and thermal properties. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2011.12.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Abstract
Metal ions are inextricably involved with nucleic acids due to their polyanionic nature. In order to understand the structure and function of RNAs and DNAs, one needs to have detailed pictures on the structural, thermodynamic, and kinetic properties of metal ion interactions with these biomacromolecules. In this review we first compile the physicochemical properties of metal ions found and used in combination with nucleic acids in solution. The main part then describes the various methods developed over the past decades to investigate metal ion binding by nucleic acids in solution. This includes for example hydrolytic and radical cleavage experiments, mutational approaches, as well as kinetic isotope effects. In addition, spectroscopic techniques like EPR, lanthanide(III) luminescence, IR and Raman as well as various NMR methods are summarized. Aside from gaining knowledge about the thermodynamic properties on the metal ion-nucleic acid interactions, especially NMR can be used to extract information on the kinetics of ligand exchange rates of the metal ions applied. The final section deals with the influence of anions, buffers, and the solvent permittivity on the binding equilibria between metal ions and nucleic acids. Little is known on some of these aspects, but it is clear that these three factors have a large influence on the interaction between metal ions and nucleic acids.
Collapse
Affiliation(s)
- Maria Pechlaner
- Institute of Inorganic Chemistry, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
25
|
Wu HL, Wang KT, Kou F, Jia F, Liu B, Yuan JK, Bai Y. A six-coordinate picrate cadmium(II) complex with a new V-shaped ligand 1,3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane: synthesis, crystal structure, and DNA-binding properties. J COORD CHEM 2011. [DOI: 10.1080/00958972.2011.605442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hui-Lu Wu
- a School of Chemical and Biological Engineering, Lanzhou Jiaotong University , Lanzhou, Gansu 730070, P.R. China
| | - Kai-Tong Wang
- a School of Chemical and Biological Engineering, Lanzhou Jiaotong University , Lanzhou, Gansu 730070, P.R. China
| | - Fan Kou
- a School of Chemical and Biological Engineering, Lanzhou Jiaotong University , Lanzhou, Gansu 730070, P.R. China
| | - Fei Jia
- a School of Chemical and Biological Engineering, Lanzhou Jiaotong University , Lanzhou, Gansu 730070, P.R. China
| | - Bin Liu
- a School of Chemical and Biological Engineering, Lanzhou Jiaotong University , Lanzhou, Gansu 730070, P.R. China
| | - Jing-Kun Yuan
- a School of Chemical and Biological Engineering, Lanzhou Jiaotong University , Lanzhou, Gansu 730070, P.R. China
| | - Ying Bai
- a School of Chemical and Biological Engineering, Lanzhou Jiaotong University , Lanzhou, Gansu 730070, P.R. China
| |
Collapse
|
26
|
Knobloch B, Mucha A, Operschall BP, Sigel H, Jeżowska-Bojczuk M, Kozłowski H, Sigel RKO. Stability and structure of mixed-ligand metal ion complexes that contain Ni2+, Cu2+, or Zn2+, and Histamine, as well as adenosine 5'-triphosphate (ATP4-) or uridine 5'-triphosphate (UTP(4-): an intricate network of equilibria. Chemistry 2011; 17:5393-403. [PMID: 21465580 DOI: 10.1002/chem.201001931] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Indexed: 01/22/2023]
Abstract
With a view on protein-nucleic acid interactions in the presence of metal ions we studied the "simple" mixed-ligand model systems containing histamine (Ha), the metal ions Ni(2+), Cu(2+), or Zn(2+) (M(2+)), and the nucleotides adenosine 5'-triphosphate (ATP(4-)) or uridine 5'-triphosphate (UTP(4-)), which will both be referred to as nucleoside 5'-triphosphate (NTP(4-)). The stability constants of the ternary M(NTP)(Ha)(2-) complexes were determined in aqueous solution by potentiometric pH titrations. We show for both ternary-complex types, M(ATP)(Ha)(2-) and M(UTP)(Ha)(2-), that intramolecular stacking between the nucleobase and the imidazole residue occurs and that the stacking intensity is approximately the same for a