1
|
Fan X, Wu J, Zhang T, Liu J. Electrochemical/Electrochemiluminescence Sensors Based on Vertically-Ordered Mesoporous Silica Films for Biomedical Analytical Applications. Chembiochem 2024; 25:e202400320. [PMID: 38874487 DOI: 10.1002/cbic.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Vertically-ordered mesoporous silica films (VMSF, also named as silica isoporous membranes) have shown tremendous potential in the field of electroanalytical sensors due to their unique features in terms of controllable and ultrasmall nanopores, high molecular selectivity and permeability, and mechanical stability. This review will present the recent progress on the biomedical analytical applications of VMSF, focusing on the small biomolecules, diseases-related biomarkers, drugs and cancer cells. Finally, conclusions with recent developments and future perspective of VMSF in the relevant fields will be envisioned.
Collapse
Affiliation(s)
- Xue Fan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiayi Wu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tongtong Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Jiyang Liu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
2
|
Tananaiko O, Walcarius A. Composite Silica-Based Films as Platforms for Electrochemical Sensors. CHEM REC 2024; 24:e202300194. [PMID: 37737456 DOI: 10.1002/tcr.202300194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Sol-gel-derived silica thin films generated onto electrode surfaces in the form of organic-inorganic hybrid coatings or other composite layers have found tremendous interest for being used as platforms for the development of electrochemical sensors and biosensors. After a brief description of the strategies applied to prepare such materials, and their interest as electrode modifier, this review will summarize the major advances made so far with composite silica-based films in electroanalysis. It will primarily focus on electrochemical sensors involving both non-ordered composite films and vertically oriented mesoporous membranes, the biosensors exploiting the concept of sol-gel bioencapsulation on electrode, the spectroelectrochemical sensors, and some others.
Collapse
Affiliation(s)
- Oksana Tananaiko
- Department of Analytical Chemistry, National Taras Shevchenko University of Kyiv, Volodymyrska Str., 64, Kyiv, Ukraine, 01601
| | | |
Collapse
|
3
|
Chen Y, Tang Y, Li P, Wang Y, Zhuang Y, Sun S, Wang D, Wei W. A core-molecule-shell Au@PATP@Ag nanorod for nicotine detection based on surface-enhanced Raman scattering technology. Anal Chim Acta 2023; 1278:341739. [PMID: 37709471 DOI: 10.1016/j.aca.2023.341739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Nicotine is an addictive substance often found in tobacco and cigarette smoke and excessive exposure to it can cause various diseases. Herein, core-molecule-shell gold/4-aminothiophenol/silver nanorods (Au@PATP@Ag NRs) were prepared for quantitative detection of nicotine by using surface-enhanced Raman scattering (SERS) technology. The obtained Au@PATP@Ag NRs showed an outstanding SERS effect due to the plasticity of their morphology and the bimetallic synergistic effect between the excellent stability of Au and the highly enhanced effect of Ag. The Au@PATP@Ag NRs substrate exhibited an extremely high enhancement factor (EF) of 2.17 × 107. In addition, in-situ synthesized PATP was used as an internal standard to correct signal fluctuation and improve the reliability of quantitative nicotine detection. A wide linear dynamic range from 10-8 to 10-3 M was obtained and an ultra-low limit of detection (LOD) was about 3.12 × 10-9 M, which was superior to most of previously reported methods. This work has also been used for determining nicotine content in cigarettes and simulated environmental tobacco smoke by using a portable device. These results indicated that the developed SERS method had many potential applications in the quantitative determination of nicotine in real tobacco samples.
