1
|
Liu KZ, Tian G, Ko ACT, Geissler M, Malic L, Moon BU, Clime L, Veres T. Microfluidic methods for the diagnosis of acute respiratory tract infections. Analyst 2024; 150:9-33. [PMID: 39440426 DOI: 10.1039/d4an00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute respiratory tract infections (ARTIs) are caused by sporadic or pandemic outbreaks of viral or bacterial pathogens, and continue to be a considerable socioeconomic burden for both developing and industrialized countries alike. Diagnostic methods and technologies serving as the cornerstone for disease management, epidemiological tracking, and public health interventions are evolving continuously to keep up with the demand for higher sensitivity, specificity and analytical throughput. Microfluidics is becoming a key technology in these developments as it allows for integrating, miniaturizing and automating bioanalytical assays at an unprecedented scale, reducing sample and reagent consumption and improving diagnostic performance in terms of sensitivity, throughput and response time. In this article, we describe relevant ARTIs-pneumonia, influenza, severe acute respiratory syndrome, and coronavirus disease 2019-along with their pathogenesis. We provide a summary of established methods for disease diagnosis, involving nucleic acid amplification techniques, antigen detection, serological testing as well as microbial culture. This is followed by a short introduction to microfluidics and how flow is governed at low volume and reduced scale using centrifugation, pneumatic pumping, electrowetting, capillary action, and propagation in porous media through wicking, for each of these principles impacts the design, functioning and performance of diagnostic tools in a particular way. We briefly cover commercial instruments that employ microfluidics for use in both laboratory and point-of-care settings. The main part of the article is dedicated to emerging methods deriving from the use of miniaturized, microfluidic systems for ARTI diagnosis. Finally, we share our thoughts on future perspectives and the challenges associated with validation, approval, and adaptation of microfluidic-based systems.
Collapse
Affiliation(s)
- Kan-Zhi Liu
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Ganghong Tian
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Alex C-T Ko
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Matthias Geissler
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Lidija Malic
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Byeong-Ui Moon
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Liviu Clime
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Teodor Veres
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| |
Collapse
|
2
|
Kshirsagar A, Politza AJ, Guan W. Deep Learning Enabled Universal Multiplexed Fluorescence Detection for Point-of-Care Applications. ACS Sens 2024; 9:4017-4027. [PMID: 39010300 PMCID: PMC11421847 DOI: 10.1021/acssensors.4c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
There is a significant demand for multiplexed fluorescence sensing and detection across a range of applications. Yet, the development of portable and compact multiplexable systems remains a substantial challenge. This difficulty largely stems from the inherent need for spectrum separation, which typically requires sophisticated and expensive optical components. Here, we demonstrate a compact, lens-free, and cost-effective fluorescence sensing setup that incorporates machine learning for scalable multiplexed fluorescence detection. This method utilizes low-cost optical components and a pretrained machine learning (ML) model to enable multiplexed fluorescence sensing without optical adjustments. Its multiplexing capability can be easily scaled up through updates to the machine learning model without altering the hardware. We demonstrate its real-world application in a probe-based multiplexed Loop-Mediated Isothermal Amplification (LAMP) assay designed to simultaneously detect three common respiratory viruses within a single reaction. The effectiveness of this approach highlights the system's potential for point-of-care applications that require cost-effective and scalable solutions. The machine learning-enabled multiplexed fluorescence sensing demonstrated in this work would pave the way for widespread adoption in diverse settings, from clinical laboratories to field diagnostics.
Collapse
Affiliation(s)
- Aneesh Kshirsagar
- Department of Electrical Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Anthony J. Politza
- Department of Biomedical Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Electrical Engineering, The Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
3
|
Lehnert T, Gijs MAM. Microfluidic systems for infectious disease diagnostics. LAB ON A CHIP 2024; 24:1441-1493. [PMID: 38372324 DOI: 10.1039/d4lc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.
Collapse
Affiliation(s)
- Thomas Lehnert
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
4
|
Schlanderer J, Hoffmann H, Lüddecke J, Golubov A, Grasse W, Kindler EV, Kohl TA, Merker M, Metzger C, Mohr V, Niemann S, Pilloni C, Plesnik S, Raya B, Shresta B, Utpatel C, Zengerle R, Beutler M, Paust N. Two-stage tuberculosis diagnostics: combining centrifugal microfluidics to detect TB infection and Inh and Rif resistance at the point of care with subsequent antibiotic resistance profiling by targeted NGS. LAB ON A CHIP 2023; 24:74-84. [PMID: 37999937 DOI: 10.1039/d3lc00783a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Globally, tuberculosis (TB) remains the deadliest bacterial infectious disease, and spreading antibiotic resistances is the biggest challenge for combatting the disease. Rapid and comprehensive diagnostics including drug susceptibility testing (DST) would assure early treatment, reduction of morbidity and the interruption of transmission chains. To date, rapid genetic resistance testing addresses only one to four drug groups while complete DST is done phenotypically and takes several weeks. To overcome these limitations, we developed a two-stage workflow for rapid TB diagnostics including DST from a single sputum sample that can be completed within three days. The first stage is qPCR detection of M. tuberculosis complex (MTBC) including antibiotic resistance testing against the first-line antibiotics, isoniazid (Inh) and rifampicin (Rif). The test is automated by centrifugal microfluidics and designed for point of care (PoC). Furthermore, enriched MTBC DNA is provided in a detachable sample tube to enable the second stage: if the PCR detects MTBC and resistance to either Inh or Rif, the MTBC DNA is shipped to specialized facilities and analyzed by targeted next generation sequencing (tNGS) to assess the complete resistance profile. Proof-of-concept testing of the PoC test revealed an analytical sensitivity of 44.2 CFU ml-1, a diagnostic sensitivity of 96%, and a diagnostic specificity of 100% for MTBC detection. Coupled tNGS successfully provided resistance profiles, demonstrated for samples from 17 patients. To the best of our knowledge, the presented combination of PoC qPCR with tNGS allows for the fastest comprehensive TB diagnostics comprising decentralized pathogen detection with subsequent resistance profiling in a facility specialized in tNGS.
