1
|
Thome CP, Fowle JP, McDonnell P, Zultak J, Jayaram K, Neumann AK, López GP, Shields CW. Acoustic pipette and biofunctional elastomeric microparticle system for rapid picomolar-level biomolecule detection in whole blood. SCIENCE ADVANCES 2024; 10:eado9018. [PMID: 39413177 PMCID: PMC11482303 DOI: 10.1126/sciadv.ado9018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Most biosensing techniques require complex processing steps that generate prolonged workflows and introduce potential points of error. Here, we report an acoustic pipette to purify and label biomarkers in 70 minutes. A key aspect of this technology is the use of functional negative acoustic contrast particles (fNACPs), which display biorecognition motifs for the specific capture of biomarkers from whole blood. Because of their large size and compressibility, the fNACPs robustly trap along the pressure antinodes of a standing wave and separate from blood components in under 60 seconds with >99% efficiency. fNACPs are subsequently fluorescently labeled in the pipette and are analyzed by both a custom, portable fluorimeter and flow cytometer. We demonstrate the detection of anti-ovalbumin antibodies from blood at picomolar levels (35 to 60 pM) with integrated controls showing minimal nonspecific adsorption. Overall, this system offers a simple and versatile approach for the rapid, sensitive, and specific capture of biomolecules.
Collapse
Affiliation(s)
- Cooper P. Thome
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - John P. Fowle
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Parker McDonnell
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Johanna Zultak
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kaushik Jayaram
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Aaron K. Neumann
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Gabriel P. López
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - C. Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
2
|
Li W, Yao Z, Ma T, Ye Z, He K, Wang L, Wang H, Fu Y, Xu X. Acoustofluidic precise manipulation: Recent advances in applications for micro/nano bioparticles. Adv Colloid Interface Sci 2024; 332:103276. [PMID: 39146580 DOI: 10.1016/j.cis.2024.103276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/30/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Acoustofluidic technologies that integrate acoustic waves and microfluidic chips have been widely used in bioparticle manipulation. As a representative technology, acoustic tweezers have attracted significant attention due to their simple manufacturing, contact-free operation, and low energy consumption. Recently, acoustic tweezers have enabled the efficient and smart manipulation of biotargets with sizes covering millimeters (such as zebrafish) and nanometers (such as DNA). In addition to acoustic tweezers, other related acoustofluidic chips including acoustic separating, mixing, enriching, and transporting chips, have also emerged to be powerful platforms to manipulate micro/nano bioparticles (cells in blood, extracellular vesicles, liposomes, and so on). Accordingly, some interesting applications were also developed, such as smart sensing. In this review, we firstly introduce the principles of acoustic tweezers and various related technologies. Second, we compare and summarize recent applications of acoustofluidics in bioparticle manipulation and sensing. Finally, we outlook the future development direction from the perspectives such as device design and interdisciplinary.
Collapse
Affiliation(s)
- Wanglu Li
- College of Life Science, China Jiliang University, Hangzhou 310018, China; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhihao Yao
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tongtong Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zihong Ye
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Kaiyu He
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hongmei Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Xiahong Xu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
3
|
Thome C, Hoertdoerfer WS, Bendorf JR, Lee JG, Shields CW. Electrokinetic Active Particles for Motion-Based Biomolecule Detection. NANO LETTERS 2023; 23:2379-2387. [PMID: 36881680 PMCID: PMC10038089 DOI: 10.1021/acs.nanolett.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Detection of biomolecules is essential for patient diagnosis, disease management, and numerous other applications. Recently, nano- and microparticle-based detection has been explored for improving traditional assays by reducing required sample volumes and assay times as well as enhancing tunability. Among these approaches, active particle-based assays that couple particle motion to biomolecule concentration expand assay accessibility through simplified signal outputs. However, most of these approaches require secondary labeling, which complicates workflows and introduces additional points of error. Here, we show a proof-of-concept for a label-free, motion-based biomolecule detection system using electrokinetic active particles. We prepare induced-charge electrophoretic microsensors (ICEMs) for the capture of two model biomolecules, streptavidin and ovalbumin, and show that the specific capture of the biomolecules leads to direct signal transduction through ICEM speed suppression at concentrations as low as 0.1 nM. This work lays the foundation for a new paradigm of rapid, simple, and label-free biomolecule detection using active particles.
Collapse
Affiliation(s)
- Cooper
P. Thome
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Wren S. Hoertdoerfer
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Julia R. Bendorf
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Jin Gyun Lee
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - C. Wyatt Shields
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
4
|
Fan Y, Wang X, Ren J, Lin F, Wu J. Recent advances in acoustofluidic separation technology in biology. MICROSYSTEMS & NANOENGINEERING 2022; 8:94. [PMID: 36060525 PMCID: PMC9434534 DOI: 10.1038/s41378-022-00435-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 05/30/2023]
Abstract
Acoustofluidic separation of cells and particles is an emerging technology that integrates acoustics and microfluidics. In the last decade, this technology has attracted significant attention due to its biocompatible, contactless, and label-free nature. It has been widely validated in the separation of cells and submicron bioparticles and shows great potential in different biological and biomedical applications. This review first introduces the theories and mechanisms of acoustofluidic separation. Then, various applications of this technology in the separation of biological particles such as cells, viruses, biomolecules, and exosomes are summarized. Finally, we discuss the challenges and future prospects of this field.
