1
|
Yao P, Lei Z, Liu C, Bian Y, Wu J, He S, Zeng X. A highly sensitive ratiometric fluorescence probe for sensing and imaging sulfite in food samples and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124540. [PMID: 38824754 DOI: 10.1016/j.saa.2024.124540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
In this work, a ratiometric and chromogenic fluorescent probe 1 was synthesized for the detection of SO32-. The probe 1 at PBS (10 mM, pH = 7.4) presented a marked emission band at 661 nm. Upon addition of SO32- ions, a highly emissive adduct with a marked fluorescence at 471 nm were obtained through a Michael addition. The probe 1 displayed a noticeable fluorescence ratiometric response with a large shift (190 nm) in emission wavelength. The probe can quantitatively detect SO32- with high specificity, fast response (within 130 s) as well as low detection limit (13 nM), and a large Stokes shift (139 nm). Fluorescence imaging of HeLa cells indicated that 1 could be used for monitoring the intrinsically generated intracellular SO32- in living cells by ratiometric fluorescence imaging. Furthermore, 1 could be application in real water and sugar samples with high sensitivity and good recoveries.
Collapse
Affiliation(s)
- Peiyu Yao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhaoxia Lei
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yaye Bian
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jianhong Wu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
2
|
Ma X, Zhang X, Zhang B, Yang D, Sun H, Tang Y, Shi L. Dual-responsive fluorescence probe for measuring HSO 3- and viscosity and its application in living cells and real foods. Food Chem 2024; 430:136930. [PMID: 37527580 DOI: 10.1016/j.foodchem.2023.136930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023]
Abstract
Microenvironmental indicators in organisms drive the operation of different physiological functions. In contrast, disruption of microenvironmental homeostasis is often closely associated with various pathological processes. A novel dual-response fluorescent probe based on hemicyanine dye (HT-Bzh) was designed and synthesized for the detection of HSO3- and viscosity changes. The probe not only provides high sensitivity (limit of detection = 0.2526 μM) for the detection of HSO3- using the Michael addition reaction, but also allows the observation of fluorescence emission at 528 nm and thus the monitoring of viscosity changes through hindering of the twisted intramolecular charge transfer (TICT) mechanism. Additionally, dual-response probe has been successfully used to image living cells and detect real food samples. As a new designed tool, HT-Bzh shows excellent anti-interference capability and biocompatibility, which makes it have application potential in other biological systems and in-vivo imaging.
Collapse
Affiliation(s)
- Xiaoying Ma
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Xiufeng Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Buyue Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Dawei Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongxia Sun
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Shi
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
3
|
Reversible colorimetric and NIR fluorescent probe for sensing SO 2/H 2O 2 in living cells and food samples. Food Chem 2023; 407:135031. [PMID: 36473352 DOI: 10.1016/j.foodchem.2022.135031] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Preservative sulfur dioxide (SO2) and bleach hydrogen peroxide (H2O2) were widely used in the food industry, at the same time, they were also a redox pair in biological systems. Therefore, the reversible sensing SO2/H2O2 was of great significance in food safety and biology. In this paper, a colorimetric and NIR fluorescent dual channels response probe (DCA-Bba) for SO2/H2O2 based on chromene-barbiturate was developed. DCA-Bba exhibited a rapid and sensitive recognition of SO2, and the adduct DCA-Bba-HSO3- could detect H2O2 in PBS (with 10 % DMSO, v/v, pH 7.4) solution. The reversible response of DCA-Bba was implemented by HSO3- involved 1,4-addition and H2O2 induced elimination reaction. DCA-Bba showed a strong red fluorescence based on the intramolecular charge transfer (ICT) process, after the recognition of SO2, the fluorescence of the adduct was quenched based on the photoinduced electron transfer (PET) process. And importantly, DCA-Bba had been applied for imaging SO2/H2O2 redox cycles in living cells, as well as could detect the levels of SO2 in white sugar, biscuit, Chinese liquor and red wine samples.
