1
|
Guk K, Yi S, Kim H, Kim S, Lim EK, Kang T, Jung J. PoreGlow: A split green fluorescent protein-based system for rapid detection of Listeria monocytogenes. Food Chem 2024; 438:138043. [PMID: 37992606 DOI: 10.1016/j.foodchem.2023.138043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Listeria monocytogenes, a severe foodborne pathogen causing severe diseases underscores the necessity for the development of a detection system with high specificity, sensitivity and utility. Herein, the PoreGlow system, based on split green fluorescent protein (GFP), was developed and assessed for the fast and accurate detection of L. monocytogenes. Split GFP-encapsulated liposomes were optimized for targeted analysis. The system utilizes listeriolysin O (LLO), a toxin produced by L. monocytogenes that enlarges the pores split GFP-encapsulated liposomes, to detect L. monocytogenes by measuring the fluorescent signal generated when the encapsulated GFP is released and reacted with the externally added fragment of the split GFP. The system exhibited a limit of detection of 0.17 μg/ml for LLO toxin and 10 CFU/mL for L. monocytogenes with high sensitivity and specificity and no cross-reactivity with other bacteria. The PoreGlow system is practical, rapid, and does not require sample pre-treatment, making it a promising tool for the early detection of L. monocytogenes in food products, which is crucial for preventing outbreaks and protecting public health.
Collapse
Affiliation(s)
- Kyeonghye Guk
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Soyeon Yi
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Suhyeon Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Chen Z, Ma J, Sun DW. Aggregates-based fluorescence sensing technology for food hazard detection: Principles, improvement strategies, and applications. Compr Rev Food Sci Food Saf 2023; 22:2977-3010. [PMID: 37199444 DOI: 10.1111/1541-4337.13169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
Aggregates often exhibit modified or completely new properties compared with their molecular elements, making them an extraordinarily advantageous form of materials. The fluorescence signal change characteristics resulting from molecular aggregation endow aggregates with high sensitivity and broad applicability. In molecular aggregates, the photoluminescence properties at the molecular level can be annihilated or elevated, leading to aggregation-causing quenching (ACQ) or aggregation-induced emission (AIE) effects. This change in photoluminescence properties can be intelligently introduced in food hazard detection. Recognition units can combine with the aggregate-based sensor by joining the aggregation process, endowing the sensor with the high specificity of analytes (such as mycotoxins, pathogens, and complex organic molecules). In this review, aggregation mechanisms, structural characteristics of fluorescent materials (including ACQ/AIE-activated), and their applications in food hazard detection (with/without recognition units) are summarized. Because the design of aggregate-based sensors may be influenced by the properties of their components, the sensing mechanisms of different fluorescent materials were described separately. Details of fluorescent materials, including conventional organic dyes, carbon nanomaterials, quantum dots, polymers and polymer-based nanostructures and metal nanoclusters, and recognition units, such as aptamer, antibody, molecular imprinting, and host-guest recognition, are discussed. In addition, future trends of developing aggregate-based fluorescence sensing technology in monitoring food hazards are also proposed.
Collapse
Affiliation(s)
- Zhuoyun Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Servarayan K, Krishnamoorthy G, Sundaram E, Karuppusamy M, Murugan M, Piraman S, Vasantha VS. Optical Immunosensor for the Detection of Listeria monocytogenes in Food Matrixes. ACS OMEGA 2023; 8:15979-15989. [PMID: 37179640 PMCID: PMC10173425 DOI: 10.1021/acsomega.2c07848] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
In this paper, simple imine-based organic fluorophore 4-amino-3-(anthracene-9 yl methyleneamino) phenyl (phenyl) methanone (APM) has been synthesized via a greener approach and the same was used to construct a fluorescent immunoassay for the detection of Listeria monocytogenes (LM). A monoclonal antibody of LM was tagged with APM via the conjugation of the amine group in APM and the acid group of anti-LM through EDC/NHS coupling. The designed immunoassay was optimized for the specific detection of LM in the presence of other interfering pathogens based on the aggregation-induced emission mechanism and the formation of aggregates and their morphology was confirmed with the help of scanning electron microscopy. Density functional theory studies were done to further support the sensing mechanism-based changes in the energy level distribution. All photophysical parameters were measured by using fluorescence spectroscopy techniques. Specific and competitive recognition of LM was done in the presence of other relevant pathogens. The immunoassay shows a linear appreciable range from 1.6 × 106-2.7024 × 108 cfu/mL using the standard plate count method. The LOD has been calculated from the linear equation and the value is found as 3.2 cfu/mL, and this is the lowest LOD value reported for the detection of LM so far. The practical applications of the immunoassay were demonstrated in various food samples, and their accuracy obtained was highly comparable with the standard existing ELISA method.