Collapse
Affiliation(s)
- Yanping Fan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Xuan Wang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Jiaqi Ren
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| |
Collapse
|
5
|
Ma Y, He S, Huang J. DNA hydrogels as selective biomaterials for specifically capturing DNA, protein and bacteria. Acta Biomater 2022; 147:158-167. [PMID: 35584747 DOI: 10.1016/j.actbio.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
The ability to selectively capture biomacromolecules and other components from solution has many important applications in biotechnology. However, capturing targets from solution while minimizing interference with the sample solution is still challenging. Here, we describe the design and assembly of a group of DNA hydrogels consisting of long single-stranded DNA produced by rolling amplification reaction (RCA) and crosslinked by DNA duplexes. The developed DNA hydrogels can selectively capture and separate oligonucleotides, proteins and bacteria from solution in situ without complex separation processes. Since such DNA hydrogels can capture their targets in the solution independently, multiple DNA hydrogels that target different compounds can be employed to separate different compounds in the solution at the same time. The work not only expands the application of DNA hydrogels, but also paves the way for developing novel selective biomaterials. STATEMENT OF SIGNIFICANCE: Biomaterials capable of selectively capturing various components have great potential in the field of biotechnology. Here, we proposed a new class of hydrogel composed of crosslinked long DNA strands for selectively capturing DNA, protein and bacteria. Unlike traditional polymeric hydrogels that have small meshes and limit macromolecule diffusion owing to the short distance between two adjacent crosslinks, the described DNA hydrogel has a much larger distance between its crosslinks because of the sequence designability of DNA, which allows easy diffusion of biomacromolecules through its networks and greatly expand its specific surface area. Moreover, the developed DNA hydrogel can also easily combine different aptamers to target different components via the Watson-Crick base pairing without making significant changes in its original design.
Collapse
Affiliation(s)
- Yinzhou Ma
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Shangwen He
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
Lima LF, Sousa MGDC, Rodrigues GR, de Oliveira KBS, Pereira AM, da Costa A, Machado R, Franco OL, Dias SC. Elastin-like Polypeptides in Development of Nanomaterials for Application in the Medical Field. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.874790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are biopolymers formed by amino acid sequences derived from tropoelastin. These biomolecules can be soluble below critical temperatures, forming aggregates at higher temperatures, which makes them an interesting source for the design of different nanobiomaterials. These nanobiomaterials can be obtained from heterologous expression in several organisms such as bacteria, fungi, and plants. Thanks to the many advantages of ELPs, they have been used in the biomedical field to develop nanoparticles, nanofibers, and nanocomposites. These nanostructures can be used in multiple applications such as drug delivery systems, treatments of type 2 diabetes, cardiovascular diseases, tissue repair, and cancer therapy. Thus, this review aims to shed some light on the main advances in elastin-like-based nanomaterials, their possible expression forms, and importance to the medical field.
Collapse
|
7
|
Alvisi N, Gutiérrez-Mejía FA, Lokker M, Lin YT, de Jong AM, van Delft F, de Vries R. Self-Assembly of Elastin-like Polypeptide Brushes on Silica Surfaces and Nanoparticles. Biomacromolecules 2021; 22:1966-1979. [PMID: 33871996 PMCID: PMC8154268 DOI: 10.1021/acs.biomac.1c00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Control over the placement and activity of biomolecules on solid surfaces is a key challenge in bionanotechnology. While covalent approaches excel in performance, physical attachment approaches excel in ease of processing, which is equally important in many applications. We show how the precision of recombinant protein engineering can be harnessed to design and produce protein-based diblock polymers with a silica-binding and highly hydrophilic elastin-like domain that self-assembles on silica surfaces and nanoparticles to form stable polypeptide brushes that can be used as a scaffold for later biofunctionalization. From atomic force microscopy-based single-molecule force spectroscopy, we find that individual silica-binding peptides have high unbinding rates. Nevertheless, from quartz crystal microbalance measurements, we find that the self-assembled polypeptide brushes cannot easily be rinsed off. From atomic force microscopy imaging and bulk dynamic light scattering, we find that the binding to silica induces fibrillar self-assembly of the peptides. Hence, we conclude that the unexpected stability of these self-assembled polypeptide brushes is at least in part due to peptide-peptide interactions of the silica-binding blocks at the silica surface.
Collapse
Affiliation(s)
- Nicolò Alvisi
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Fabiola A Gutiérrez-Mejía
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Meike Lokker
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Yu-Ting Lin
- Department of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Arthur M de Jong
- Department of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Floris van Delft
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|