Collapse
|
4
|
Du Y, Pan C, Cao C. A mitochondria-targetable fluorescent probe for sulfur dioxide detection and visualisation in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122275. [PMID: 36580753 DOI: 10.1016/j.saa.2022.122275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Sulfur dioxide (SO2) is a one of reactive sulfur species (RSS) that plays significant roles in many physiological processes. While abnormal levels of SO2 in mitochondria have been related to various diseases. Hence, developing suitable fluorescent probe for monitoring SO2 is significant in living organisms. In this research, we designed and synthesized a mitochondrial-target probe Mito-NPH featuring the graft of a strong electron-withdrawing 4-pyridiniumylacrylonitrile unit to an electron-donating naphthalenic unit that intramolecular charge transfer (ICT) process happened. The probe Mito-NPH underwent a nucleophilic addition of HSO3-/SO32-to give fluorescent emission signal change from red to blue and exhibited specific response toward HSO3-/SO32-over other analytes. Moreover, Mito-NPH showed ultrafast response rate (within 10 s) for HSO3-. Importantly, cell imaging results demonstrated that the probe can sense endogenous SO2 in mitochondria.
Collapse
Affiliation(s)
- Yuting Du
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China.
| | - Caixia Pan
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Chunjuan Cao
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| |
Collapse
|
5
|
Water-soluble dual lysosome/mitochondria-targeted fluorescent probe for detection of SO2 in water, food, herb, and live cells. Bioorg Chem 2022; 129:106189. [DOI: 10.1016/j.bioorg.2022.106189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022]
|
6
|
Liu J, Wang L, Shen R, Zhao J, Qian Y. A novel heptamethine cyanine photosensitizer for FRET-amplified photodynamic therapy and two-photon imaging in A-549 cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121083. [PMID: 35248855 DOI: 10.1016/j.saa.2022.121083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
In this study, a new cyanine-based photosensitizer Cy-N-Rh was developed for photodynamic therapy. Based on fluorescence resonance energy transfer (FRET) mechanism, utilizing the absorption of the donor rhodamine (Rh), the acceptor heptamethine cyanine unit (Cy) was indirectly excited to produce singlet oxygen (1O2). The efficiency of energy transfer from the donor Rh to the acceptor Cy was 78.5%. Meanwhile, the singlet oxygen yield of Cy-N-Rh (ΦΔ = 12.00%) was much higher than that of the acceptor Cy (ΦΔ = 4.35%) without FRET. Moreover, the dual cation gave Cy-N-Rh with excellent mitochondria-targeting ability with Pearson's correlation coefficients of 0.90 and 0.91, respectively. In the MTT test, Cy-N-Rh had low dark cytotoxicity with cell survival rate above 90% and high photo cytotoxicity with cell survival rate below 40%. The cell apoptosis assay also demonstrated the role of the photosensitizer Cy-N-R visually. More importantly, Cy-N-Rh fulfilled two-photon excitation fluorescence imaging under the 800 nm femtosecond laser. All results indicate that this design strategy provides a new method for the development of higher-level cyanine photosensitizers.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lingfeng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ronghua Shen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
7
|
A near-infrared fluorescent probe targeting mitochondria for real-time visualization of SO2/formaldehyde in living cells, zebrafish. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Shang Z, Liu J, Meng Q, Wang Y, Zhang C, Zhang Z. A near-infrared emitted fluorescence probe for the detection of biosulfite in live zebrafish, mouse and real food samples. Methods 2022; 204:47-54. [PMID: 35447358 DOI: 10.1016/j.ymeth.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Bisulfite (HSO3-) has been widely used as an important food additive in daily life. Furthermore, a normal amount of HSO3- plays a significant role in biological systems. However, excessive intake of HSO3- will lead to a variety of diseases. Therefore, it is of great significance to develop an efficient fluorescent probe that can be used for detection of HSO3- in biological systems and food samples. In this work, a near-infrared (NIR) emitted fluorescent probe (SZY) based on hemicyanine dye was successfully synthesized and applied to detect HSO3- in several food samples and live animals. The proposed nucleophilic addition sensing mechanism of SZY towards HSO3- has been confirmed by 1H NMR titration, high resolution mass spectrometry (HR-MS) and density functional theory (DFT) theoretical computation. The HSO3--induced nucleophilic reaction with α,β-unsaturated C=C binding of SZY results in the dramatic decline of the UV-vis absorption and remarkable quenching of the fluorescence emission. SZY features the advantages of near infrared emission (centered at 720 nm), high water solubility (in 98% aqueous solution), fast response time (50 s), large Stokes shift (244 nm) and low cytotoxicity. The probe SZY was successfully applied to image of HSO3- in live nude mouse and adult zebrafish. Semi-quantitatively analyzing the HSO3- level by "naked eye" in several food samples including canned fruit, white wine, white sugar and jasmine tea drinks has been realized by the colorimetric method.