Collapse
Affiliation(s)
- Karthika
Lakshmi Servarayan
- Department
of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Govindan Krishnamoorthy
- Translational
Research Platform for Veterinary Biologicals, Central University Laboratory, TANUVAS, Chennai 600051, Tamil Nadu, India
| | - Ellairaja Sundaram
- Department
of Chemistry, Vivekananda College, Tiruvedakam-West, Madurai 625234, India
| | - Masiyappan Karuppusamy
- Centre
for High Computing, CSIR-Central Leather
Research Institute, Adyar, Chennai 600020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Marudhamuthu Murugan
- Department
of Microbial Technology, Madurai Kamaraj
University, Madurai 625021, India
| | - Shakkthivel Piraman
- Department
of Nanoscience and Technology, Alagappa
University, Karaikudi-630003, India
| | - Vairathevar Sivasamy Vasantha
- Department
of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
4
|
Dou L, Li Q, Bai Y, Kou J, Wang X, Zhao Q, Yu X, Wen K, Wang Z, Shen J, Yu W. How Exactly Do AIEgens Target Bacteria? Leveraging the Targeting Mechanism to Design Sensitive Fluorescent Immunosensors. Anal Chem 2023; 95:5223-5231. [PMID: 36920169 DOI: 10.1021/acs.analchem.2c04983] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) are promising candidates for bacterial imaging and detection because they can "Light-Up" pathogenic bacteria without complicated labeling or washing steps. However, there have been few in-depth analyses of the intrinsic mechanism underlying their utility as fluorescence probes for targeting bacteria. Therefore, using large-scale molecular dynamics simulations, we investigated the mechanism of their bacterial "Light-Up" behavior with N,N-diphenyl-4-(7-(pyridin-4-yl)benzo[c][1,2,5]thiadiazol-4-yl) aniline functionalized with 1-bromoethane (TBP-1). We propose that the triphenylamine motif of TBP-1, rather than the positively charged pyridine group, first contacts the cell membrane. After TBP-1 completely inserts into the cell membrane, the hydrophobic triphenylamine motif localizes in the hydrophobic core of the cell membrane, restricting the molecular variation of TBP-1, which induces the fluorescent "turn-on" and bacterial "Light-Up." On this basis, we established a heterogeneous lateral flow immunoassay (LFIA) for the detection of foodborne pathogens. The LFIA system showed improved sensitivity with a limit of detection as low as 103 CFU mL-1 and strong specificity. Our protocol opened an effective shortcut to the design of more efficient AIEgens and novel AIEgens-based immunoassays.