Collapse
Affiliation(s)
| | - Harald Hoffmann
- SYNLAB Gauting SYNLAB Human Genetics Munich, 82131 Gauting, Germany
| | - Jan Lüddecke
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Andrey Golubov
- WHO supranational Tuberculosis Reference Laboratory, IML red, 82131 Gauting, Germany
| | | | | | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, 23845 Borstel, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, 23845 Borstel, Germany
| | | | - Vanessa Mohr
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, 23845 Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, 23845 Borstel, Germany
| | - Claudia Pilloni
- WHO supranational Tuberculosis Reference Laboratory, IML red, 82131 Gauting, Germany
| | - Sara Plesnik
- WHO supranational Tuberculosis Reference Laboratory, IML red, 82131 Gauting, Germany
| | - Bijendra Raya
- German Nepal Tuberculosis Project (GENETUP), Nepal Anti-Tuberculosis Association (NATA), Kalimati, Nepal
| | - Bhawana Shresta
- German Nepal Tuberculosis Project (GENETUP), Nepal Anti-Tuberculosis Association (NATA), Kalimati, Nepal
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Forschungszentrum Borstel, 23845 Borstel, Germany
| | - Roland Zengerle
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Markus Beutler
- WHO supranational Tuberculosis Reference Laboratory, IML red, 82131 Gauting, Germany
| | - Nils Paust
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
5
|
Johannsen B, Baumgartner D, Karpíšek M, Stejskal D, Boillat-Blanco N, Knüsli J, Panning M, Paust N, Zengerle R, Mitsakakis K. Patient Stratification for Antibiotic Prescriptions Based on the Bound-Free Phase Detection Immunoassay of C-Reactive Protein in Serum Samples. BIOSENSORS 2023; 13:1009. [PMID: 38131769 PMCID: PMC10741775 DOI: 10.3390/bios13121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
C-reactive protein is a well-studied host response biomarker, whose diagnostic performance depends on its accurate classification into concentration zones defined by clinical scenario-specific cutoff values. We validated a newly developed, bead-based, bound-free phase detection immunoassay (BFPD-IA) versus a commercial CE-IVD enzyme-linked immunosorbent assay (ELISA) kit and a commercial CE-IVD immunoturbidimetric assay (ITA) kit. The latter was performed on a fully automated DPC Konelab 60i clinical analyzer used in routine diagnosis. We classified 53 samples into concentration zones derived from four different sets of cutoff values that are related to antibiotic prescription scenarios in the case of respiratory tract infections. The agreements between the methods were ELISA/ITA at 87.7%, ELISA/BFPD-IA at 87.3%, and ITA/-BFPD-IA at 93.9%, reaching 98-99% in all cases when considering the calculated relative combined uncertainty of the single measurement of each sample. In a subgroup of 37 samples, which were analyzed for absolute concentration quantification, the scatter plot slopes' correlations were as follows: ELISA/ITA 1.15, R2 = 0.97; BFPD-IA/ELISA 1.12, R2 = 0.95; BFPD-IA/ITA 0.95, R2 = 0.93. These very good performances and the agreement between BFPD-IA and ITA (routine diagnostic), combined with BFPD-IA's functional advantages over ITA (and ELISA)-such as quick time to result (~20 min), reduced consumed reagents (only one assay buffer and no washing), few and easy steps, and compatibility with nucleic-acid-amplification instruments-render it a potential approach for a reliable, cost-efficient, evidence-based point-of-care diagnostic test for guiding antibiotic prescriptions.
