1
|
Yang L, Wang H, Yang Y, Li Y. Self-healing cellulose-based hydrogels: From molecular design to multifarious applications. Carbohydr Polym 2025; 347:122738. [PMID: 39486967 DOI: 10.1016/j.carbpol.2024.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 11/04/2024]
Abstract
Self-healing cellulose-based hydrogels (SHCHs) exhibit wide-ranging potential applications in the fields of biomedicine, environmental management, energy storage, and smart materials due to their unique physicochemical properties and biocompatibility. This review delves into the molecular design principles, performance characteristics, and diverse applications of SHCHs. Firstly, the molecular structure and physicochemical properties of cellulose are analyzed, along with strategies for achieving self-healing properties through molecular design, with particular emphasis on the importance of self-healing mechanisms. Subsequently, methods for optimizing the performance of SHCHs through chemical modification, composite reinforcement, stimulus responsiveness, and functional integration technologies are discussed in detail. Furthermore, applications of SHCHs in drug delivery, tissue engineering, wound healing, smart sensing, supercapacitors, electronic circuits, anti-counterfeiting systems, oil/water separation, and food packaging are explored. Finally, future research directions for SHCHs are outlined, including the innovative development of new SHCHs, in-depth elucidation of cooperative strengthening mechanisms, a further expansion of application scope, and the establishment of intelligent systems. This review provides researchers with a comprehensive overview of SHCHs and serves as a reference and guide for future research and development.
Collapse
Affiliation(s)
- Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Yanpeng Li
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| |
Collapse
|
2
|
Si M, Wang Y, Mei R, Zhao X, Yuan Q, Fu L, Wu Y, Ostovan A, Arabi M, Wang S, Chen L. Metal-organic framework-based SERS chips enable in situ and sensitive detection of dissolved hydrogen sulfide in natural water: Towards a bring-back-chip mode for field analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136247. [PMID: 39447232 DOI: 10.1016/j.jhazmat.2024.136247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Hydrogen sulfide (H2S) in natural water plays an important role in carbon and sulfur cycles in biosphere. Current detection protocol is complicated, which need to "bring back water" to lab followed by gas chromatograph analysis. In situ, field detection is still challenging. Herein, a portable, sensitive surface enhanced Raman scattering (SERS) chip was proposed for in situ H2S sampling and SERS signal stabilizing, enabling a "bring back chip" manner for lab analysis. The SERS chip was composed of single core-shell gold nanorod-ZIF-8 framework (Au NR@ZIF-8) nanoparticle. Relying on headspace adsorption, evaporated H2S was enriched in the ZIF-8 shell and then reacted with Au NR, resulting in the weakening of the Au-Br bond Raman peak (175 cm-1) and the appearance of the Au-S bond Raman peak (273 cm-1). The SERS signal reached equilibrium in 10 min. The detection range of H2S was 0.1-2000 μg/L and limit of detection was 0.098 μg/L. SERS signal was not interfered by normal volatile gases. Moreover, SERS signal of a reacted chip was stable at an ambient condition, allowing for in situ sampling and bring-back detection. The applicability of the chip was verified by dynamic H2S monitoring during artificial black-odor water evolution, and in-field quantitative analysis of H2S content in river water and sediment. Finally, the chip was sealed in a waterproof breathable membrane device, which realized the detection of vertical profiles of H2S in the river. This work provided a promising tool for field analysis of H2S in natural environments.
Collapse
Affiliation(s)
- Meiyu Si
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.
| | - Rongchao Mei
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Yuan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shanshan Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.