Collapse
Affiliation(s)
- Yuhui Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Yunfei Tang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Peng Li
- Beijing Life Science Academy, Yingcai South 1st Street, Changping District, Beijing, China
| | - Yong Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China; Institute of Forensic Science and Technology of Nanjing Public Security Bureau, Nanjing, 210001, China
| | - Yurong Zhuang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Shihao Sun
- Beijing Life Science Academy, Yingcai South 1st Street, Changping District, Beijing, China
| | - Dingzhong Wang
- Beijing Life Science Academy, Yingcai South 1st Street, Changping District, Beijing, China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
4
|
Chien JY, Gu YC, Liu CH, Tsai HM, Lee CN, Yang AC, Huang J, Wang YL, Wang JK, Lin CH. Rapid detection of nicotine and benzoic acid in e-liquids with surface-enhanced Raman scattering and artificial intelligence-assisted spectrum interpretation. J Pharm Biomed Anal 2023; 233:115456. [PMID: 37285659 DOI: 10.1016/j.jpba.2023.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/07/2023] [Accepted: 05/13/2023] [Indexed: 06/09/2023]
Abstract
Electronic cigarettes have rapidly gained acceptance recently. Nicotine-containing electronic cigarette liquids (e-liquids) are prohibited in some countries, but are permitted and simply available online in others. A rapid detection method is therefore required for on-site inspection or screening of a large amount of samples. Our previous study demonstrated a surface-enhanced Raman scattering (SERS)-based approach to identify nicotine-containing e-liquids; without any pre-treatment, e-liquid can be directly tested on our solid-phase SERS substrates, made of silver nanoparticle arrays embedded in anodic aluminium oxide nanochannels (Ag/AAO). However, this approach required manual determination of spectral signatures and negative samples should be validated in the second round detection. Here, after examining 406 commercial e-liquids, we refined this approach by developing artificial intelligence (AI)-assisted spectrum interpretations. We also found that nicotine and benzoic acid can be simultaneously detected in our platform. This increased test sensitivity because benzoic acid is usually used in nicotine salts. Around 64% of nicotine-positive samples in this study showed both signatures. Using either cutoffs of nicotine and benzoic acid peak intensities or a machine learning model based on the CatBoost algorithm, over 90% of tested samples can be correctly discriminated with only one round of SERS measurement. False negative and false positive rates were 2.5-4.4% and 4.4-8.9%, respectively, depending on the interpretation method and thresholds applied. The new approach takes only 1 microliter of sample and can be performed in 1-2 min, suitable for on-site inspection with portable Raman detectors. It could also be a complementary platform to reduce samples that need to be analyzed in the central labs and has the potential to identify other prohibited additives.
Collapse
Affiliation(s)
- Jun-Yi Chien
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Yong-Chun Gu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Hao Liu
- Department of Health, New Taipei City Government, New Taipei City, Taiwan; Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Hsin-Mei Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Chieh-Ning Lee
- Department of Health, New Taipei City Government, New Taipei City, Taiwan
| | - Albert C Yang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Yuh-Lin Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Juen-Kai Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan; Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan
| | - Chi-Hung Lin
- Department of Biological Science & Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Microbiology & Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Chen S, Lei Y, Xu J, Yang Y, Dong Y, Li Y, Yi H, Liao Y, Chen L, Xiao Y. Simple, rapid, and visual electrochemiluminescence sensor for on-site catechol analysis. RSC Adv 2022; 12:17330-17336. [PMID: 35765423 PMCID: PMC9189704 DOI: 10.1039/d2ra03067e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022] Open
Abstract
Environmental pollution caused by aromatic compounds such as catechol (Cat) has become a major issue for human health. However, there is no simple, rapid, and low-cost method for on-site monitoring of Cat. Here, based on ECL quenching mechanism, we develop a simple, rapid and visual mesoporous silica (MSNs)-electrochemiluminescence (ECL) sensor for on-site monitoring of Cat. The mechanism of ECL quenching is due to the interaction between Cat and Ru(bpy)32+* and the interactions between the oxidation products of Cat and DBAE. MSNs films with ordered perpendicular mesopore channels exhibit an amplification effect of ECL intensity due to the negatively charged pore channel. There is a good linear relationship between ECL intensity and Cat concentration in the range of 10 ∼ 1000 μM with the limit of detection (LOD) of 9.518 μM (R2 = 0.99). The on-site sensor is promising to offer new opportunities for pharmaceuticals analysis, on-site monitoring, and exposure risk assessment. A simple, rapid and visual mesoporous silica (MSNs)-electrochemiluminescence (ECL) sensor was developed for on-site monitoring of Cat.![]()
Collapse
Affiliation(s)
- Suhua Chen
- Hunan Provincial Maternal and Child Health Care Hospital Changsha 410008 Hunan China
| | - Yuanyuan Lei
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Junrong Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yun Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yiying Dong
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yanmei Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Haomin Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yilong Liao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Liyin Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yi Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China.,Experimental Soft Condensed Matter Group, School of Engineering and Applied Sciences, Harvard University Cambridge Massachusetts 02138 USA