Collapse
Affiliation(s)
- Leina Dou
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yuchen Bai
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Jiaqian Kou
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Xiaonan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Qian Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Xuezhi Yu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| |
Collapse
|
5
|
Chen S, Du K, Wang S, Liang C, Shang Y, Xie X, Tang G, Li J, Wang B, Yu XA, Chang Y. A Non-Immunized and BSA-Template Aggregation-Induced Emission Sensor for Noninvasive Detection of Cystatin C in the Clinical Diagnosis of Diabetes Nephropathy. ACS Sens 2023; 8:1431-1439. [PMID: 36877474 DOI: 10.1021/acssensors.2c02122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Diabetes nephropathy (DN) is one of the main causes of death in patients with diabetes. Cystatin C (Cys C) is a reliable indicator of glomerular filtration function. Therefore, it is urgent and meaningful to obtain early warning of DN by noninvasive measurement of Cys C. In this investigation, a novel fluorescence sensor (BSA-AIEgen sensor) was synthesized by cross-linking the aggregation-induced emission (AIE) characteristics of 2-(4-bromophenyl)-3-(4-(4-(diphenylamino) styryl) phenyl) fumaronitrile (TPABDFN) and bovine serum albumin (BSA), which exhibited the "On" state owing to the restriction of the intramolecular motions (RIM) phenomenon of TPABDFN. Intriguingly, a decrease in fluorescence of BSA-AIEgen sensors could be found owing to BSA on the surface of BSA-AIEgen sensor hydrolyzed by papain, but a reverse phenomenon emerged with the increase of Cys C content as the inhibitor of papain. Hence, Cys C was successfully detected by employing the fluorescent differential display and the linear range was from 12.5 ng/mL to 800 ng/mL (R2 = 0.994) with the limit of detection (LOD) of 7.10 ng/mL (S/N = 3). Further, the developed BSA-AIEgen sensor successfully differentiates patients with diabetes nephropathy from volunteers with the advantages of high specificity, low cost, and simple operation. Accordingly, it is expected to become a non-immunized method to monitor Cys C for the early warning, noninvasive diagnosis, and drug efficacy evaluation of diabetes nephropathy.
Collapse
Affiliation(s)
- Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Shuangqi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xiaoyuan Xie
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Ge Tang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
6
|
Zhou C, Ma J, Sun DW. Grouping illuminants by aggregation-induced emission (AIE) mechanisms for designing sensing platforms for food quality and safety inspection. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
7
|
Abstract
Luminogens with aggregation-induced emission (AIEgens) properties have numerous broad applications in fields of chemical and biological analyses due to their exceptional photostability, excellent signal reliability, high quantum yield, and large Stokes' shift. In particular, AIEgens also bring new blood for immunoassay. Since publication of the first 2004 paper, AIEgens-based immunoassays have received significant attention because of their high sensitivity, specificity, accuracy, and reliability. However, until now, there have been no comprehensive literature reviews focused on the evolving field of AIEgens-based immunoassays. Thus, we have extensively reviewed AIEgens-based immunoassays from their basic working principles to specific applications. We focus on several fundamental elements of AIEgens-based immunoassays, including the typical structures of AIEgens, emission mechanism of AIEgens probes, function of AIEgens in immunoassays, and platform of AIEgens-based immunoassays. Then, the representative applications of AIEgens-based immunoassays in food safety, medical diagnostics, and environmental monitoring are explored. Thus, proposals on how to further improve the AIEgens-based immunoassay performance are also discussed, as well as future challenges and perspectives, aiming to provide brief and valid guidelines for choosing suitable AIEgens-based immunoassays according to specific application requirements.
Collapse
Affiliation(s)
- Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
8
|
Xu Q, Xie G, Shi Q, Liu J, Zhou B, Tong P, Aguilar ZP, Xu H. The dual nucleic acid amplification with dynamic light scattering strategy for ultrasensitive detection of Salmonella in milk. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Shen Y, Gao X, Zhang Y, Chen H, Ye Y, Wu Y. Polydopamine-based nanozyme with dual-recognition strategy-driven fluorescence-colorimetric dual-mode platform for Listeria monocytogenes detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129582. [PMID: 35863223 DOI: 10.1016/j.jhazmat.2022.129582] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Development of a simple and efficient dual-mode analytical technique with the built-in cross reference correction feature is benefit to achieve the highly accurate detection of the target pollutants and avoid the false-positive outputs in environmental media. Here, we synthesized a Fe-doped polydopamine (Fe@PDA)-based nanozyme with prominent peroxide-mimetic enzyme activity and high fluorescence emission ability. On this basis, we designed a dual-recognition strategy-driven fluorescence-colorimetric dual-mode detection platform, consisting of Listeria monocytogenes (L. monocytogenes) recognition aptamer-modified Fe@PDA (apt/Fe@PDA) and vancomycin-functionalized Fe3O4 (van/Fe3O4), for L. monocytogenes. Owing to van/Fe3O4-powered magnetic separation, there was a L. monocytogenes concentration-dependent fluorescence enhancement of apt/Fe@PDA for performing fluorescence assay in the precipitate. In this case, the prominent peroxide-mimetic enzyme activity of the residual apt/Fe@PDA in the precipitation could catalyze H2O2 to further oxidate colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxTMB, which displayed a L. monocytogenes concentration-dependent absorbance enhancement for carrying out colorimetric assay as well. As a result, a fluorescence-colorimetric dual-mode analytical platform was proposed to successfully detect the residual L. monocytogenes in real environmental media with acceptable results. This work showed the great prospects by integrating dual-recognition strategy into fluorescence nanozyme to develop efficient and reliable dual-mode analytical platforms for safeguarding environmental health.
