1
|
Sun S, Xue K, Zhao Y, Qi Z. A near-infrared AIE fluorescent probe for accurate detection of sulfur dioxide derivatives and visualization of fingerprints. Talanta 2024; 270:125568. [PMID: 38150966 DOI: 10.1016/j.talanta.2023.125568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
In most biophysiological processes, sulfur dioxide (SO2) is an important intracellular signaling molecule that plays an important role. The change of SO2 in cells are closely related to various diseases such as neurological disorders and lung cancer, so it is necessary to develop fluorescent probes with the ability to accurately detect SO2 during physiological processes. In this work, we designed and synthesized a multifunctional fluorescent probe TIS. TIS has excellent properties such as near-infrared emission, large stokes shift, excellent SO2 detection capabilities, low detection limit, high specificity and visualization of color change before and after reaction. Simultaneously, TIS has low cytotoxicity, good biocompatibility, clear cell imaging capability and mitochondrial targeting ability. In addition, the ability of TIS to be applied to different material surfaces for latent fingerprint fluorescence imaging was also explored. TIS provides an excellent method for the accurate detection of SO2 derivatives and shows great potential applications in near-infrared cellular imaging and latent fingerprint fluorescence imaging.
Collapse
Affiliation(s)
- Saidong Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Ke Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Yongfei Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Zhengjian Qi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China.
| |
Collapse
|
2
|
Ye X, Wang Z, Hu X, Xie P, Liu Y. Differential evaluation of sulfur oxides in the natural lake water samples by carbazole-furan fluorescent probe. CHEMOSPHERE 2024; 352:141308. [PMID: 38280644 DOI: 10.1016/j.chemosphere.2024.141308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/29/2024]
Abstract
Water bodies are frequently polluted, with sulfur oxides being the most common form of water pollution. Therefore, developing a detection mechanism for sulfur oxides in water bodies is particularly urgent. A new fluorescent probe YX-KZBD was designed and developed. This probe releases fluorescent signals with its own sulfurous acid recognition site, detects sulfurous acid based on the Michael addition reaction, and evaluates the pollution degree of sulfur oxides in the water environment through the transformation mode of the sulfur cycle. This probe has high energy transfer efficiency in aqueous solutions. In addition, the fluorescence data obtained by analyzing the water samples were linearly fitted with the gene abundance values of the functional genes of sulfur-producing bacteria, and a significant correlation was obtained. The Kriging interpolation model was used to evaluate the sulfate content distribution at each sampling point to understand the distribution of sulfur oxides in natural water intuitively. The fluorescence signal excited by the probe was also combined with a real-time quantitative polymerase chain reaction (qPCR), and sulfate-reducing and sulfur-oxidizing bacteria were introduced in the sulfur cycle, providing a new method to assess the extent of water pollution effectively.
Collapse
Affiliation(s)
- Xiao Ye
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China
| | - Zhaomin Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China
| | - Xiangyu Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, PR China.
| |
Collapse
|
3
|
Cui WL, Wang MH, Yang YH, Ji X, Wang JY. Viscosity & SO 2-sensitive dual colorimetric effect fluorescent sensor enabled imaging detection within plant onion and biological system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122775. [PMID: 37150073 DOI: 10.1016/j.saa.2023.122775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023]
Abstract
The biological microenvironment includes important parameters such as viscosity, polarity, temperature, oxygen content and pH. In particular, abnormal cell viscosity is associated with the development of major diseases. Sulphur dioxide (SO2) serves not only as an essential atmospheric pollutant but also an influential signalling molecule in biological cells, predisposing individuals to increased respiratory disease. In this work, we designed and synthesized a novel fluorescent probe CouCN-V&S with dual response to micro environmental viscosity and SO2. The probe monitored viscosity and SO2 separately through dual emission channels with a difference of 135 nm. The probe responded sensitively to SO2 (<1s) and exhibited satisfactory immunity to interference and pH stability. The probe was successfully applied to imaging cellular, intra-zebrafish viscosity and SO2 changes. Interestingly, we took onion epidermal cells as model and explored the capability of probe CouCN-V&S to image SO2 in plant cells for the first time.