Collapse
Affiliation(s)
- Benita Johannsen
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | | | - Michal Karpíšek
- BioVendor-Laboratorní Medicína a.s., Research & Diagnostic Products Division, Karasek 1767/1, Reckovice, 62100 Brno, Czech Republic
- Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 61242 Brno, Czech Republic
| | - David Stejskal
- Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava, Czech Republic
- Institute of Laboratory Diagnostics, University Hospital Ostrava, 17. listopadu 1790/5, 70800 Ostrava, Czech Republic
| | - Noémie Boillat-Blanco
- Service of Infectious Diseases, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - José Knüsli
- Service of Infectious Diseases, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Marcus Panning
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Konstantinos Mitsakakis
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
6
|
Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol 2023; 28:302-323. [PMID: 37302751 DOI: 10.1016/j.slast.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Hin S, Paust N, Rombach M, Lüddecke J, Specht M, Zengerle R, Mitsakakis K. Magnetophoresis in Centrifugal Microfluidics at Continuous Rotation for Nucleic Acid Extraction. MICROMACHINES 2022; 13:2112. [PMID: 36557411 PMCID: PMC9787563 DOI: 10.3390/mi13122112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Centrifugal microfluidics enables fully automated molecular diagnostics at the point-of-need. However, the integration of solid-phase nucleic acid extraction remains a challenge. Under this scope, we developed the magnetophoresis under continuous rotation for magnetic bead-based nucleic acid extraction. Four stationary permanent magnets are arranged above a cartridge, creating a magnetic field that enables the beads to be transported between the chambers of the extraction module under continuous rotation. The centrifugal force is maintained to avoid uncontrolled spreading of liquids. We concluded that below a frequency of 5 Hz, magnetic beads move radially inwards. In support of magnetophoresis, bead inertia and passive geometrical design features allow to control the azimuthal bead movement between chambers. We then demonstrated ferrimagnetic bead transfer in liquids with broad range of surface tension and density values. Furthermore, we extracted nucleic acids from lysed Anopheles gambiae mosquitoes reaching comparable results of eluate purity (LabDisk: A260/A280 = 1.6 ± 0.04; Reference: 1.8 ± 0.17), and RT-PCR of extracted RNA (LabDisk: Ct = 17.9 ± 1.6; Reference: Ct = 19.3 ± 1.7). Conclusively, magnetophoresis at continuous rotation enables easy cartridge integration and nucleic acid extraction at the point-of-need with high yield and purity.
Collapse
Affiliation(s)
- Sebastian Hin
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- IMTEK—Laboratory for MEMS Applications, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Markus Rombach
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Jan Lüddecke
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Mara Specht
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- IMTEK—Laboratory for MEMS Applications, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Konstantinos Mitsakakis
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- IMTEK—Laboratory for MEMS Applications, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
8
|
Liang C, Yang Z, Jiang H. A film-lever actuated switch technology for multifunctional, on-demand, and robust manipulation of liquids. Nat Commun 2022; 13:4902. [PMID: 35987906 PMCID: PMC9391643 DOI: 10.1038/s41467-022-32676-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/11/2022] [Indexed: 11/15/2022] Open
Abstract
A lab-on-a-chip system with Point-of-Care testing capability offers rapid and accurate diagnostic potential and is useful in resource-limited settings where biomedical equipment and skilled professionals are not readily available. However, a Point-of-Care testing system that simultaneously possesses all required features of multifunctional dispensing, on-demand release, robust operations, and capability for long-term reagent storage is still a major challenge. Here, we describe a film-lever actuated switch technology that can manipulate liquids in any direction, provide accurate and proportional release response to the applied pneumatic pressure, as well as sustain robustness during abrupt movements and vibrations. Based on the technology, we also describe development of a polymerase chain reaction system that integrates reagent introduction, mixing and reaction functions all in one process, which accomplishes “sample-in-answer-out” performance for all clinical nasal samples from 18 patients with Influenza and 18 individual controls, in good concordance of fluorescence intensity with standard polymerase chain reaction (Pearson coefficients > 0.9). The proposed platform promises robust automation of biomedical analysis, and thus can accelerate the commercialization of a range of Point-of-Care testing devices. Point-of-care testing offers rapid and accurate diagnostic potential being quite useful in resource-limited settings. Here, authors demonstrate a film-lever actuated switch technology for microfluidic manipulation enabling multifunctional dispensing, on-demand release, robust operation, and long-term storage.
Collapse
|
9
|
A novel method for inward fluid displacement in centrifugal microdevices for highly integrated nucleic acid processing with long-term reagent storage. Anal Chim Acta 2022; 1221:340063. [DOI: 10.1016/j.aca.2022.340063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
|
10
|
Chen FE, Trick AY, Hasnain AC, Hsieh K, Chen L, Shin DJ, Wang TH. Ratiometric PCR in a Portable Sample-to-Result Device for Broad-Based Pathogen Identification. Anal Chem 2022; 94:9372-9379. [PMID: 35730588 DOI: 10.1021/acs.analchem.2c01357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polymerase chain reaction (PCR)-based diagnostic testing is the gold standard method for pathogen identification (ID) with recent developments enabling automated PCR tests for point-of-care (POC) use. However, multiplexed identification of several pathogens in PCR assays typically requires optics for an equivalent number of fluorescence channels, increasing instrumentation's complexity and cost. In this study, we first developed ratiometric PCR that surpassed one target per color barrier to allow multiplexed identification while minimizing optical components for affordable POC use. We realized it by amplifying pathogenic targets with fluorescently labeled hydrolysis probes with a specific ratio of red-to-green fluorophores for each bacterial species. We then coupled ratiometric PCR and automated magnetic beads-based sample preparation within a thermoplastic cartridge and a portable droplet magnetofluidic platform. We named the integrated workflow POC-ratioPCR. We demonstrated that the POC-ratioPCR could detect one out of six bacterial targets related to urinary tract infections (UTIs) in a single reaction using only two-color channels. We further evaluated POC-ratioPCR using mock bacterial urine samples spiked with good agreement. The POC-ratioPCR presents a simple and effective method for enabling broad-based POC PCR identification of pathogens directly from crude biosamples with low optical instrumentation complexity.