| |
Collapse
|
3
|
Xu Y, Zhang X, Zhu XS, Shi YW. Silver-coated hollow fiber surface plasmon resonance sensor for glucose detection with enhanced limit of detection. NANOSCALE 2024; 16:7085-7092. [PMID: 38488869 DOI: 10.1039/d4nr00421c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
A fiber-optic surface plasmon resonance (SPR) biosensor based on a silver-coated hollow fiber (HF) structure for glucose detection is presented. The sensor surface was immobilized with 4-mercaptophenylboronic acid (PMBA) acting as a glucose recognition monolayer. Then, gold nanoparticles (AuNPs) modified with 2-aminoethanethiol (2-AET) and PMBA were introduced onto the sensor surface after glucose was captured to enhance the wavelength shift of the SPR phenomenon excited by the light transmitted in the wall of the HF sensor. Instead of the conventional one-step sensitization pretreatment commonly used in the deposition process of silver films for fiber-optic SPR sensors, a sensitization-activation two-step activation method was adopted in the fabrication of the proposed sensor. Experiments for glucose detection were performed on the fabricated sensors in the concentration range of 1 nM-1 mM. Results showed that the sensor fabricated by the two-step activation method has a much larger shift of resonance wavelength than the sensor fabricated using the one-step sensitization method. The resonance wavelength shift was found to be linear to the logarithm of the concentration in the range of 1 nM-1 mM. The sensor achieved a limit of detection (LOD) of as low as 1 nM, which is at least an order of magnitude lower than that of other fiber-optic sensors for glucose detection reported previously. The presented HF glucose sensor has the potential for biosensing applications and provides a large reference value in the study of optical fiber SPR sensors for biosensing.
Collapse
Affiliation(s)
- Yangyang Xu
- School of Information Science and Technology, Fudan University, 220 Handan Rd, Shanghai 20433, China.
| | - Xian Zhang
- School of Information Science and Technology, Fudan University, 220 Handan Rd, Shanghai 20433, China.
| | - Xiao-Song Zhu
- School of Information Science and Technology, Fudan University, 220 Handan Rd, Shanghai 20433, China.
- Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, 220 Handan Rd, Shanghai 20433, China
| | - Yi-Wei Shi
- School of Information Science and Technology, Fudan University, 220 Handan Rd, Shanghai 20433, China.
- Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, 220 Handan Rd, Shanghai 20433, China
| |
Collapse
|
4
|
Liu H, Wang M, Huang G. A fluorescent sensor based on sulfur nanodots encapsulated into zeolitic imidazolate framework-8 for ultrasensitive detection of tartrazine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123187. [PMID: 37499476 DOI: 10.1016/j.saa.2023.123187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
A new composite material (SDs@ZIF-8) was synthesized by integrating sulfur nanodots (SDs) into metal-organic frameworks (ZIF-8) through a facile one-step self-assembly strategy. The obtained SDs@ZIF-8 has not only the high adsorption performance of ZIF-8 but also the superior fluorescence characteristics of SDs. The composite featured good dispersibility, stable structure as well as excellent fluorescence in water solution, and can be used as an ideal fluorescent sensor for tartrazine detection. Due to the high specific surface area and adsorption performance of ZIF-8, the prepared composite material can significantly enrich tartrazine, further enhancing the sensitivity of analysis. The fluorescence of SDs @ZIF-8 composite can be effectively quenched by tartrazine through the inner filter effect. The sensing technique exhibited exceptional sensitivity, as evidenced by its impressive detection limit of 6.5 nM across a broad linear range spanning from 0.02 to 90 μM. In addition to its high sensitivity, the technique displayed rapid response times and excellent selectivity. Moreover, the fluorescent sensing technology we developed has been employed successfully for the detection of tartrazine in real samples, which is expected to promote the development of the food safety industry.
Collapse
Affiliation(s)
- Haijian Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Shouguang 262700, Weifang, China.