Collapse
Affiliation(s)
- Wei-Long Cui
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mao-Hua Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yun-Hao Yang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jian-Yong Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
4
|
Li H, Yue L, Huang H, Chen Z, Guo Y, Lin W. A NIR emission fluorescence probe for visualizing elevated levels of SO2 in cancer cells and living tumor. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
An Imidazo[1,5-a]pyridine Benzopyrylium-Based NIR Fluorescent Probe with Ultra-Large Stokes Shifts for Monitoring SO 2. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020515. [PMID: 36677574 PMCID: PMC9863934 DOI: 10.3390/molecules28020515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
A mitochondria-targeted NIR probe based on the FRET mechanism was developed. It shows ultra-large Stokes shifts (460 nm) and emission shifts (285 nm). Furthermore, we also realized the imaging of SO2 in living SKOV-3 cells, zebrafish and living mice which may be useful for understanding the biological roles of SO2 in mitochondria and in vivo.
Collapse
|
6
|
Liu W, Li J, Wang Z, Tian Y, Ren G, Hou X, Guo L, Li L, Zhang C, Wu Z, Yan L, Li S, Diao H. Construction of mitochondria targeted and FRET based ratiometric sensing nanoplatform for sulfur dioxide accurate detection in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121731. [PMID: 36007349 DOI: 10.1016/j.saa.2022.121731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Sulfur dioxide (SO2) is a key molecule in organisms that is involved in the regulation of different physiological procedures. Aberrant SO2 causes a variety of diseases, such as cancer and neurodegeneration. Thus, sensitive and selective detection of SO2 is of great importance. Based on the Förster resonance energy transfer (FRET) between green fluorescence carbon dots (GCDs) donor and amide-linked near-infrared fluorescence emissive organic small molecular dye (CDDBT) acceptor, one ratiometric fluorescent nano platform, Mito-GCDs-CDDBT for mitochondria SO2 sensing was constructed. In this FRET sensing system, CDDBT served as the receptor for SO2, and the presence of SO2 enhanced GCDs green fluorescence signal and quenched CDDBT near-infrared fluorescence signal due to the disruption of FRET. Mito-GCDs-CDDBT could sensitively detect SO2 with a detection limit of as low as 0.701 μM. Meanwhile, Mito-GCDs-CDDBT achieved fluorescence imaging to measure the response of cellular exogenous and endogenous SO2 with remarkable mitochondrial targeting. Moreover, Mito-GCDs-CDDBT also realized SO2 sensing in vivo including zebrafish and mice. The as-prepared versatile nanoplatform displayed several advantages, such as mitochondria targeting, FRET-based sensitive detection, and sensing capabilities in biological milieu. Potentially, it could be applied in the diagnostics of SO2 involved diseases.
Collapse
Affiliation(s)
- Wen Liu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, PR China; College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Jinyao Li
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Zicheng Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yafei Tian
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Guodong Ren
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xiaoyu Hou
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lixia Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lihong Li
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Chengwu Zhang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Lili Yan
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, PR China.
| | - Haipeng Diao
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
7
|
Water-soluble dual lysosome/mitochondria-targeted fluorescent probe for detection of SO2 in water, food, herb, and live cells. Bioorg Chem 2022; 129:106189. [DOI: 10.1016/j.bioorg.2022.106189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022]
|
8
|
Li T, Chen X, Wang K, Hu Z. Small-Molecule Fluorescent Probe for Detection of Sulfite. Pharmaceuticals (Basel) 2022; 15:1326. [PMID: 36355496 PMCID: PMC9699022 DOI: 10.3390/ph15111326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 04/20/2024] Open
Abstract
Sulfite is widely used as an antioxidant additive and preservative in food and beverages. Abnormal levels of sulfite in the body is related to a variety of diseases. There are strict rules for sulfite intake. Therefore, to monitor the sulfite level in physiological and pathological events, there is in urgent need to develop a rapid, accurate, sensitive, and non-invasive approach, which can also be of great significance for the improvement of the corresponding clinical diagnosis. With the development of fluorescent probes, many advantages of fluorescent probes for sulfite detection, such as real time imaging, simple operation, economy, fast response, non-invasive, and so on, have been gradually highlighted. In this review, we enumerated almost all the sulfite fluorescent probes over nearly a decade and summarized their respective characteristics, in order to provide a unified platform for their standardized evaluation. Meanwhile, we tried to systematically review the research progress of sulfite small-molecule fluorescent probes. Logically, we focused on the structures, reaction mechanisms, and applications of sulfite fluorescent probes. We hope that this review will be helpful for the investigators who are interested in sulfite-associated biological procedures.