given M(2+) in both types of complexes: The formation degree of the intramolecular stacks is estimated to be 20 to 50%. Consequently, in protein-nucleic acid interactions imidazole-nucleobase stacks may well be of relevance. Furthermore, the well-known formation of macrochelates in binary M(2+) complexes of purine nucleotides, that is, the phosphate-coordinated M(2+) interacts with N7, is confirmed for the M(ATP)(2-) complexes. It is concluded that upon formation of the mixed-ligand complexes the M(2+)-N7 bond is broken and the energy needed for this process corresponds to the stability differences determined for the M(UTP)(Ha)(2-) and M(ATP)(Ha)(2-) complexes. It is, therefore, possible to calculate from these stability differences of the ternary complexes the formation degrees of the binary macrochelates: The closed forms amount to (65±10)%, (75±8)%, and (31±14) % for Ni(ATP)(2-), Cu(ATP)(2-), and Zn(ATP)(2-), respectively, and these percentages agree excellently with previous results obtained by different methods, confirming thus the internal validity of the data and the arguments used in the evaluation processes. Based on the overall results it is suggested that M(ATP)(2-) species, when bound to an enzyme, may exist in a closed macrochelated form only, if no enzyme groups coordinate directly to the metal ion.
Collapse
Affiliation(s)
- Bernd Knobloch
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Siji V, Sudarsanakumar M, Suma S. Synthesis and spectral characterization of zinc(II) and cadmium(II) complexes of acetone-N(4)-phenylsemicarbazone: Crystal structures of acetone-N(4)-phenylsemicarbazone and a cadmium(II) complex. Polyhedron 2010. [DOI: 10.1016/j.poly.2010.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Ibrahim MM, Ramadan AEMM. Novel mono- and dinucleating ligands-containing artificial di- and tetrahistidine and their zinc(II) complexes as a structural phosphotriesterase models for the hydrolysis of p-nitrophenyl diphenylphosphate (p-NPDPP). J INCL PHENOM MACRO 2010. [DOI: 10.1007/s10847-010-9786-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Wu R, Hu P, Wang S, Cao Z, Zhang Y. Flexibility of Catalytic Zinc Coordination in Thermolysin and HDAC8: A Born-Oppenheimer ab initio QM/MM Molecular Dynamics Study. J Chem Theory Comput 2009; 6:337. [PMID: 20161624 PMCID: PMC2812930 DOI: 10.1021/ct9005322] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The different coordination modes and fast ligand exchange of zinc coordination has been suggested to be one key catalytic feature of the zinc ion which makes it an invaluable metal in biological catalysis. However, partly due to the well known difficulties for zinc to be characterized by spectroscopy methods, evidence for dynamic nature of the catalytic zinc coordination has so far mainly been indirect. In this work, Born-Oppenheimer ab initio QM/MM molecular dynamics simulation has been employed, which allows for a first-principle description of the dynamics of the metal active site while properly including effects of the heterogeneous and fluctuating protein environment. Our simulations have provided direct evidence regarding inherent flexibility of the catalytic zinc coordination shell in Thermolysin (TLN) and Histone Deacetylase 8 (HDAC8). We have observed different coordination modes and fast ligand exchange during the picosecond's time-scale. For TLN, the coordination of the carboxylate group of Glu166 to Zinc is found to continuously change between monodentate and bidentate manner dynamically; while for HDAC8, the flexibility mainly comes from the coordination to a non-amino-acid ligand. Such distinct dynamics in the zinc coordination shell between two enzymes suggests that the catalytic role of Zinc in TLN and HDAC8 is likely to be different in spite of the fact that both catalyze the hydrolysis of amide bond. Meanwhile, considering that such Born-Oppenheimer ab initio QM/MM MD simulations are very much desired but are widely considered to be too computationally expensive to be feasible, our current study demonstrates the viability and powerfulness of this state-of-the-art approach in simulating metalloenzymes.