Collapse
Affiliation(s)
- Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Xiang Gao
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yiyin Zhang
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Huanhuan Chen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yingwang Ye
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China.
| |
Collapse
|
10
|
Cui L, Chang W, Wei R, Chen W, Tang Y, Yue X. Aptamer and Ru(bpy)
3
2+
‐
AuNPs
‐based electrochemiluminescence biosensor for accurate detecting
Listeria monocytogenes
. J Food Saf 2022. [DOI: 10.1111/jfs.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liwei Cui
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Weidan Chang
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Rong Wei
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Weifeng Chen
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Yuanlong Tang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China Institute of Microbiology, Guangdong Academy of Sciences Guangzhou China
| | - Xiaoyu Yue
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| |
Collapse
|
11
|
Li Y, Chen M, Fan X, Peng J, Pan L, Tu K, Chen Y. Sandwich fluorometric method for dual-role recognition of Listeria monocytogenes based on antibiotic-affinity strategy and fluorescence quenching effect. Anal Chim Acta 2022; 1221:340085. [DOI: 10.1016/j.aca.2022.340085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/01/2022]
|
12
|
Novel Approaches to Environmental Monitoring and Control of Listeria monocytogenes in Food Production Facilities. Foods 2022; 11:foods11121760. [PMID: 35741961 PMCID: PMC9222551 DOI: 10.3390/foods11121760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a serious public health hazard responsible for the foodborne illness listeriosis. L. monocytogenes is ubiquitous in nature and can become established in food production facilities, resulting in the contamination of a variety of food products, especially ready-to-eat foods. Effective and risk-based environmental monitoring programs and control strategies are essential to eliminate L. monocytogenes in food production environments. Key elements of the environmental monitoring program include (i) identifying the sources and prevalence of L. monocytogenes in the production environment, (ii) verifying the effectiveness of control measures to eliminate L. monocytogenes, and (iii) identifying the areas and activities to improve control. The design and implementation of the environmental monitoring program are complex, and several different approaches have emerged for sampling and detecting Listeria monocytogenes in food facilities. Traditional detection methods involve culture methods, followed by confirmation methods based on phenotypic, biochemical, and immunological characterization. These methods are laborious and time-consuming as they require at least 2 to 3 days to obtain results. Consequently, several novel detection approaches are gaining importance due to their rapidness, sensitivity, specificity, and high throughput. This paper comprehensively reviews environmental monitoring programs and novel approaches for detection based on molecular methods, immunological methods, biosensors, spectroscopic methods, microfluidic systems, and phage-based methods. Consumers have now become more interested in buying food products that are minimally processed, free of additives, shelf-stable, and have a better nutritional and sensory value. As a result, several novel control strategies have received much attention for their less adverse impact on the organoleptic properties of food and improved consumer acceptability. This paper reviews recent developments in control strategies by categorizing them into thermal, non-thermal, biocontrol, natural, and chemical methods, emphasizing the hurdle concept that involves a combination of different strategies to show synergistic impact to control L. monocytogenes in food production environments.