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Jianhua Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China; Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Cheng Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| |
Collapse
|
9
|
Zhang X, Zhang L, Liu S, Zhu X, Zhou P, Cheng X, Zhang R, Zhang L, Chen L. Insight into sulfur dioxide and its derivatives metabolism in living system with visualized evidences via ultra-sensitive fluorescent probe. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127179. [PMID: 34544003 DOI: 10.1016/j.jhazmat.2021.127179] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Sulfur dioxide (SO2) and its derivatives have long been considered as hazardous environmental pollutants but commonly used as food additives in safe dose range. They also could be produced from biological metabolism process of sulfur-containing amino acids. However, their physiological roles remain extremely obscure mainly due to lack of efficient tools for monitoring and imaging strategy establishment. Furthermore, most of current studies of this aspect focus on novel probe design or just imaging them rather than on the ins and outs. Therefore, there is a high significance of establishing highly sensitive detection strategy for monitoring SO2 derivatives in living systems, food and environment. Herein, we design a fluorescent probe MS-Bindol for sensitively detecting SO2 derivatives with a low detection limit (0.2 nM). We have established an imaging strategy for investigation of SO2 derivatives metabolism in living cells and zebrafish, providing visualize evidences and verified that SO2 derivatives could be synthetized from thiosulfate and glutathione(GSH) and be hardly consumed by using sulfite oxidase inhibitors (ferricyanide or arsenite). Moreover, the probe also exhibits excellent practicability in food as well as environmental samples. Our studies may help biologist for better understanding SO2 derivatives metabolism and deeply explore their physiological roles in biological systems.
Collapse
Affiliation(s)
- Xia Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaozhen Zhu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Panpan Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinyan Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Renjie Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
10
|
Chao J, Wang Z, Zhang T, Zhang Y, Huo F. Optimizing the framework of indolium hemicyanine to detect sulfur dioxide targeting mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120444. [PMID: 34601365 DOI: 10.1016/j.saa.2021.120444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Endogenous sulfur dioxide (SO2) is mainly produced by the enzymatic reaction of sulfur-containing amino acids in mitochondria, which has unique biological activity in inflammatory reaction, regulating blood pressure and maintaining the homeostasis of biological sulfur. It is more and more common to detect monitor SO2 levels by fluorescence probe. In recent years, the indolium hemicyanine skeleton based on the D-π-A structure has been widely used in the development of fluorescent sensors for the detection of SO2. However, subtle changes in the chemical structure of indolium may cause significant differences in SO2 sensing behavior. In this article, we designed and synthesized two probes with different lipophilicities to further study the relationship between the structure and optical properties of hemicyanine dyes. On the basis of previous studies, the structure of indolium hemicyanine skeleton was optimized by introducing -OH group, so that MC-1 and MC-2 had the best response to SO32- in pure PBS system. In addition, the lipophilicity of MC-2 was better than that of MC-1, which enabled it to respond quickly to SO32- and better target mitochondria for SO2 detection. Most importantly, the low detection limits of MC-1 and MC-2 conducive to the detection of endogenous SO2. This work provided an idea for developing SO2 fluorescent sensors with excellent water solubility and low detection limit.