Collapse
Affiliation(s)
| | | | - Kai Wang
- Medical Laboratory of Wuxi Children’s Hospital, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Qingyang Road 299, Wuxi 214023, China
| | - Zhigang Hu
- Medical Laboratory of Wuxi Children’s Hospital, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Qingyang Road 299, Wuxi 214023, China
| |
Collapse
|
9
|
Gong W, Zhang C, Zhang X, Shen Y. Mitochondria-targetable colorimetric and far-red fluorescent sensor for rapid detection of SO 2 derivatives in food samples and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121386. [PMID: 35597160 DOI: 10.1016/j.saa.2022.121386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Sulfur dioxide (SO2) derivatives are intertwined with many physiological and pathological processes in living systems, and excess intake of them are associated with various diseases. Herein, we have rationally constructed a novel colorimetric and far-red fluorescent probe for HSO3- based on a rhodamine analogue skeleton bearing a 3-quinolinium carboxaldehyde moiety. The novel probe exhibited a significant far-red fluorescence "Turn-on" response to HSO3-, along with obvious color change from reddish to purple via the specific 1,4-nucleophilic addition reaction of HSO3- with the quinolinium moiety in 3-(4-(2-carboxyphenyl)-7-(diethylamino)chromenylium-2-yl)-1-methylquinolin-1-ium hypochlorite trifluoromethanesulfonate (AQCB). The AQCB had excellent water-solubility, and presented rapid response (<15 s),highsensibility(LOD = 49 nM) and selectivity toward HSO3-. In addition, the probe was able to detect the content of HSO3- in food samples with satisfactory results. Furthermore, the probe possessed good cell membrane and could be successfully applied for imaging HSO3- in the mitochondria of living cells.
Collapse
Affiliation(s)
- Wenping Gong
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Chunxiang Zhang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| | - Xiangyang Zhang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Youming Shen
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| |
Collapse
|
10
|
Zhang A, Luan N, Wang W, Leng J, Zhang Y. Theoretical study on a series of naphthalimide-contained two-photon fluorescent hypochlorite probe targeting endoplasmic reticulum: response mechanism and receptor effect. J Mol Model 2022; 28:335. [PMID: 36178513 DOI: 10.1007/s00894-022-05311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022]
Abstract
The development of detecting hypochlorous acid (HClO) in living endoplasmic reticulum has attracted much attention in the fields of biology, medicine, and pharmacy. In the present work, the one-photon absorption (OPA), one-photon emission (OPE), and two-photon absorption (TPA) properties of a series newly synthesized chemosensors with naphthalimide as the fluorophore were systematically investigated using time-dependent density functional theory in combination with response theory. Special emphasis is placed on evolution of the probes' optical properties in the presence of HClO. These compounds show drastic changes in their photoabsorption and photoemission properties when they react with HClO, indicating them to be excellent candidates as fluorescent chemosensors. To further understand the mechanisms of the two probes, we have employed the hole and electron analysis to investigate the charge transfer process for the photoemission of the molecules. The receptor effect is found to play a dominant role in the sensing performance of these probes. Specifically, two-photon absorption properties of the molecules are calculated. We have found that all probes show significant two-photon responses in the near-infrared light region. And the maximum two-photon absorption cross section of probe 2 is greatly enhanced with the presence of HClO, indicating that probe 2 can act as a potential two-photon excited fluorescent HClO probe. The theoretical investigations would be helpful to build the structure-property relationships for the naphthalimide-contained probes, providing information on the design of efficient two-photon fluorescent sensors that can be used for biological imaging of HClO in endoplasmic reticulum.
Collapse
Affiliation(s)
- Aohan Zhang
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ni Luan
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Wenjie Wang
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jiancai Leng
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Yujin Zhang
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
11
|
Li Y, Sun X, Zhou L, Tian L, Zhong K, Zhang J, Yan X, Tang L. Novel Colorimetric and NIR Fluorescent Probe for Bisulfite/Sulfite Detection in Food and Water Samples and Living Cells Based on the PET Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10899-10906. [PMID: 35998392 DOI: 10.1021/acs.jafc.2c04571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Despite their status of being widely used as food additives, bisulfite (HSO3-)/sulfite (SO32-) can pose serious health risks when they are excessively added. Therefore, it is vital to develop a new method for detecting HSO3-/SO32- in foodstuff. In this paper, a benzopyran-benzothiazole derivative (probe DCA-Btl) with near-infrared emission was designed and synthesized by constructing a "push-pull" electronic system. DCA-Btl can selectively recognize HSO3-/SO32- via a colorimetric and fluorescence dual channel in DMF/PBS (1:1, v/v, pH = 8.4), and the emission wavelength of DCA-Btl can reach 710 nm. The fluorescence quenching of DCA-Btl after recognition of HSO3- is attributed to the photoinduced electron transfer (PET) process of the adduct DCA-Btl-HSO3- as evaluated by the DFT/TD-DFT method. In addition, DCA-Btl has many advantages, including a large Stokes shift (95 nm), good anti-interference ability, and little cytotoxicity. What's more, DCA-Btl has been successfully applied for the detection of HSO3-/SO32- in actual water samples and food samples such as sugar, red wine, and biscuits with satisfying results, as well as for fluorescent imaging of HSO3- in living MCF-7 cells.