Collapse
|
13
|
Du J, Liu J, Liu K, Zhao D, Sagratini G, Tao J, Bai Y. Development of a fluorescent test strip sensor based on surface positively-charged magnetic bead separation for the detection of Listeria monocytogenes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2188-2194. [PMID: 35611990 DOI: 10.1039/d2ay00384h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Listeria monocytogenes is one of the major foodborne pathogens, which may cause serious food safety problems and illnesses in humans and animals. Consequently, sensitive, fast and reliable detection methods, as well as effective sample preparation methods are in great demand. In this study, a magnetic separation method based on a aptamer functionalized positively-charged magnetic beads (Fe3O4@aptamer) was established and a fluorescent test strip sensor was constructed for the rapid, sensitive and specific detection of Listeria monocytogenes. Benefiting from the dual recognition and signal amplification process of Fe3O4@aptamer enrichment and the polymerase chain reaction of the hly gene, the fluorescent strip sensor for the detection of Listeria monocytogenes was determined to be reliable and sensitive, with a linear curve obtained in the range of 1.0 × 102 to 1.9 × 108 CFU mL-1, and a detection limit of 1.0 × 102 CFU mL-1. The detection was achieved in 3 h without culture enrichment. Furthermore, the developed method was successfully applied for the detection of Listeria monocytogenes in pork tenderloin, with the recoveries ranging from 91.1% to 97.1%, and a coefficient of variation of less than 23.4%, revealing the feasible and reliable application of this method in practical samples. The proposed fluorescent strip sensor is rapid, sensitive and specific, giving it great application prospects for use in the field of pathogenic bacterium detection.
Collapse
Affiliation(s)
- Juan Du
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Jialei Liu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Kai Liu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Dianbo Zhao
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, via Madonna delle Carceri 9/B, Camerino, 62032, Italy
| | - Jing Tao
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- School of Pharmacy, University of Camerino, via Madonna delle Carceri 9/B, Camerino, 62032, Italy
| | - Yanhong Bai
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| |
Collapse
|
14
|
Shi X, Sun H, Li H, Wei S, Jin J, Zhao C, Wang J, Li H. Preparation of IgY Oriented Conjugated Fe3O4 MNPs as Immunomagnetic Nanoprobe for Increasing Enrichment Efficiency of Staphylococcus aureus Based on Adjusting the pH of the Solution System. Front Public Health 2022; 10:865828. [PMID: 35669739 PMCID: PMC9163370 DOI: 10.3389/fpubh.2022.865828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Immunomagnetic separation based on Fe3O4 magnetic nanoparticles (MNPs) has been widely performed in sample pretreatment. The oriented conjugation strategy can achieve a better capture effect than the N-(3-dimethylamlnopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) /N-hydroxysuccinimide (NHS) method. However, immunoglobulin yolk (IgY) cannot be oriented through an SPA strategy like immunoglobulin G (IgG). In this article, an oriented conjugation nanoprobe was prepared for the enrichment of bacteria based on pH adjusting. The main factors affecting the enrichment efficiency were studied, such as the pH of the buffer system, the concentration of IgY, the concentration of nanoprobe, and the enrichment time. Under the optimal conditions, the enrichment efficiency toward target bacteria could reach 92.8%. Combined with PCR, the limit of detection (LOD) was found to be 103 CFU/ml, which was lower than the PCR only. In conclusion, we provided a new protocol for the oriented conjugation of IgY and high sensitivity detection with simple pretreatment.