Collapse
Affiliation(s)
- Ruibo Wu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Po Hu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Shenglong Wang
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Zexing Cao
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| |
Collapse
|
30
|
Reaction of diacetylmonoxime with morpholine N-thiohydrazide in the absence and in presence of a metal ion: Facile synthesis of a thiadiazole derivative with non-bonded S⋯S interaction. Polyhedron 2009. [DOI: 10.1016/j.poly.2009.06.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Bunzen J, Hapke M, Lützen A. The Influence of Different Spacer Lengths on the Selectivity of Self-Assembly Processes of Bis(bipyridine)-BINOL Helicates. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900232] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Sigel H, Operschall BP, Griesser R. Xanthosine 5'-monophosphate (XMP). Acid-base and metal ion-binding properties of a chameleon-like nucleotide. Chem Soc Rev 2009; 38:2465-94. [PMID: 19623361 DOI: 10.1039/b902181g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H(3)(XMP)(+), reveal that in the physiological pH range around 7.5 (X - H x MP)(3-) strongly dominates and not XMP(2-) as commonly given in textbooks and often applied in research papers. Therefore, this nucleotide, which participates in many metabolic processes, should be addressed as xanthosinate 5'-monophosphate as is stated in this critical review. Micro acidity constant schemes allow quantification of intrinsic site basicities. In 9-methylxanthine nucleobase deprotonation occurs to more than 99% at (N3)H, whereas for xanthosine it is estimated that about 30% are (N1)H deprotonated and for (X - H x MP)(3-) it is suggested that (N1)H deprotonation is further favored, especially in macrochelates where the phosphate-coordinated M(2+) interacts with N7. The formation degree of these macrochelates in the (X - H x MP x M)(-) species of Co(2+), Ni(2+), Cu(2+), Zn(2+) or Cd(2+) amounts to 90% or more. In the monoprotonated (M x X - H x MP x H)(+/-) complexes, M(2+) is located at the N7/[(C6)O] unit as the primary binding site and it forms macrochelates with the P(O)(2)(OH)(-) group to about 65% for nearly all metal ions considered (i.e., including Ba(2+), Sr(2+), Ca(2+), Mg(2+)); this indicates outer-sphere binding to P(O)(2)(OH)(-). Finally, a new method quantifying the chelate effect is applied to the M(X - H x MP)(-) species, stabilities and structures of mixed-ligand complexes are considered, and the stability constants for several M(X - H x DP)(2-) and M(X - H x TP)(3-) complexes are estimated (112 references).
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
33
|
Bunzen J, Hovorka R, Lützen A. Surprising Substituent Effects on the Self-Assembly of Helicates from Bis(bipyridyl) BINOL Ligands. J Org Chem 2009; 74:5228-36. [DOI: 10.1021/jo900254r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jens Bunzen
- Kekulé Institute of Organic Chemistry und Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Rainer Hovorka
- Kekulé Institute of Organic Chemistry und Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Arne Lützen
- Kekulé Institute of Organic Chemistry und Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| |
Collapse
|
34
|
Starodubets EE, Borisevich SV, Shapnik MS. Structure of complexes forming over a wide pH range in the Zn(II)-En-H2O system. RUSS J INORG CHEM+ 2009. [DOI: 10.1134/s003602360903019x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Bunzen J, Bruhn T, Bringmann G, Lützen A. Synthesis and Helicate Formation of a New Family of BINOL-Based Bis(bipyridine) Ligands. J Am Chem Soc 2009; 131:3621-30. [DOI: 10.1021/ja807780j] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jens Bunzen