Collapse
Affiliation(s)
- Yang Li
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Xiaofei Sun
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Lulu Zhou
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Li Tian
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Keli Zhong
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Jinglin Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing 100048, China
| | - Xiaomei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China
| | - Lijun Tang
- College of Chemistry and Materials Engineering, College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| |
Collapse
|
12
|
Liu FT, Li N, Chen YS, Yu HY, Miao JY, Zhao BX. A quinoline-coumarin near-infrared ratiometric fluorescent probe for detection of sulfur dioxide derivatives. Anal Chim Acta 2022; 1211:339908. [DOI: 10.1016/j.aca.2022.339908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023]
|
13
|
A near-infrared fluorescent probe targeting mitochondria for real-time visualization of SO2/formaldehyde in living cells, zebrafish. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Shang Z, Liu J, Meng Q, Wang Y, Zhang C, Zhang Z. A near-infrared emitted fluorescence probe for the detection of biosulfite in live zebrafish, mouse and real food samples. Methods 2022; 204:47-54. [PMID: 35447358 DOI: 10.1016/j.ymeth.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Bisulfite (HSO3-) has been widely used as an important food additive in daily life. Furthermore, a normal amount of HSO3- plays a significant role in biological systems. However, excessive intake of HSO3- will lead to a variety of diseases. Therefore, it is of great significance to develop an efficient fluorescent probe that can be used for detection of HSO3- in biological systems and food samples. In this work, a near-infrared (NIR) emitted fluorescent probe (SZY) based on hemicyanine dye was successfully synthesized and applied to detect HSO3- in several food samples and live animals. The proposed nucleophilic addition sensing mechanism of SZY towards HSO3- has been confirmed by 1H NMR titration, high resolution mass spectrometry (HR-MS) and density functional theory (DFT) theoretical computation. The HSO3--induced nucleophilic reaction with α,β-unsaturated C=C binding of SZY results in the dramatic decline of the UV-vis absorption and remarkable quenching of the fluorescence emission. SZY features the advantages of near infrared emission (centered at 720 nm), high water solubility (in 98% aqueous solution), fast response time (50 s), large Stokes shift (244 nm) and low cytotoxicity. The probe SZY was successfully applied to image of HSO3- in live nude mouse and adult zebrafish. Semi-quantitatively analyzing the HSO3- level by "naked eye" in several food samples including canned fruit, white wine, white sugar and jasmine tea drinks has been realized by the colorimetric method.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Jianhua Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China; Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Cheng Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| |
Collapse
|
15
|
Zhao Z, Xing L, Feng Q, Han L. A Novel Levulinate‐Based Highly Specific Colorimetric Fluorescent Probe for Bisulfite Detection in Live Cells and Zebrafish. ChemistrySelect 2022. [DOI: 10.1002/slct.202200385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhenhua Zhao
- Shandong Provincial Geomineral Engineering Exploration Institute Jinan 250014 China
| | - Liting Xing
- Shandong Provincial Geomineral Engineering Exploration Institute Jinan 250014 China
| | - Quanlin Feng
- Shandong Provincial Geomineral Engineering Exploration Institute Jinan 250014 China
| | - Lin Han
- Shandong Provincial Geomineral Engineering Exploration Institute Jinan 250014 China
| |
Collapse
|
16
|
Chao J, Wang Z, Zhang T, Zhang Y, Huo F. Optimizing the framework of indolium hemicyanine to detect sulfur dioxide targeting mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120444. [PMID: 34601365 DOI: 10.1016/j.saa.2021.120444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Endogenous sulfur dioxide (SO2) is mainly produced by the enzymatic reaction of sulfur-containing amino acids in mitochondria, which has unique biological activity in inflammatory reaction, regulating blood pressure and maintaining the homeostasis of biological sulfur. It is more and more common to detect monitor SO2 levels by fluorescence probe. In recent years, the indolium hemicyanine skeleton based on the D-π-A structure has been widely used in the development of fluorescent sensors for the detection of SO2. However, subtle changes in the chemical structure of indolium may cause significant differences in SO2 sensing behavior. In this article, we designed and synthesized two probes with different lipophilicities to further study the relationship between the structure and optical properties of hemicyanine dyes. On the basis of previous studies, the structure of indolium hemicyanine skeleton was optimized by introducing -OH group, so that MC-1 and MC-2 had the best response to SO32- in pure PBS system. In addition, the lipophilicity of MC-2 was better than that of MC-1, which enabled it to respond quickly to SO32- and better target mitochondria for SO2 detection. Most importantly, the low detection limits of MC-1 and MC-2 conducive to the detection of endogenous SO2. This work provided an idea for developing SO2 fluorescent sensors with excellent water solubility and low detection limit.