Collapse
Affiliation(s)
- Xuening Shi
- School of Public Health, Jilin University, Changchun, China
| | - Hongbin Sun
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hang Li
- School of Public Health, Jilin University, Changchun, China
| | - Shengnan Wei
- School of Public Health, Jilin University, Changchun, China
| | - Jin Jin
- School of Public Health, Jilin University, Changchun, China
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, China
| | - Juan Wang
- School of Public Health, Jilin University, Changchun, China
- *Correspondence: Juan Wang
| | - Hui Li
- School of Public Health, Jilin University, Changchun, China
- Hui Li
| |
Collapse
|
15
|
Liu S, Xu Y, Jiang X, Tan H, Ying B. Translation of aptamers toward clinical diagnosis and commercialization. Biosens Bioelectron 2022; 208:114168. [PMID: 35364525 DOI: 10.1016/j.bios.2022.114168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
The dominance of antibodies in diagnostics has gradually changed following the discovery of aptamers in the early 1990s. Aptamers offer inherent advantages over traditional antibodies, including higher specificity, higher affinity, smaller size, greater stability, ease of manufacture, and low immunogenicity, rendering them the best candidates for point-of-care testing (POCT). In the past 20 years, the research community and pharmaceutical companies have made great efforts to promote the development of aptamer technology. Macugen® (pegaptanib) was the first aptamer drug approved by the US Food and Drug Administration (FDA), and various aptamer-based diagnostics show great promise in preclinical research and clinical trials. In this review, we introduce recent literature, ongoing clinical trials, commercial reagents of aptamer-based diagnostics, discuss the FDA regulatory mechanisms, and highlight the prospects and challenges in translating these studies into viable clinical diagnostic tools.
Collapse
Affiliation(s)
- Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Yixin Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, 610041, China
| | - Xin Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, 610041, China
| | - Hong Tan
- Department of General Surgery, Chengdu Integrated TCM&Western Medicine Hospital (Chengdu First People's Hospital), Chengdu, 610041, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, 610041, China.
| |
Collapse
|
16
|
Research progress of whole-cell-SELEX selection and the application of cell-targeting aptamer. Mol Biol Rep 2022; 49:7979-7993. [PMID: 35274201 DOI: 10.1007/s11033-022-07317-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Aptamers refer to the artificially synthesized nucleic acid sequences (DNA/RNA) that can bind to a wide range of targets with high affinity and specificity, which are generally generated from systematic evolution of ligands by exponential enrichment (SELEX). As a novel method of aptamers screening, whole-cell-SELEX (WC-SELEX) has gained more and more attention in many fields such as biomedicine, analytical chemistry, and molecular diagnostics due to its ability to screen multiple potential aptamers without knowing the detailed structural information of target molecules. METHODS AND RESULTS In recent years, with the deepening of research on application of aptamers, the traditional WC-SELEX cannot meet the practical application because of long experimental period, complicated operation process and low specificity, etc. Therefore, the development of more efficient methods for screening aptamer is always on the road. This paper summarizes the current research status of WC-SELEX for bacteria, parasites and animal cells, and reviews the latest advances of WC-SELEX techniques that are dependent on novel instruments, materials and microelectronics, including fluorescence-activated cell sorting-assisted SELEX, three-dimensional assisted WC-SELEX, and microfluidic chip system-assisted WC-SELEX. In addition, the application of aptamers targeting cells was discussed. CONCLUSION Taken together, this review is aimed at providing a reference for WC-SELEX selection and application of aptamer targeting cells.
Collapse
|
17
|
Oliveira DA, Althawab S, McLamore ES, Gomes CL. One-Step Fabrication of Stimuli-Responsive Chitosan-Platinum Brushes for Listeria monocytogenes Detection. BIOSENSORS 2021; 11:bios11120511. [PMID: 34940268 PMCID: PMC8699315 DOI: 10.3390/bios11120511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Bacterial contamination in food-processing facilities is a critical issue that leads to outbreaks compromising the integrity of the food supply and public health. We developed a label-free and rapid electrochemical biosensor for Listeria monocytogenes detection using a new one-step simultaneous sonoelectrodeposition of platinum and chitosan (CHI/Pt) to create a biomimetic nanostructure that actuates under pH changes. The XPS analysis shows the effective co-deposition of chitosan and platinum on the electrode surface. This deposition was optimized to enhance the electroactive surface area by 11 times compared with a bare platinum-iridium electrode (p < 0.05). Electrochemical behavior during chitosan actuation (pH-stimulated osmotic swelling) was characterized with three different redox probes (positive, neutral, and negative charge) above and below the isoelectric point of chitosan. These results showed that using a negatively charged redox probe led to the highest electroactive surface area, corroborating previous studies of stimulus-response polymers on metal electrodes. Following this material characterization, CHI/Pt brushes were functionalized with aptamers selective for L. monocytogenes capture. These aptasensors were functional at concentrations up to 106 CFU/mL with no preconcentration nor extraneous reagent addition. Selectivity was assessed in the presence of other Gram-positive bacteria (Staphylococcus aureus) and with a food product (chicken broth). Actuation led to improved L. monocytogenes detection with a low limit of detection (33 CFU/10 mL in chicken broth). The aptasensor developed herein offers a simple fabrication procedure with only one-step deposition followed by functionalization and rapid L. monocytogenes detection, with 15 min bacteria capture and 2 min sensing.