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany, and Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Torsten Bruhn
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany, and Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Gerhard Bringmann
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany, and Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Arne Lützen
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany, and Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
36
|
Divalent metal ions tune the self-splicing reaction of the yeast mitochondrial group II intron Sc.ai5γ. J Biol Inorg Chem 2008; 13:1025-36. [DOI: 10.1007/s00775-008-0390-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 05/14/2008] [Indexed: 11/25/2022]
|
37
|
Kiehne U, Weilandt T, Lützen A. Self-Assembly of Dinuclear Double- and Triple-Stranded Helicates from Bis(bipyridine) Ligands Derived from Tröger's Base Analogues. European J Org Chem 2008. [DOI: 10.1002/ejoc.200701215] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Acid–base and metal ion binding properties of 2-thiocytidine in aqueous solution. J Biol Inorg Chem 2008; 13:663-74. [DOI: 10.1007/s00775-008-0351-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
|
39
|
Kiehne U, Lützen A. Diastereoselective Self-Assembly of Double- and Triple-Stranded Helicates from a d-Isomannide Derivative. Org Lett 2007; 9:5333-6. [DOI: 10.1021/ol701652e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- U. Kiehne
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - A. Lützen
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| |
Collapse
|
40
|
Wicholas M, Garrett AD, Gleaves M, Morris AM, Rehm M, Anderson OP, la Cour A. Size discrimination in the coordination chemistry of an isoindoline pincer ligand with CdII and ZnII. Inorg Chem 2007; 45:5804-11. [PMID: 16841985 DOI: 10.1021/ic060051i] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactions of Cd2+ and Zn2+ with the pyridine-arm isoindoline ligand 4'-MeLH = 1,3-bis[2-(4-methylpyridyl)imino]isoindoline produced the series of octahedrally coordinated complexes M(4'-MeL)2, [M(4'-MeLH)2]2+, and [M(4'-MeL)(4'-MeLH)]+. The complexes M(4'-MeL)2 resulted from reactions of the respective metal perchlorates with deprotonated ligand, whereas the complexes [M(4'-MeLH)2](ClO4)2 resulted from reactions with ligand in the absence of added base. The mixed-ligand complexes [M(4'-MeL)(4'-MeLH)]+ were generated in solution by reactions of equimolar quantities of M(4'-MeL)2 and [M(4'-MeLH)2]2+. Whereas [Cd(4'-MeL)(4'-MeLH)]+ is stable in solution, [Zn(4'-MeL)(4'-MeLH)]+ converts to and establishes equilibrium with the tetrahedrally coordinated, trinuclear complex [Zn3(4'-MeL)4]2+. The complexes Cd(4'-MeL)2 (1), Zn(4'-MeL)2 (2), and [Cd(4'-MeL)(4'-MeLH)]ClO4 (5) were characterized by single-crystal X-ray diffraction, with the latter complex being shown to contain 4'-MeLH coordinated as a protonated iminium zwitterionic ligand. The [M(4'-MeLH)2]2+ and [M(4'-MeL)(4'-MeLH)]+ complexes are tautomeric in solution because of the shuttling of the iminium protons between imine N atoms. The rate of prototropic tautomerism in [Cd(4'-MeLH)2]+ was followed by 1H NMR spectroscopy. Over the temperature range 276-312 K, a linear Eyring plot with the activation parameters DeltaG++ = 16.0 +/- 0.1 kcal/mol, DeltaH++ = 2.9 +/- 0.1 kcal/mol, and DeltaS++ = -44.0 +/- 0.3 cal/mol.K was obtained.