Collapse
Affiliation(s)
- Jianbin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, PR China.
| | - Zhuo Wang
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, PR China; School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Ting Zhang
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, PR China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, PR China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, PR China
| |
Collapse
|
17
|
Cui R, Gao Y, Ge H, Shi G, Li Y, Liu H, Ma C, Ge Y, Liu C. A turn-on fluorescent probe based on indolizine for the detection of sulfite. NEW J CHEM 2022. [DOI: 10.1039/d2nj00238h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous SO32−/HSO3− fluorescent probes have been reported based on various mechanisms.
Collapse
Affiliation(s)
- Renle Cui
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong 271016, P. R. China
| | - Yunlong Gao
- Center for disease control and prevention, Weifang binhai economic and technological development zone, Weifang, Shandong, P. R. China
| | - Haiyan Ge
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong 271016, P. R. China
| | - Guowei Shi
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong 271016, P. R. China
| | - Yongchao Li
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong 271016, P. R. China
| | - Hao Liu
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong 271016, P. R. China
| | - Chuanjun Ma
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong 271016, P. R. China
| | - Yanqing Ge
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong 271016, P. R. China
| | - Caihong Liu
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences, Taian, Shandong 271016, P. R. China
| |
Collapse
|
18
|
Shang Z, Liu J, Meng Q, Jia H, Gao Y, Zhang C, Zhang R, Zhang Z. Carbazole-based near-infrared-emitting fluorescence probe for the detection of bisulfite in live animals and real food samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj04647d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A carbazole-based near-infrared (NIR)-emitting fluorescent probe (QPM) was successfully developed for the detection of HSO3− in live animals and in real food samples.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Jianhua Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province 114051, P. R. China
| | - Hongmin Jia
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Yun Gao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Cheng Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province 114051, P. R. China
| |
Collapse
|
19
|
Wang J, Xu W, Wang Y, Hua J. Diketopyrrolopyrrole-based fluorescent probe for endogenous bisulfite detection and bisulfite triggered phototoxicity specific in liver cancer cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120098. [PMID: 34252742 DOI: 10.1016/j.saa.2021.120098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
As the main existing form of SO2 derivatives, bisulfite showed closely relationship to many diseases. In this work, a new fluorescent probe (SDPP-DM) based on thienyl-substituted diketopyrrolopyrrole (SDPP) was designed and synthesized for the detection of endogenous bisulfite. The probe displayed obvious color changes from green to pink towards bisulfite due to the reduced conjugated length caused by the addition to the α,β-unsaturated double bond of its structure, and the change of the fluorescence intensity of SDPP-DM (I/I0) was about 16 folds. In addition, SDPP-DM was prepared a test strip for bisulfite identified by naked eye through color and fluorescence changes. Besides, SDPP-DM was successfully applied to imaging and discriminating different endogenous bisulfite levels in normal and cancer cells of liver. More importantly, the ROS generation and cell viability tests showed the phototoxicity of SDPP-DM triggered by bisulfite, indicating the specific phototoxicity of SDPP-DM towards liver cancer cells than normal liver cells.