Collapse
Affiliation(s)
- Daniela A. Oliveira
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA; (D.A.O.); (S.A.)
| | - Suleiman Althawab
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA; (D.A.O.); (S.A.)
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Eric S. McLamore
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Carmen L. Gomes
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA; (D.A.O.); (S.A.)
- Department of Agricultural Sciences, Clemson University, Clemson, SC 26631, USA
| |
Collapse
|
18
|
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021; 94:193-224. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France.,Université Paris-Saclay, 91190 Saint-Aubin, France.,Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
19
|
Targeted design of green carbon dot-CA-125 aptamer conjugate for the fluorescence imaging of ovarian cancer cell. Cell Biochem Biophys 2021; 80:75-88. [PMID: 34716880 DOI: 10.1007/s12013-021-01034-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Aptamer-Carbon Dot (CD) bioconjugation is an attractive target-tracking strategy in detecting cell surface antigens. This study describes an effective imaging paradigm for CA-125 antigen imaging. Our experience encompasses green CD synthesis and characterization, CD-capture probe conjugation through covalent bonding, the hybridization linkage of CD-probe to aptamer and their coupling confirmation, and fluorescent targeted imaging of ovarian cancer cells. As a result, the synthesized CDs from lemon extract by hydrothermal reaction show average size of 2 nm with maximum fluorescence intensity at excitation/emission 360/450 nm. CD-probe construction was provided by functional group interactions of CD and probe via EDC/NHS chemistry. The linkage of CD-probe to aptamer was conducted by Watson-Crick nucleotide pairing. The assessment of CD-probe and CD-probe-aptamer fabrication was validated by the increase in surface roughness through AFM analysis, the diminish of fluorescence intensity of CD after bioconjugation, and particle size growth of the construct. Conjugates with negligible cytotoxicity, appropriate zeta potential, and good aptamer release were applied in cellular imaging. This targeted diagnosis method was employed the four reported DNA aptamers toward fluorescence intensity. The DOV-3 aptamer showed more qualified detection over other aptamer conjugates during fluorescent microscopy analysis. In conclusion, the CD-probe-aptamer conjugate applications as toxic-free method can open new horizons in fluorescent nano-imaging in the field of targeted cancer cell diagnosis.
Collapse
|
20
|
Xu Y, Jiang X, Zhou Y, Ma M, Wang M, Ying B. Systematic Evolution of Ligands by Exponential Enrichment Technologies and Aptamer-Based Applications: Recent Progress and Challenges in Precision Medicine of Infectious Diseases. Front Bioeng Biotechnol 2021; 9:704077. [PMID: 34447741 PMCID: PMC8383106 DOI: 10.3389/fbioe.2021.704077] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023] Open
Abstract
Infectious diseases are considered as a pressing challenge to global public health. Accurate and rapid diagnostics tools for early recognition of the pathogen, as well as individualized precision therapy are essential for controlling the spread of infectious diseases. Aptamers, which were screened by systematic evolution of ligands by exponential enrichment (SELEX), can bind to targets with high affinity and specificity so that have exciting potential in both diagnosis and treatment of infectious diseases. In this review, we provide a comprehensive overview of the latest development of SELEX technology and focus on the applications of aptamer-based technologies in infectious diseases, such as targeted drug-delivery, treatments and biosensors for diagnosing. The challenges and the future development in this field of clinical application will also be discussed.