Collapse
Affiliation(s)
- Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander C Hasnain
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dong Jin Shin
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Johannsen B, Baumgartner D, Karkossa L, Paust N, Karpíšek M, Bostanci N, Zengerle R, Mitsakakis K. ImmunoDisk—A Fully Automated Bead-Based Immunoassay Cartridge with All Reagents Pre-Stored. BIOSENSORS 2022; 12:bios12060413. [PMID: 35735560 PMCID: PMC9221266 DOI: 10.3390/bios12060413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
In this paper, we present the ImmunoDisk, a fully automated sample-to-answer centrifugal microfluidic cartridge, integrating a heterogeneous, wash-free, magnetic- and fluorescent bead-based immunoassay (bound-free phase detection immunoassay/BFPD-IA). The BFPD-IA allows the implementation of a simple fluidic structure, where the assay incubation, bead separation and detection are performed in the same chamber. The system was characterized using a C-reactive protein (CRP) competitive immunoassay. A parametric investigation on air drying of protein-coupled beads for pre-storage at room temperature is presented. The key parameters were buffer composition, drying temperature and duration. A protocol for drying two different types of protein-coupled beads with the same temperature and duration using different drying buffers is presented. The sample-to-answer workflow was demonstrated measuring CRP in 5 µL of human serum, without prior dilution, utilizing only one incubation step, in 20 min turnaround time, in the clinically relevant concentration range of 15–115 mg/L. A reproducibility assessment over three disk batches revealed an average signal coefficient of variation (CV) of 5.8 ± 1.3%. A CRP certified reference material was used for method verification with a concentration CV of 8.6%. Our results encourage future testing of the CRP-ImmunoDisk in clinical studies and its point-of-care implementation in many diagnostic applications.
Collapse
Affiliation(s)
- Benita Johannsen
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (L.K.); (N.P.); (R.Z.)
- Correspondence: (B.J.); (K.M.); Tel.: +49-761-203-7252 (B.J.); +49-761-203-73252 (K.M.)
| | - Desirée Baumgartner
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;
| | - Lena Karkossa
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (L.K.); (N.P.); (R.Z.)
| | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (L.K.); (N.P.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;
| | - Michal Karpíšek
- BioVendor-Laboratorní Medicína a.s., Research & Diagnostic Products Division, Karasek 1767/1, Reckovice, 62100 Brno, Czech Republic;
- Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 61242 Brno, Czech Republic
| | - Nagihan Bostanci
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden;
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (L.K.); (N.P.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;
| | - Konstantinos Mitsakakis
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (L.K.); (N.P.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;
- Correspondence: (B.J.); (K.M.); Tel.: +49-761-203-7252 (B.J.); +49-761-203-73252 (K.M.)
| |
Collapse
|
12
|
Borrás C. The health technology task group: a visionary’s program. HEALTH AND TECHNOLOGY 2022. [DOI: 10.1007/s12553-022-00678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Otoo JA, Schlappi TS. REASSURED Multiplex Diagnostics: A Critical Review and Forecast. BIOSENSORS 2022; 12:bios12020124. [PMID: 35200384 PMCID: PMC8869588 DOI: 10.3390/bios12020124] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 05/05/2023]
Abstract
The diagnosis of infectious diseases is ineffective when the diagnostic test does not meet one or more of the necessary standards of affordability, accessibility, and accuracy. The World Health Organization further clarifies these standards with a set of criteria that has the acronym ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users). The advancement of the digital age has led to a revision of the ASSURED criteria to REASSURED: Real-time connectivity, Ease of specimen collection, Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free or simple, and Deliverable to end-users. Many diagnostic tests have been developed that aim to satisfy the REASSURED criteria; however, most of them only detect a single target. With the progression of syndromic infections, coinfections and the current antimicrobial resistance challenges, the need for multiplexed diagnostics is now more important than ever. This review summarizes current diagnostic technologies for multiplexed detection and forecasts which methods have promise for detecting multiple targets and meeting all REASSURED criteria.
Collapse
|
14
|
Gradisteanu Pircalabioru G, Iliescu FS, Mihaescu G, Cucu AI, Ionescu ON, Popescu M, Simion M, Burlibasa L, Tica M, Chifiriuc MC, Iliescu C. Advances in the Rapid Diagnostic of Viral Respiratory Tract Infections. Front Cell Infect Microbiol 2022; 12:807253. [PMID: 35252028 PMCID: PMC8895598 DOI: 10.3389/fcimb.2022.807253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
Viral infections are a significant public health problem, primarily due to their high transmission rate, various pathological manifestations, ranging from mild to severe symptoms and subclinical onset. Laboratory diagnostic tests for infectious diseases, with a short enough turnaround time, are promising tools to improve patient care, antiviral therapeutic decisions, and infection prevention. Numerous microbiological molecular and serological diagnostic testing devices have been developed and authorised as benchtop systems, and only a few as rapid miniaturised, fully automated, portable digital platforms. Their successful implementation in virology relies on their performance and impact on patient management. This review describes the current progress and perspectives in developing micro- and nanotechnology-based solutions for rapidly detecting human viral respiratory infectious diseases. It provides a nonexhaustive overview of currently commercially available and under-study diagnostic testing methods and discusses the sampling and viral genetic trends as preanalytical components influencing the results. We describe the clinical performance of tests, focusing on alternatives such as microfluidics-, biosensors-, Internet-of-Things (IoT)-based devices for rapid and accurate viral loads and immunological responses detection. The conclusions highlight the potential impact of the newly developed devices on laboratory diagnostic and clinical outcomes.