| | - Miao Wang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Shouguang 262700, Weifang, China
| | - Guofu Huang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Shouguang 262700, Weifang, China
| |
Collapse
|
5
|
Sarfudeen S, Sruthi VP, Maibam A, Panda P, Jhariat P, Senthilkumar S, Babarao R, Panda T. Robust Zeolitic Tetrazole Framework for Electrocatalytic Dopamine Detection with High Selectivity. Inorg Chem 2023. [PMID: 38029418 DOI: 10.1021/acs.inorgchem.3c03189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
A novel zeolitic tetrazolate framework (ZTF-8) has been synthesized by solvent-free heat-assisted (70 °C) mechanochemical grinding of zinc acetate and 5-methyl tetrazole in the presence of NaOH powder. The structure of ZTF-8 adopts the zeolitic sodalite (SOD) topology with uncoordinated N-heteroatom sites and resembles the structure of the well-known zeolitic imidazole framework ZIF-8. ZTF-8 is exceptionally stable in 0.1 M aqueous acid and base solutions for 60 days at 25 °C. The unique structure with uncoordinated N-heteroatom active sites and exceptional stability of ZTF-8 facilitated the electrocatalytic oxidation of dopamine to dopamine quinone at neutral pH. Without any postsynthetic modification, ZTF-8 is directly used for the facile electrochemical detection of dopamine over a wide range of concentrations (5-550 μM) with a high sensitivity (2410.8 μA mM-1 cm-2). It also demonstrated promising selectivity over other interferents of similar oxidation potential, such as ascorbic acid and uric acid. The DFT study revealed that the ZTF-8 framework has a higher binding energy (-145.07 kJ/mol) and stronger interaction with dopamine than its isostructural ZIF-8 structure (-130.42 kJ/mol).
Collapse
Affiliation(s)
- Shafeeq Sarfudeen
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu,India
| | - Vadakke Purakkal Sruthi
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu,India
| | - Ashakiran Maibam
- Physical and Materials Chemistry Division,CSIR-National Chemical Laboratory, Pune 411008, India
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne 3001, Victoria, Australia
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Ghaziabad 201 002, Uttar Pradesh, India
| | - Premchand Panda
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu,India
| | - Pampa Jhariat
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu,India
| | - Sellappan Senthilkumar
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu,India
| | - Ravichandar Babarao
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne 3001, Victoria, Australia
- CSIRO, Normanby Road,Clayton 3168, Victoria, Australia
| | - Tamas Panda
- Centre for Clean Environment (CCE), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu,India
| |
Collapse
|
6
|
Math C, Income K, Khachornsakkul K, Duenchay P, Dungchai W. A sensitive and facile electrochemical paper-based sensor for glucose detection in whole blood using the Pd/CB-Ni@rGO modified electrode. Analyst 2023; 148:4753-4761. [PMID: 37655604 DOI: 10.1039/d3an00879g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We created novel Pd/CB-Ni@rGO nanomaterials for glucose detection. The as-synthesized nanomaterials were dropped on the electrode surface using the drop casting technique. The prepared electrode was then attached to a paper-based device containing the sample zone and the reaction zone, enabling plasma isolation and an enzymatic reaction for glucose detection in whole blood. The nanomaterials and surfaces of electrodes were characterized by FTIR, TEM, and SEM. The proposed approach is a disposable glucose detection method that is unaffected by protein fouling on the electrode, and it requires only one drop of human blood. Therefore, there is no need for extensive sample preparation, and there is less sample consumption. Under optimal conditions, Pd/CB-Ni@rGO can accurately measure blood glucose levels with a linear range of 7 to 7140 μM (R2 = 0.9986) and a low detection limit of 0.82 μM. Besides, the developed sensor shows excellent anti-interference capacity, stability, and satisfactory reproducibility and repeatability. Importantly, Pd/CB-Ni@rGO was successfully applied for glucose in whole blood from 4 volunteers, with results that correlated well with those obtained using an Accucheck glucometer at a 95% confidence level. Given its low cost, high accuracy, and ease of use, the blood glucose sensor holds significant potential for clinical use and broadens the area of future noninvasive sensor development.