| |
Collapse
|
6
|
Xiao Y, Yi H, Wang G, Chen S, Li X, Wu Q, Zhang S, Deng K, He Y, Yang X. Electrochemiluminescence sensor for point-of-care detection of pyrrolizidine alkaloids. Talanta 2022; 249:123645. [PMID: 35700647 DOI: 10.1016/j.talanta.2022.123645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 10/31/2022]
Abstract
Pyrrolizidine alkaloids (PAs) and PA N-oxides are hepatotoxic natural products, produced by over 6000 plant species worldwide. However, an unmet need remains for confirmative measurement of PAs in routine clinical tests. Here, we develop a visual, easy-to-use, and economic mesoporous silica-electrochemiluminescence (MPS-ECL) sensor for point-of-care (POC) testing of PAs, utilizing MPS's amplification effect on positive ions. The relationship between PAs' different structures and corresponding Ru(bpy)32+ ECL activity shows that reaction mechanism, stability of intermediate, molecular geometry and alternative anodic reactivity significantly affect the ECL activity. The ECL intensity varies among different PAs: monocrotaline ˃ senecionine N-oxide ˃ retrorsine ˃ senkirkine. The POC sensors possess excellent linearity (0.9993 > R2 > 0.9944), low detection limits (0.02 μM-0.07 μM), and good recoveries (90.12%-105.93%), indicating good accuracy and practicability. The portable and low-cost sensor is user-friendly, which holds promise to be applied to POC testing of PAs in drugs, food products, and clinical samples, which is promising for initial assessments of PA-induced health risk.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Haomin Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Guofang Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Suhua Chen
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Xiang Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Qinyu Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Siyi Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Kexin Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| |
Collapse
|
7
|
Sha Y, Yu J, Xiong J, Yu C, Zhu X, Zhang B, Fei T, Wu D. A simple and rapid approach for on-site analysis of nicotine in tobacco based on a screen-printed electrode as an electrochemical sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1579-1584. [PMID: 35416201 DOI: 10.1039/d2ay00058j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we report a portable kit consisting of a portable workstation, gold screen-printed electrode (SPE), 0.45 μm filter membrane, phosphate buffer solution (PBS), and acetic acid (1%) for point-of-use (POU) analysis of nicotine in tobacco. The activated-screen-printed electrode (A-SPE) displayed superior electron transmission efficiency, and the A-SPE without modification was employed for high-performance analysis of nicotine in actual tobacco after simple sample pretreatment. Remarkably, the fabricated nicotine sensor exhibited a broad working range of 10-100 μg g-1, a low limit of detection (LOD) of 6.4 μg mL-1, good stability, selectivity, and practicality under the optimal conditions. The method was applied to the determination of nicotine in (spiked) samples. Satisfactory recovery results demonstrated that the as-prepared portable kit method with outstanding electrocatalysis ability was feasible for analysis of nicotine in tobacco. Moreover, the values obtained using the A-SPE were in good agreement with those determined by gas chromatography-flame ionization detection (GC-FID), which confirms the feasibility and validity of the present method. The results of the as-proposed portable kit provided a new strategy for analyzing nicotine in actual tobacco samples.
Collapse
Affiliation(s)
- Yunfei Sha
- Technical Center of Shanghai Tobacco Group Co., Ltd, Shanghai 201315, China.
| | - Jie Yu
- Technical Center of Shanghai Tobacco Group Co., Ltd, Shanghai 201315, China.
| | - Junwei Xiong
- Technical Center of Shanghai Tobacco Group Co., Ltd, Shanghai 201315, China.
| | - Chaofan Yu
- Technical Center of Shanghai Tobacco Group Co., Ltd, Shanghai 201315, China.
| | - Xiaoyu Zhu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bingqian Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Fei
- Technical Center of Shanghai Tobacco Group Co., Ltd, Shanghai 201315, China.
| | - Da Wu
- Technical Center of Shanghai Tobacco Group Co., Ltd, Shanghai 201315, China.
| |
Collapse
|
8
|
Brown K, Dennany L. Electrochemiluminescence sensors and forensic investigations: a viable technique for drug detection? PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Novel psychoactive substances (NPS) are today considered one of the major ticking public health time bombs in regard to drug abuse. The inability to identify these substances with current screening methods, sees their distribution remain uninterrupted and contributes to the high death rates amongst users. To tackle this problem, it is vital that new robust screening methods are developed, addressing the limitation of those currently in place, namely colour subjectivity and lack of compatibility with the complex matrices these substances may be found within. To this avail, electrochemical methods have been assessed. These low cost and extremely portable sensors have been successfully applied for the direct detection of a broad range of compounds of interest in a range of matrices including, herbal material, commercial drinks and biological fluids (serum, saliva, sweat and urine). With their high versatility, gifted through a significant degree of flexibility in regard to electrode material a range of sensors have to date been reported. In this review the various electrochemical sensors developed to date for NPS detection will be compared and contrasted, with a special focus upon those utilising electrochemiluminescence (ECL) technology.