Collapse
Affiliation(s)
| | - Florina Silvia Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
| | | | | | - Octavian Narcis Ionescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
- Petroleum-Gas University of Ploiesti, Ploiesti, Romania
| | - Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
| | - Monica Simion
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
| | | | - Mihaela Tica
- Emergency University Hospital, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, Bucharest, Romania
| |
Collapse
|
15
|
Fernandez-Cuesta I, Llobera A, Ramos-Payán M. Optofluidic systems enabling detection in real samples: A review. Anal Chim Acta 2022; 1192:339307. [DOI: 10.1016/j.aca.2021.339307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
|
16
|
Ducrée J. Systematic review of centrifugal valving based on digital twin modeling towards highly integrated lab-on-a-disc systems. MICROSYSTEMS & NANOENGINEERING 2021; 7:104. [PMID: 34987859 PMCID: PMC8677742 DOI: 10.1038/s41378-021-00317-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 05/07/2023]
Abstract
Current, application-driven trends towards larger-scale integration (LSI) of microfluidic systems for comprehensive assay automation and multiplexing pose significant technological and economical challenges to developers. By virtue of their intrinsic capability for powerful sample preparation, centrifugal systems have attracted significant interest in academia and business since the early 1990s. This review models common, rotationally controlled valving schemes at the heart of such "Lab-on-a-Disc" (LoaD) platforms to predict critical spin rates and reliability of flow control which mainly depend on geometries, location and liquid volumes to be processed, and their experimental tolerances. In absence of larger-scale manufacturing facilities during product development, the method presented here facilitates efficient simulation tools for virtual prototyping and characterization and algorithmic design optimization according to key performance metrics. This virtual in silico approach thus significantly accelerates, de-risks and lowers costs along the critical advancement from idea, layout, fluidic testing, bioanalytical validation, and scale-up to commercial mass manufacture.
Collapse
Affiliation(s)
- Jens Ducrée
- School of Physical Sciences, Dublin City University, Dublin, Ireland
| |
Collapse
|
17
|
Cunha ML, da Silva SS, Stracke MC, Zanette DL, Aoki MN, Blanes L. Sample Preparation for Lab-on-a-Chip Systems in Molecular Diagnosis: A Review. Anal Chem 2021; 94:41-58. [PMID: 34870427 DOI: 10.1021/acs.analchem.1c04460] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid and low-cost molecular analysis is especially required for early and specific diagnostics, quick decision-making, and sparing patients from unnecessary tests and hospitals from extra costs. One way to achieve this objective is through automated molecular diagnostic devices. Thus, sample-to-answer microfluidic devices are emerging with the promise of delivering a complete molecular diagnosis system that includes nucleic acid extraction, amplification, and detection steps in a single device. The biggest issue in such equipment is the extraction process, which is normally laborious and time-consuming but extremely important for sensitive and specific detection. Therefore, this Review focuses on automated or semiautomated extraction methodologies used in lab-on-a-chip devices. More than 15 different extraction methods developed over the past 10 years have been analyzed in terms of their advantages and disadvantages to improve extraction procedures in future studies. Herein, we are able to explain the high applicability of the extraction methodologies due to the large variety of samples in which different techniques were employed, showing that their applications are not limited to medical diagnosis. Moreover, we are able to conclude that further research in the field would be beneficial because the methodologies presented can be affordable, portable, time efficient, and easily manipulated, all of which are strong qualities for point-of-care technologies.
Collapse
Affiliation(s)
- Mylena Lemes Cunha
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Stella Schuster da Silva
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Mateus Cassaboni Stracke
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010.,Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010.,Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| |
Collapse
|
18
|
Baumgartner D, Johannsen B, Specht M, Lüddecke J, Rombach M, Hin S, Paust N, von Stetten F, Zengerle R, Herz C, Peham JR, Paqué PN, Attin T, Jenzer JS, Körner P, Schmidlin PR, Thurnheer T, Wegehaupt FJ, Kaman WE, Stubbs A, Hays JP, Rusu V, Michie A, Binsl T, Stejskal D, Karpíšek M, Bao K, Bostanci N, Belibasakis GN, Mitsakakis K. OralDisk: A Chair-Side Compatible Molecular Platform Using Whole Saliva for Monitoring Oral Health at the Dental Practice. BIOSENSORS 2021; 11:bios11110423. [PMID: 34821641 PMCID: PMC8615610 DOI: 10.3390/bios11110423] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 05/04/2023]
Abstract
Periodontitis and dental caries are two major bacterially induced, non-communicable diseases that cause the deterioration of oral health, with implications in patients' general health. Early, precise diagnosis and personalized monitoring are essential for the efficient prevention and management of these diseases. Here, we present a disk-shaped microfluidic platform (OralDisk) compatible with chair-side use that enables analysis of non-invasively collected whole saliva samples and molecular-based detection of ten bacteria: seven periodontitis-associated (Aggregatibacter actinomycetemcomitans, Campylobacter rectus, Fusobacterium nucleatum, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola) and three caries-associated (oral Lactobacilli, Streptococcus mutans, Streptococcus sobrinus). Each OralDisk test required 400 µL of homogenized whole saliva. The automated workflow included bacterial DNA extraction, purification and hydrolysis probe real-time PCR detection of the target pathogens. All reagents were pre-stored within the disk and sample-to-answer processing took < 3 h using a compact, customized processing device. A technical feasibility study (25 OralDisks) was conducted using samples from healthy, periodontitis and caries patients. The comparison of the OralDisk with a lab-based reference method revealed a ~90% agreement amongst targets detected as positive and negative. This shows the OralDisk's potential and suitability for inclusion in larger prospective implementation studies in dental care settings.