Collapse
Affiliation(s)
- Jian Wang
- The Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China; Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237 Shanghai, PR China
| | - Weibo Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Yu Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China.
| | - Jianli Hua
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237 Shanghai, PR China.
| |
Collapse
|
20
|
Liu W, Yang C, Zhang H, Li Z, Yu M. Colorimetric and Ratiometric Fluorescence Detection of HSO 3- With a NIR Fluorescent Dye. J Fluoresc 2021; 31:1567-1574. [PMID: 34338969 DOI: 10.1007/s10895-021-02794-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Bisulfite (HSO3-) has been widely used in food and industry, which has brought convenience to human life, but also seriously endangered human health. In this work, the probe PBI was designed and synthesized to detect bisulfite (HSO3-) through nucleophilic addition reaction. The probe PBI showed a selective reaction to HSO3- and can quantitatively detect HSO3-. At the same time, the color of the probe PBI changed significantly, which provided a simple method for the naked eye to identify HSO3-. Finally, it was successfully applied to the fluorescence imaging of HSO3- in living cells.
Collapse
Affiliation(s)
- Wenjie Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenchen Yang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongyan Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile, Beijing Institute of Fashion Technology, NanofiberBeijing, 100029, China.
| | - Zhanxian Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Mingming Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
21
|
Zhang K, Wang H, Cheng S, Zhang C, Zhai X, Lin X, Chen H, Gao R, Dong W. A benzaldehyde-indole fused chromophore-based fluorescent probe for double-response to cyanide and hypochlorite in living cells. Analyst 2021; 146:5658-5667. [PMID: 34382628 DOI: 10.1039/d1an01015h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With the rapid development of various industries, cyanide (CN-) and hypochlorite (ClO-) have a tremendously adverse effect on the health of humans and animals. In this study, a fluorescent probe HHTB based on a benzaldehyde-indole fused chromophore was designed to detect cyanide and hypochlorite simultaneously. The synthesized probe was found to have strong anti-interference ability. In addition, the designed probe could respond rapidly to ClO- in just 80 s, while the color changed visibly from red to colorless. Moreover, the response time to CN- was longer (about 160 s), with the apparent color change from red to light red. The ratiometric and colorimetric absorbance variation of HHTB was due to the nucleophilic attack of CN- on the indole C[double bond, length as m-dash]N functional group and the strong oxidization of ClO- which destroyed the C[double bond, length as m-dash]C bonds and the conjugation systems. Furthermore, the probe HHTB responding to ClO- and CN- presented high sensitivity, as the calculated detection limits were 1.18 nM and 1.40 nM, respectively. The probe was also found to have low biological toxicity and was used in living cells successfully. Therefore, it has good application prospect in the field of cell imaging and biomedicine. The binding mechanism of HHTB-CN and the reaction mechanism of HHTB and ClO- were further elucidated by a series of experiments.
Collapse
Affiliation(s)
- Kexin Zhang
- Molecular Metabolism Center, Nanjing University of Science and Technology, Nanjing, 210094, China and School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Hao Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Cheng Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xinrang Zhai
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xiangpeng Lin
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Hao Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Ruru Gao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Wei Dong
- Molecular Metabolism Center, Nanjing University of Science and Technology, Nanjing, 210094, China and School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
22
|
Chao J, Wang Z, Zhang Y, Huo F, Yin C. A near-infrared fluorescent probe targeting mitochondria for sulfite detection and its application in food and biology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3535-3542. [PMID: 34280954 DOI: 10.1039/d1ay00918d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sulfur dioxide (SO2) is the main air pollutant in the environment, causing great harm to human health. Abnormal SO2 levels are usually associated with some respiratory diseases, cardiovascular diseases, and neurological disorders (even brain cancer). Therefore, monitoring SO2 levels is helpful to better understand its special physiological and pathological role. Although many fluorescent probes for SO2 have been reported, many of them were not ideal for in vivo imaging due to the short emission wavelength. In this work, a near-infrared fluorescent probe NIR-BN with emission wavelength of 680 nm was constructed by conjugating the benzopyrylium moiety and 6-hydroxy-2-naphthaldehyde. NIR-BN had high selectivity and rapidity for SO2 detection. In addition, the detection limit of NIR-BN was relatively low, which can be used for the determination of sulfite in different sugar samples with high accuracy. Of course, due to the excellent spectral and structural properties of NIR-BN, we have applied NIR-BN to the detection of SO2 in biological systems.
Collapse
Affiliation(s)
- Jianbin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China.
| | - Zhuo Wang
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China. and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
23
|
Li F, Tang Y, Guo R, Lin W. Development of an Ultrasensitive Mitochondria-Targeted Near Infrared Fluorescent Probe for SO2 and Its Imaging in Living Cells and Mice. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|