Collapse
Affiliation(s)
- Mark Wicholas
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Knobloch B, Sigel H, Okruszek A, Sigel RKO. Metal-ion-coordinating properties of the dinucleotide 2'-deoxyguanylyl(5'-->3')-2'-deoxy-5'-guanylate (d(pGpG)3-): isomeric equilibria including macrochelated complexes relevant for nucleic acids. Chemistry 2007; 13:1804-14. [PMID: 17121397 DOI: 10.1002/chem.200600744] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The interaction between divalent metal ions and nucleic acids is well known, yet knowledge about the strength of binding of labile metal ions at the various sites is very scarce. We have therefore studied the stabilities of complexes formed between the nucleic acid model d(pGpG) and the essential metal ions Mg2+ and Zn2+ as well as with the generally toxic ions Cd2+ and Pb2+ by potentiometric pH titrations; all four ions are of relevance in ribozyme chemistry. A comparison of the present results with earlier data obtained for M(pUpU)- complexes allows the conclusion that phosphate-bound Mg2+ and Cd2+ form macrochelates by interaction with N7, whereas the also phosphate-coordinated Pb2+ forms a 10-membered chelate with the neighboring phosphate diester bridge. Zn2+ forms both types of chelates with formation degrees of about 91% and 2.4% for Zn[d(pGpG)]cl/N7 and Zn[d(pGpG)]-cl/PO, respectively; the open form with Zn2+ bound only to the terminal phosphate group, Zn[d(pGpG)]-op, amounts to about 6.8 %. The various intramolecular equilibria have also been quantified for the other metal ions. Zn2+, Cu2+, and Cd2+ also form macrochelates in the monoprotonated M[H;d(pGpG)] species (the proton being at the terminal phosphate group), that is, the metal ion at N7 interacts to some extent with the P(O)2(OH)- group. Thus, this study demonstrates that the coordinating properties of the various metal ions toward a pGpG unit in a nucleic acid differ: Mg2+, Zn2+, and Cd2+ have a significant tendency to bridge the distance between N7 and the phosphate group of a (d)GMP unit, although to various extents, whereas Pb2+ (and possibly Ca2+) prefer a pure phosphate coordination.
Collapse
Affiliation(s)
- Bernd Knobloch
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
42
|
Sigel RKO, Pyle AM. Alternative Roles for Metal Ions in Enzyme Catalysis and the Implications for Ribozyme Chemistry. Chem Rev 2006; 107:97-113. [PMID: 17212472 DOI: 10.1021/cr0502605] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roland K O Sigel
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | |
Collapse
|
43
|
Dietrich BL, Egbert J, Morris AM, Wicholas M, Anderson OP, Miller SM. Cd(II), Zn(II), and Pd(II) complexes of an isoindoline pincer ligand: consequences of steric crowding. Inorg Chem 2006; 44:6476-81. [PMID: 16124830 DOI: 10.1021/ic0506916] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sterically crowded isoindoline pincer ligand, 6'-MeLH, prepared by condensation of 4-methyl-2-aminopyridine and phthalonitrile, exhibits very different reaction chemistry with Cd2+, Zn2+, and Pd2+. Three different ligand coordination modes are reported, each dependent upon choice of metal ion. This isoindoline binds to Cd2+ as a charge-neutral, zwitterionic, bidentate ligand using imine and pyridine nitrogen atoms to form the eight-coordinate fluxional complex, Cd(6'-MeLH)2(NO3)2. In the presence of Zn2+, however, loss of a pyridine arm occurs through solvolysis and tetrahedrally coordinated complexes are formed with coordination of pyrrole and pyridine nitrogen atoms. Reaction with Pd2+ produces the highly distorted, square planar complex Pd(6'-MeL)Cl in which a deprotonated isoindoline anion coordinates as a tridentate pyridinium NNC pincer ligand.