Collapse
Affiliation(s)
- Desirée Baumgartner
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Correspondence: (K.M.); (D.B.); Tel.: +49-761-203-73252 (K.M.); +49-761-203-98724 (D.B.)
| | - Benita Johannsen
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Mara Specht
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Jan Lüddecke
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Markus Rombach
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Sebastian Hin
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Christopher Herz
- AIT Austrian Institute of Technology, Molecular Diagnostics, Giefinggasse 4, 1210 Wien, Austria; (C.H.); (J.R.P.)
| | - Johannes R. Peham
- AIT Austrian Institute of Technology, Molecular Diagnostics, Giefinggasse 4, 1210 Wien, Austria; (C.H.); (J.R.P.)
| | - Pune N. Paqué
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Joël S. Jenzer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Philipp Körner
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Patrick R. Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Florian J. Wegehaupt
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Wendy E. Kaman
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre Rotterdam (Erasmus MC), 3015 CN Rotterdam, The Netherlands; (W.E.K.); (J.P.H.)
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Free University of Amsterdam and University of Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Andrew Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Centre Rotterdam (Erasmus MC), 3015 CN Rotterdam, The Netherlands;
| | - John P. Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre Rotterdam (Erasmus MC), 3015 CN Rotterdam, The Netherlands; (W.E.K.); (J.P.H.)
| | - Viorel Rusu
- Magtivio B.V., Daelderweg 9, 6361 HK Nuth, The Netherlands;
| | - Alex Michie
- ClinicaGeno Ltd., 11 Station Approach, Coulsdon CR5 2NR, UK; (A.M.); (T.B.)
| | - Thomas Binsl
- ClinicaGeno Ltd., 11 Station Approach, Coulsdon CR5 2NR, UK; (A.M.); (T.B.)
| | - David Stejskal
- Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava, Czech Republic;
- Institute of Laboratory Diagnostics, University Hospital Ostrava, 17. Listopadu 1790/5, 70800 Ostrava, Czech Republic
| | - Michal Karpíšek
- BioVendor-Laboratorní Medicína a.s., Research & Diagnostic Products Division, Karasek 1767/1, Reckovice, 62100 Brno, Czech Republic;
- Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 61242 Brno, Czech Republic
| | - Kai Bao
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (N.B.); (G.N.B.)
| | - Nagihan Bostanci
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (N.B.); (G.N.B.)
| | - Georgios N. Belibasakis
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (N.B.); (G.N.B.)
| | - Konstantinos Mitsakakis
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Correspondence: (K.M.); (D.B.); Tel.: +49-761-203-73252 (K.M.); +49-761-203-98724 (D.B.)
| |
Collapse
|
19
|
Sunkara V, Kumar S, Sabaté del Río J, Kim I, Cho YK. Lab-on-a-Disc for Point-of-Care Infection Diagnostics. Acc Chem Res 2021; 54:3643-3655. [PMID: 34516092 DOI: 10.1021/acs.accounts.1c00367] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reliable, inexpensive, and rapid diagnostic tools are essential to control and prevent the spread of infectious diseases. Many commercial kits for coronavirus disease 2019 (COVID-19) diagnostics have played a crucial role in the fight against the COVID-19 pandemic. Most current standard in vitro diagnostic (IVD) protocols for infectious diseases are sensitive but time-consuming and require sophisticated laboratory equipment and specially trained personnel. Recent advances in biosensor technology suggest the potential to deliver point-of-care (POC) diagnostics that are affordable and provide accurate results in a short time. The ideal "sample-in-answer-out" type fully integrated POC infection diagnostic platforms are expected to be autonomous or easy-to-operate, equipment-free or infrastructure-independent, and high-throughput or easy to upscale. In this Account, we detail the recent progress made by our group and others in the development of centrifugal microfluidic devices or lab-on-a-disc (LOAD) systems. Unlike conventional pump-based fluid actuation, the centrifugal force generated by spinning the disc induces liquid pumping and no external fluidic interconnects are required. This allows a total fluidic network required for multiple steps of biological assays to be integrated on a disc, enabling fully automated POC diagnostics. Various applications have been demonstrated, including liquid biopsy for personalized cancer management, food applications, and environmental monitoring; here, we focus on IVD for infectious disease. First, we introduce various on-disc unit operation technologies, including reagent storage, sedimentation, filtration, valving, decanting, aliquoting, mixing, separation, serial dilution, washing, and calibration. Such centrifugal microfluidic technologies have already proved promising for micro-total-analysis systems for automated IVD ranging from molecular detection of pathogens to multiplexed enzyme-linked immunosorbent assays (ELISAs) that use raw samples such as whole blood or saliva. Some recent examples of LOAD systems for molecular diagnostics in which some or all steps of the assays are integrated on a disc, including pathogen enrichment, nucleic acid extraction, amplification, and detection, are discussed in detail. We then introduce fully automated ELISA systems with enhanced sensitivity. Furthermore, we demonstrate a toy-inspired fidget spinner that enables electricity-free and rapid analysis of pathogens from undiluted urine samples of patients with urinary tract infection symptoms and a phenotypic antimicrobial susceptibility test for an extreme POC diagnostics application. Considering the urgent need for cost-effective and reliable POC infection diagnostic tools, especially in the current pandemic crisis, the current limitations and future directions of fast and broad adaptation in real-world settings are also discussed. With proper attention to key challenges and leverage with recent advances in bio-sensing technologies, molecular biology, nanomaterials, analytical chemistry, miniaturization, system integration, and data management, LOAD systems hold the potential to deliver POC infection diagnostic tools with unprecedented performance regarding time, accuracy, and cost. We hope the new insight and promise of LOAD systems for POC infection diagnostics presented in this Account can spark new ideas and inspire further research and development to create better healthcare systems for current and future pandemics.