Collapse
Affiliation(s)
- Yixin Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Ma
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,The First People's Hospital of Shuangliu District, Chengdu/West China (Airport)Hospital Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Ji X, Wu S, Song D, Chen S, Chen Q, Gao E, Xu J, Zhu X, Zhu M. A water‐stable luminescent sensor based on Cd
2+
coordination polymer for detecting nitroimidazole antibiotics in water. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoxi Ji
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Shuangyan Wu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Dongxue Song
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Shiyu Chen
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Qing Chen
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Enjun Gao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan China
| | - Jin Xu
- R & D registration department Jiangsu Huayang Pharmaceutical Co., Ltd Suqian China
| | - Xiaopeng Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
- Key Laboratory of Resource Chemical Technology and Materials, (Ministry of Education) Shenyang University Chemical Technology Shenyang China
| |
Collapse
|
22
|
Li Y, Wu L, Wang Z, Tu K, Pan L, Chen Y. A magnetic relaxation DNA biosensor for rapid detection of Listeria monocytogenes using phosphatase-mediated Mn(VII)/Mn(II) conversion. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Bagheri Pebdeni A, Mousavizadegan M, Hosseini M. Sensitive detection of S. Aureus using aptamer- and vancomycin -copper nanoclusters as dual recognition strategy. Food Chem 2021; 361:130137. [PMID: 34051601 DOI: 10.1016/j.foodchem.2021.130137] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/05/2023]
Abstract
The proposed aptamer- and antibiotic-based dual detection sensor, combines copper nanoclusters (CuNCs) as an effective approach for the recognition and quantification of Staphylococcus aureus (S. aureus) as a pathogenic bacteria. A facile method for CuNCs based on vancomycin as the template using a fluorescence platform was proposed for the recognition of the S. aureus whole cells via antibiotic and aptamer. Using dual receptor functionalized CuNCs linked to vancomycin and a specific aptamer and during aggregation induce emission process enhanced fluorescence signal linearly with S. aureus concentrations between 102-108 CFU/mL, and the detection limit was 80 CFU/mL after 45 min as the optimum incubation time. Non-target bacteria generated negative results, proving the high specificity of the presented sensor. This strategy showed recoveries ranging 86%-98% in milk as real sample and can be used for the development of universal detection platforms for efficient and specific S. aureus detection with great potential applications for monitoring pathogenic bacteria.
Collapse
Affiliation(s)
- Azam Bagheri Pebdeni
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Maryam Mousavizadegan
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran; Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Zhang W, He H, Zhu L, Liu G, Wu L. Food Safety in Post-COVID-19 Pandemic: Challenges and Countermeasures. BIOSENSORS 2021; 11:71. [PMID: 33806704 PMCID: PMC8000942 DOI: 10.3390/bios11030071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Understanding food safety hazard risks is essential to avoid potential negative heath impacts in the food supply chain in a post-COVID-19 pandemic era. Development of strategies for virus direction in foods plays an important role in food safety and verification. Early warning, tracing, and detection should be implemented as an integrated system in order to mitigate thecoronavirus disease 2019 (COVID-19) outbreak, in which the detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is critical as it not only concerns screening of populations but also monitoring of possible contaminated sources such as the food supply chain. In this review, we point out the consequences in different aspects of our daily life in the post-COVID-19 pandemic from the perspective of the food supply chain and the food industry. We summarize the possible transmission routes of COVID-19 in the food supply chain before exploring the development of corresponding detection tools of SARS-CoV-2. Accordingly, we compare different detection methods for the virus in foods, including different pretreatments of food matrices in the virus detection. Finally, the future perspectives are proposed.
Collapse
Affiliation(s)
- Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Huiyu He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.H.); (L.Z.)
| | - Lin Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.H.); (L.Z.)
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Long Wu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, College of Food Science and Engineering, Hainan University, Haikou 570228, China;
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|