Collapse
Affiliation(s)
- Chim Math
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| | - Kamolwich Income
- Office of Primary Industries and Mines, Region 3, Ministry of Industry, Chiang Mai, Thailand
| | - Kawin Khachornsakkul
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA
| | - Paweenar Duenchay
- Department of Industrial Engineering, Manufacturing Engineering, and Chemical Processes and Environment Engineering, Faculty of Engineering, Pathumwan Institute of Technology, 833 Rama 1Rd., Pathumwan, Bangkok 10330, Thailand
| | - Wijitar Dungchai
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
7
|
Li S, Wang Z, Lin X, Bian Y, Chen L. Exo I signal amplification of a DNA hydrogel film combined with capillary self-driven action for EpCAM detection. Analyst 2023; 148:4730-4737. [PMID: 37646193 DOI: 10.1039/d3an01011b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Target-responsive aptamer hydrogels are increasingly used in the field of analytical sensing with different morphologies developed by various strategies. Herein, we developed a DNA hydrogel film combined with capillary self-driven action for the specific detection of the tumor marker EpCAM and further introduced Exo I for signal amplification. EpCAM aptamer was used as a crosslinking agent to construct the DNA hydrogel film. When EpCAM was present, it competed for binding with the EpCAM aptamer, resulting in a permeability change of the DNA hydrogel film attached to one end of the capillary, and leading to different solution flow rates through the capillaries that can be utilized for the quantitative detection of EpCAM. This method did not require any instrument and was easy to use. The distance the solution travelled through the capillary was quantified as the concentration of EpCAM, and only a small amount of DNA hydrogel was required for each detection. The detection limit of EpCAM was as low as 0.018 ng mL-1, while offering the advantages of good stability and specificity, and showing great potential in point-of-care testing.
Collapse
Affiliation(s)
- Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China.
| | - Zhiguang Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China.
| | - Xiaoxiao Lin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China.
| | - Yalan Bian
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China.
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China.
| |
Collapse
|
8
|
Shi R, Wei S, Cheng S, Zeng J, Wang Y, Shu X. Colorimetric Detection of Glucose Using WO3 Nanosheets as Peroxidase-mimetic Enzyme. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Metal–Organic Frameworks-Mediated Assembly of Gold Nanoclusters for Sensing Applications. JOURNAL OF ANALYSIS AND TESTING 2022; 6:163-177. [PMID: 35572781 PMCID: PMC9076503 DOI: 10.1007/s41664-022-00224-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
|
10
|
A self-healing carboxymethyl chitosan/oxidized carboxymethyl cellulose hydrogel with fluorescent bioprobes for glucose detection. Carbohydr Polym 2021; 274:118642. [PMID: 34702463 DOI: 10.1016/j.carbpol.2021.118642] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
Self-healing hydrogel as a soft material with high durability and life-time has been successfully applied in various fields, including electronic skins, wearable electronic devices, and soft sensors. However, it is still a challenge to design a hydrogel with rapid self-healing, biodegradable and biosensing properties. Here, a self-healing carboxymethyl chitosan (CMCS)/oxidized carboxymethyl cellulose (OCMC) hydrogel with fluorescent bioprobes was developed for glucose detection. In this biosensing system, gold nanoclusters (AuNCs) and glucose oxidase (GOx) were encapsulated into the CMCS/OCMC hydrogel matrix as the fluorescent bioprobes. The CMCS/OCMC hydrogel with fluorescent bioprobes exhibited high sensitivity for glucose sensing with a linearly detection range of 100 μM to 5 mM and a detection limit of 0.029 mM, which covered the level of glucose in clinical detection. Furthermore, this hydrogel exhibited good biocompatibility. Finally, In vitro blood fluorescence tests and in vivo fluorescence investigation of the AuNCs-CMCS/OCMC hydrogel in diabetic mice indicated that this biocompatible and self-healing hydrogel based on fluorescent sensing system had potential application in implantable biosensing area for glucose monitoring.
Collapse
|
11
|
Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid. Mikrochim Acta 2021; 188:26. [DOI: 10.1007/s00604-020-04667-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
|
12
|
Zhao Y, Zeng H, Zhu XW, Lu W, Li D. Metal–organic frameworks as photoluminescent biosensing platforms: mechanisms and applications. Chem Soc Rev 2021; 50:4484-4513. [DOI: 10.1039/d0cs00955e] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent progress of MOF-based photoluminescent platforms: a comprehensive overview of their applications in biosensing and underlying mechanisms.
Collapse
Affiliation(s)
- Yifang Zhao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Heng Zeng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Xiao-Wei Zhu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| |
Collapse
|