Collapse
Affiliation(s)
- Vijaya Sunkara
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jonathan Sabaté del Río
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Insu Kim
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
20
|
Design Optimization of Centrifugal Microfluidic “Lab-on-a-Disc” Systems towards Fluidic Larger-Scale Integration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enhancing the degree of functional multiplexing while assuring operational reliability and manufacturability at competitive costs are crucial ingredients for enabling comprehensive sample-to-answer automation, e.g., for use in common, decentralized “Point-of-Care” or “Point-of-Use” scenarios. This paper demonstrates a model-based “digital twin” approach, which efficiently supports the algorithmic design optimization of exemplary centrifugo-pneumatic (CP) dissolvable-film (DF) siphon valves toward larger-scale integration (LSI) of well-established “Lab-on-a-Disc” (LoaD) systems. Obviously, the spatial footprint of the valves and their upstream laboratory unit operations (LUOs) have to fit, at a given radial position prescribed by its occurrence in the assay protocol, into the locally accessible disc space. At the same time, the retention rate of a rotationally actuated CP-DF siphon valve and, most challengingly, its band width related to unavoidable tolerances of experimental input parameters need to slot into a defined interval of the practically allowed frequency envelope. To accomplish particular design goals, a set of parametrized metrics is defined, which are to be met within their practical boundaries while (numerically) minimizing the band width in the frequency domain. While each LSI scenario needs to be addressed individually on the basis of the digital twin, a suite of qualitative design rules and instructive showcases structures are presented.
Collapse
|
21
|
Ducrée J. Secure Air Traffic Control at the Hub of Multiplexing on the Centrifugo-Pneumatic Lab-on-a-Disc Platform. MICROMACHINES 2021; 12:700. [PMID: 34203926 PMCID: PMC8232791 DOI: 10.3390/mi12060700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Fluidic larger-scale integration (LSI) resides at the heart of comprehensive sample-to-answer automation and parallelization of assay panels for frequent and ubiquitous bioanalytical testing in decentralized point-of-use/point-of-care settings. This paper develops a novel "digital twin" strategy with an emphasis on rotational, centrifugo-pneumatic flow control. The underlying model systematically connects retention rates of rotationally actuated valves as a key element of LSI to experimental input parameters; for the first time, the concept of band widths in frequency space as the decisive quantity characterizing operational robustness is introduced, a set of quantitative performance metrics guiding algorithmic optimization of disc layouts is defined, and the engineering principles of advanced, logical flow control and timing are elucidated. Overall, the digital twin enables efficient design for automating multiplexed bioassay protocols on such "Lab-on-a-Disc" (LoaD) systems featuring high packing density, reliability, configurability, modularity, and manufacturability to eventually minimize cost, time, and risk of development and production.
Collapse
Affiliation(s)
- Jens Ducrée
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
22
|
Mitsakakis K. Novel lab-on-a-disk platforms: a powerful tool for molecular fingerprinting of oral and respiratory tract infections. Expert Rev Mol Diagn 2021; 21:523-526. [PMID: 33902369 DOI: 10.1080/14737159.2021.1920400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Konstantinos Mitsakakis
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Schwaminger S, Rottmueller ME, Fischl R, Kalali B, Berensmeier S. Detection of targeted bacteria species on filtration membranes. Analyst 2021; 146:3549-3556. [PMID: 33899848 DOI: 10.1039/d1an00117e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The detection of pathogens in aquatic environments issues a time-consuming challenge, but it is an essential task to prevent the spread of diseases. We have developed a new point-of-care (POC) method for the fast and efficient detection of Legionella pneumophila in water. The method consists first of the generation of immunocomplexes of bacteria species with its corresponding targeted fluorescence-labelled serogroup-specific antibodies, and second a concentration step of pathogens with a membrane filter. Third, on the filtration membrane, our method can detect the fluorescence intensity corresponding to the pathogen concentration. Thus selective and efficient evidence for the presence of bacteria can be evaluated. We tested our system on fluorescent Escherichia coli bacteria and were able to reach an accurate determination of 1000 cells. The technique was furthermore tested on Legionella pneumophila cells, which were labelled with fluorescence-labelled antibodies as a proof of principle. Furthermore, we were able to verify this method in the presence of other bacteria species. We were able to detect bacteria cells within half an hour, a substantial advancement compared to the prevailling state of the art detection method based on the cultivation of Legionella pneumophila. Hence, this system represents the basis for future developments in analysis of pathogens.