Collapse
Affiliation(s)
- Brandon L Dietrich
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, USA
| | | | | | | | | | | |
Collapse
|
44
|
Bock CW, Markham GD, Katz AK, Glusker JP. The Arrangement of First- and Second-shell Water Molecules Around Metal Ions: Effects of Charge and Size. Theor Chem Acc 2006. [DOI: 10.1007/s00214-005-0056-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Sigel H, Griesser R. Nucleoside 5'-triphosphates: self-association, acid-base, and metal ion-binding properties in solution. Chem Soc Rev 2005; 34:875-900. [PMID: 16172677 DOI: 10.1039/b505986k] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenosine 5'-triphosphate (ATP(4-)) and related nucleoside 5'-triphosphates (NTP(4-)) serve as substrates in the form of metal ion complexes in enzymic reactions taking part thus in central metabolic processes. With this in mind, the coordination chemistry of NTPs is critically reviewed and the conditions are defined for studies aiming to describe the properties of monomeric complexes because at higher concentrations (>1 mM) self-stacking may take place. The metal ion (M(2+)) complexes of purine-NTPs are more stable than those of pyrimidine-NTPs; this stability enhancement is attributed, in accord with NMR studies, to macrochelate formation of the phosphate-coordinated M(2+) with N7 of the purine residue and the formation degrees of the resulting isomeric complexes are listed. Furthermore, the formation of mixed-ligand complexes (including also those with buffer molecules), the effect of a reduced solvent polarity on complex stability and structure (giving rise to selectivity), the use of nucleotide analogues as antiviral agents, and the effect of metal ions on group transfer reactions are summarized.
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
46
|
Affiliation(s)
- Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
47
|
Sánchez-Moreno MJ, Fernández-Botello A, Gómez-Coca RB, Griesser R, Ochocki J, Kotynski A, Niclós-Gutiérrez J, Moreno V, Sigel H. Metal Ion-Binding Properties of (1H-Benzimidazol-2-yl-methyl)phosphonate (Bimp2-) in Aqueous Solution.⊥Isomeric Equilibria, Extent of Chelation, and a New Quantification Method for the Chelate Effect. Inorg Chem 2004; 43:1311-22. [PMID: 14966966 DOI: 10.1021/ic030175k] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The acidity constants of the 2-fold protonated (1H-benzimidazol-2-yl-methyl)phosphonate, H2(Bimp)(+/-), are given, and the stability constants of the M(H;Bimp)+ and M(Bimp) complexes with the metal ions M2+ = Mg2+, Ca2+, Ba2+, Mn2+, Co2+, Cu2+, Zn2+, or Cd2+ have been determined by potentiometric pH titrations in aqueous solution at I = 0.1 M (NaNO3) and 25 degrees C. Application of previously determined straight-line plots of log KM(M(Bi-R)) versus pKH(H(Bi-R)) for benzimidazole-type ligands, Bi-R, where R represents a residue which does not affect metal ion binding, proves that the primary binding site in the M(H;Bimp)+ complexes is (mostly) N3 and that the proton is located at the phosphonate group; outersphere interactions seem to be important, and the degree of chelate formation is above 60% for all metal ion complexes studied, except for Zn(H;Bimp)+. A similar evaluation based on log KM(M(R-PO3)) versus pKH(H(R-PO3)) straight-line plots for simple phosph(on)ate ligands, R-, where R represents a residue which cannot participate in the coordination process, reveals that the primary binding site in the M(Bimp) complexes is (mostly) the phosphonate group with all metal ions studied. In this case, the formation degree of the chelates varies more widely in dependence on the kind of metal ion involved, i.e., from 17 +/- 11% to nearly 100% for Ba(Bimp) and Cu(Bimp), respectively. For all the M(H;Bimp)+ and M(Bimp) systems, the intramolecular equilibria between the isomeric complexes are evaluated in a quantitative manner. The fact that for Bimp2- the metal ion affinity of the two binding sites, N3 and PO3(2-), can be calculated independently, i.e., the corresponding micro stability constants become known, allows us to present for the first time a method for the quantification of the chelate effect solely based on comparisons of stability constants which carry the same dimensions. This effect is often ill defined in textbooks because equilibrium constants of different dimensions are compared, which is avoided in the present case. For the M(Bimp) complexes, it is shown that the chelate effect is close to zero for Ba(Bimp) whereas for Cu(Bimp) it amounts to about four log units. This method is also applicable to other chelating systems. Finally, considering that benzimidazole as well as phosphonate derivatives are employed as therapeutic agents, the potential biological properties of Bimp, especially regarding nucleic acid polymerases, are briefly discussed.