Collapse
Affiliation(s)
- Kelly Brown
- Pure and Applied Chemistry , University of Strathclyde , Technology & Innovation Centre, 99 George Street , G1 1RD Glasgow , UK
| | | |
Collapse
|
9
|
Tao XY, Zhang Y, Zhou Y, Liu ZF, Feng XS. Nicotine in Complex Samples: Recent Updates on the Pretreatment and Analysis Method. Crit Rev Anal Chem 2021; 53:1209-1238. [PMID: 34955065 DOI: 10.1080/10408347.2021.2016365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Nicotine is a significant evaluation index of tobacco and its related products' quality, but nicotine overdose can pose serious health hazards and cause addiction and dependence, thus it can be seen that it is necessary to find suitable and efficient detection methods to precisely detect nicotine in diverse samples and complex matrices. In this review, an updated summary of the latest trends in pretreatment and analytical techniques for nicotine is provided. We reviewed various sample pretreatment methods, such as solid phase extraction, solid phase microextraction, liquid phase microextraction, QuEChERS, etc., and diverse nicotine assay methods including liquid chromatography, gas chromatography, electrochemical sensors, etc., focusing on the developments since 2015. Furthermore, the recent progress in the applications and applicability of these techniques as well as our prospects for future developments are discussed.HighlightsUpdated pretreatment and analysis methods of nicotine were systematically summarized.Microextraction and automation were main development trends of nicotine pretreatment.The introduction of novel materials added luster to nicotine pretreatment.The evolutions of ion source and mass analyzer were emphasized.
Collapse
Affiliation(s)
- Xin-Yue Tao
- School of Pharmacy, China Medical University, Shenyang, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Sun L, Zou H, Sang S. Effect of temperature on the
SU
‐8 photoresist filling behavior during thermal nanoimprinting. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Sun
- MicroNano System Research Center Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information Engineering, Taiyuan University of Technology Jinzhong China
| | - Helin Zou
- Key Laboratory for Precision and Non‐traditional Machining Technology of Ministry of Education Dalian University of Technology Dalian China
- Key Laboratory for Micro/Nano Technology and Systems of Liaoning Province Dalian University of Technology Dalian China
| | - Shengbo Sang
- MicroNano System Research Center Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information Engineering, Taiyuan University of Technology Jinzhong China
| |
Collapse
|
11
|
Romanholo PVV, Razzino CA, Raymundo-Pereira PA, Prado TM, Machado SAS, Sgobbi LF. Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosens Bioelectron 2021; 185:113242. [PMID: 33915434 DOI: 10.1016/j.bios.2021.113242] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
The urge to meet the ever-growing needs of sensing technology has spurred research to look for new alternatives to traditional analytical methods. In this scenario, the glucometer is the flagship of commercial electrochemical sensing platforms, combining selectivity, reliability and portability. However, other types of enzyme-based biosensors seldom achieve the market, in spite of the large and increasing number of publications. The reasons behind their commercial limitations concern enzyme denaturation, and the high costs associated with procedures for their extraction and purification. In this sense, biomimetic materials that seek to imitate the desired properties of natural enzymes and biological systems have come out as an appealing path for robust and sensitive electrochemical biosensors. We herein portray the historical background of these biomimicking materials, covering from their beginnings until the most impactful applications in the field of electrochemical sensing platforms. Throughout the discussion, we present and critically appraise the major benefits and the most significant drawbacks offered by the bioinspired systems categorized as Nanozymes, Synzymes, Molecularly Imprinted Polymers (MIPs), Nanochannels, and Metal Complexes. Innovative strategies of fabrication and challenging applications are further reviewed and evaluated. In the end, we ponder over the prospects of this emerging field, assessing the most critical issues that shall be faced in the coming decade.
Collapse
Affiliation(s)
- Pedro V V Romanholo
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Claudia A Razzino
- Instituto de Pesquisa e Desenvolvimento, Universidade Do Vale Do Paraíba, São José Dos Campos, SP, 12244-000, Brazil
| | | | - Thiago M Prado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Sergio A S Machado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Livia F Sgobbi
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|