Collapse
Affiliation(s)
- Sebastian Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | - Marina E Rottmueller
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | - Ramona Fischl
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | - Behnam Kalali
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
24
|
Scott SM, Ali Z. Fabrication Methods for Microfluidic Devices: An Overview. MICROMACHINES 2021; 12:319. [PMID: 33803689 PMCID: PMC8002879 DOI: 10.3390/mi12030319] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/20/2022]
Abstract
Microfluidic devices offer the potential to automate a wide variety of chemical and biological operations that are applicable for diagnostic and therapeutic operations with higher efficiency as well as higher repeatability and reproducibility. Polymer based microfluidic devices offer particular advantages including those of cost and biocompatibility. Here, we describe direct and replication approaches for manufacturing of polymer microfluidic devices. Replications approaches require fabrication of mould or master and we describe different methods of mould manufacture, including mechanical (micro-cutting; ultrasonic machining), energy-assisted methods (electrodischarge machining, micro-electrochemical machining, laser ablation, electron beam machining, focused ion beam (FIB) machining), traditional micro-electromechanical systems (MEMS) processes, as well as mould fabrication approaches for curved surfaces. The approaches for microfluidic device fabrications are described in terms of low volume production (casting, lamination, laser ablation, 3D printing) and high-volume production (hot embossing, injection moulding, and film or sheet operations).
Collapse
Affiliation(s)
| | - Zulfiqur Ali
- Healthcare Innovation Centre, School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK
| |
Collapse
|
25
|
VectorDisk: A Microfluidic Platform Integrating Diagnostic Markers for Evidence-Based Mosquito Control. Processes (Basel) 2020. [DOI: 10.3390/pr8121677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Effective mosquito monitoring relies on the accurate identification and characterization of the target population. Since this process requires specialist knowledge and equipment that is not widely available, automated field-deployable systems are highly desirable. We present a centrifugal microfluidic cartridge, the VectorDisk, which integrates TaqMan PCR assays in two feasibility studies, aiming to assess multiplexing capability, specificity, and reproducibility in detecting disk-integrated vector-related assays. In the first study, pools of 10 mosquitoes were used as samples. We tested 18 disks with 27 DNA and RNA assays each, using a combination of multiple microfluidic chambers and detection wavelengths (geometric and color multiplexing) to identify mosquito and malaria parasite species as well as insecticide resistance mechanisms. In the second study, purified nucleic acids served as samples to test arboviral and malaria infective mosquito assays. Nine disks were tested with 14 assays each. No false positive results were detected on any of the disks. The coefficient of variation in reproducibility tests was <10%. The modular nature of the platform, the easy adaptation of the primer/probe panels, the cold chain independence, the rapid (2–3 h) analysis, and the assay multiplexing capacity are key features, rendering the VectorDisk a potential candidate for automated vector analysis.
Collapse
|
26
|
Belibasakis GN, Lund BK, Krüger Weiner C, Johannsen B, Baumgartner D, Manoil D, Hultin M, Mitsakakis K. Healthcare Challenges and Future Solutions in Dental Practice: Assessing Oral Antibiotic Resistances by Contemporary Point-Of-Care Approaches. Antibiotics (Basel) 2020; 9:E810. [PMID: 33202544 PMCID: PMC7696509 DOI: 10.3390/antibiotics9110810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Antibiotic resistance poses a global threat, which is being acknowledged at several levels, including research, clinical implementation, regulation, as well as by the World Health Organization. In the field of oral health, however, the issue of antibiotic resistances, as well as of accurate diagnosis, is underrepresented. Oral diseases in general were ranked third in terms of expenditures among the EU-28 member states in 2015. Yet, the diagnosis and patient management of oral infections, in particular, still depend primarily on empiric means. On the contrary, on the global scale, the field of medical infections has more readily adopted the integration of molecular-based systems in the diagnostic, patient management, and antibiotic stewardship workflows. In this perspective review, we emphasize the clinical significance of supporting in the future antibiotic resistance screening in dental practice with novel integrated and point-of-care operating tools that can greatly support the rapid, accurate, and efficient administration of oral antibiotics.
Collapse
Affiliation(s)
- Georgios N. Belibasakis
- Department of Dental Medicine, Karolinska Institutet, Alfred Nobels allè 8, 14104 Stockholm, Sweden; (B.K.L.); (C.K.W.); (D.M.); (M.H.)
| | - Bodil K. Lund
- Department of Dental Medicine, Karolinska Institutet, Alfred Nobels allè 8, 14104 Stockholm, Sweden; (B.K.L.); (C.K.W.); (D.M.); (M.H.)
- Department of Clinical Dentistry, University of Bergen, 5009 Bergen, Norway
- Department of Oral and Maxillofacial Surgery, Haukeland University Hospital, 5021 Bergen, Norway
| | - Carina Krüger Weiner
- Department of Dental Medicine, Karolinska Institutet, Alfred Nobels allè 8, 14104 Stockholm, Sweden; (B.K.L.); (C.K.W.); (D.M.); (M.H.)
- Department of Oral and Maxillofacial Surgery, Folktandvården Stockholm, Eastman Institutet, 11324 Stockholm, Sweden
| | - Benita Johannsen
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;
| | - Desirée Baumgartner
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;
| | - Daniel Manoil
- Department of Dental Medicine, Karolinska Institutet, Alfred Nobels allè 8, 14104 Stockholm, Sweden; (B.K.L.); (C.K.W.); (D.M.); (M.H.)
| | - Margareta Hultin
- Department of Dental Medicine, Karolinska Institutet, Alfred Nobels allè 8, 14104 Stockholm, Sweden; (B.K.L.); (C.K.W.); (D.M.); (M.H.)
| | - Konstantinos Mitsakakis
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany;
| |
Collapse
|