Collapse
Affiliation(s)
- María José Sánchez-Moreno
- Inorganic Chemistry, Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Da Costa CP, Okruszek A, Sigel H. Complex formation of divalent metal ions with uridine 5'-O-thiomonophosphate or methyl thiophosphate: comparison of complex stabilities with those of the parent phosphate ligands. Chembiochem 2003; 4:593-602. [PMID: 12851928 DOI: 10.1002/cbic.200200551] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The stability constants of the 1:1 complexes formed in aqueous solution between Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Zn2+, or Cd2+ (M2+) and methyl thiophosphate (MeOPS(2-)) or uridine 5'-O-thiomonophosphate (UMPS(2-)) (PS(2-)=MeOPS(2-) or UMPS(2-)) have been determined (potentiometric pH titrations; 25 degrees C; I = 0.1 M, NaNO(3)). Comparison of these results for M(PS) complexes with those known for the parent M(PO) phosphate species, where PO(2-)=CH(3)OPO(2-)(3) or UMP(2-) (uridine 5'-monophosphate), shows that the alkaline earth metal ions, as well as Mn2+, Co2+, and Ni2+ have a higher affinity for phosphate groups than for their thio analogues. However, based on the linear log K(M)(M(R-PO3)) versus pK(H)(H(R-PO3)) relationships (R-PO(2-)(3) simple phosphate monoester or phosphonate ligands with a non-interacting residue R) it becomes clear that the indicated observation is only the result of the lower basicity of the thiophosphate residue. In contrast, the thio complexes of Zn2+ and Cd2+ are more stable than their parent phosphate ones, and this despite the lower basicity of the PS(2-) ligands. This stability increase is identical for M(MeOPS) and M(UMPS) species and amounts to about 0.6 and 2.4 log units for Zn(PS) and Cd(PS), respectively. Since no other binding site is available in MeOPS(2-), this enhanced stability has to be attributed to the S atom. Indeed, from the mentioned stability differences it follows that Cd2+ in Cd(PS) is coordinated by more than 99% to the thiophosphate S atom; the same value holds for Pb(PS), which was studied earlier. The formation degree of the Sbonded isomer amounts to 76+/-6 % for Zn(PS) and is close to zero for the corresponding Mg2+, Ca2+, and Mn2+ species. It is further shown that Zn(MeOPS)(aq)(2+) releases a proton from a coordinated water molecule with pK(a) approximately 6.9; i.e., this deprotonation occurs at a lower pH value than that for the same reaction in Zn(aq)(2+). Since Mg2+, Ca2+, Mn2+, and Cd2+ have a relatively low tendency for hydroxo complex formation, it was possible, for these M2+, to also quantify the stability of the binuclear complexes, M(2)(UMPS-H)+, where one M2+ is thiophosphate-coordinated and the other is coordinated at (N3)(-) of the uracil residue. The impact of the results presented herein regarding M2+/nucleic acid interactions, including those of ribozymes (rescue experiments), is briefly discussed.
Collapse
Affiliation(s)
- Carla P Da Costa
- Departement Chemie Anorganische Chemie, Universität Basel Spitalstrasse 51, 4056 Basel, Switzerland
| | | | | |
Collapse
|
49
|
Aukrust A, Grace D, Sydnes LK, Törnroos KW. The structures of DPDP, CdDPDP and ZnDPDP as studied by X-ray diffraction and NMR. J Mol Struct 2002. [DOI: 10.1016/s0022-2860(02)00350-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Dey M, Rao C, Saarenketo P, Rissanen K, Kolehmainen E. Four-, Five- and Six-Coordinated ZnII Complexes of OH-Containing Ligands: Syntheses, Structure and Reactivity. Eur J Inorg Chem 2002. [DOI: 10.1002/1099-0682(200208)2002:8<2207::aid-ejic2207>3.0.co;2-n] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|