Collapse
Affiliation(s)
- Jianbin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, PR China.
| | - Zhuo Wang
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, PR China; School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Ting Zhang
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, PR China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, PR China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, PR China
| |
Collapse
|
11
|
Wang X, Sun Q, Song X, Wang Y, Hu W. Development of a ratiometric nitric oxide probe with baseline resolved emissions by an ESIPT and rhodol ring opened-closed integrated two-photon platform. RSC Adv 2022; 12:2721-2728. [PMID: 35425308 PMCID: PMC8979048 DOI: 10.1039/d1ra08426g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
In recent years, reflecting the degree of cellular inflammation through in situ monitoring of nitric oxide using fluorescence sensing has received much attention due to many merits such as non-invasiveness and easy operation. In particular, two-photon excitation microscopy can significantly improve the imaging resolution and visualization time. In the meantime, a ratiometric-based nitric oxide fluorescent sensor can avoid the interference of many factors, including light source intensity, solvent scattering degree, solvent color, solvent viscosity, probe distribution, and instrument performance, and improve the accuracy of the result. However, the mutual interference of two emission peaks is still an issue restricting the development of this field. In this work, the Rh-NO-F dye obtained by modifying the rhodol dye with benzothiazole exhibited excited state intramolecular proton transfer (ESIPT) in the closed ring state. In the open ring state, however, the emission wavelength can be significantly red-shifted by increasing the degree of dye conjugation. By introducing o-phenylenediamine, the recognition domain of NO, we successfully designed and synthesized a ratiometric two-photon NO fluorescent probe, Rh-NO-P, which showed a 154 nm increase in the maximum emission wavelength before and after the response and almost no interference between the two emission peaks. Confocal imaging showed that the probe could achieve in situ detection of exogenous NO fluctuations in cells. The probe was also successfully applied to detect the changes in NO content during wound healing in mice.
Collapse
Affiliation(s)
- Xumei Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 China
| | - Qi Sun
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 China
| | - Xinjian Song
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 China
| | - Yan Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, School of Chemical and Environmental Engineering, Hubei Minzu University Enshi 445000 China
| | - Wei Hu
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology Xi'an 710021 China
| |
Collapse
|
12
|
Feng GL, Liu YC, Ji YM, Zhou W, Li XF, Hou M, Gao JL, Zhang Y, Xing GW. Water-soluble AIE-active fluorescent organic nanoparticles for ratiometric detection of SO2 in mitochondria of living cells. Chem Commun (Camb) 2022; 58:6618-6621. [DOI: 10.1039/d2cc02168d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a water-soluble AIEgen (TYDL) to be self-assembled into fluorescent organic nanoparticles (TYDLs) for specific sensing of SO2 in living hepatoma cells. It is demonstrated that TYDLs were suitable...
Collapse
|
13
|
Yang L, Li M, Wang Y, Zhang Y, Liu Z, Ruan S, Wang Z, Wang S. An isocamphanyl-based fluorescent "turn-on" probe for highly sensitive and selective detection of Ga 3+ and application in vivo and in vitro. Analyst 2021; 146:7294-7305. [PMID: 34749386 DOI: 10.1039/d1an01368h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel fluorescent probe 2-(4-(diethylamino)-2-hydroxybenzylidene)-N-(2,3,3-trimethylbicyclo[2.2.1]heptan-2-yl)hydrazinecarbothioamide (HT) was prepared in this study by a condensation reaction. HT has been confirmed to possess high specificity toward Ga3+ over other metal ions (including Al3+ and In3+) via a distinct fluorescence light-up response. Moreover, HT exhibited good detection performances for Ga3+ including high selectivity, excellent anti-interference ability, a wide working pH range, and good reversibility. The association constant and limit of detection (LOD) were calculated to be 5.34 × 103 M-1 and 1.18 × 10-6 M, respectively. The detection mechanism of HT toward Ga3+ was proposed and confirmed by 1H NMR analysis, HRMS analysis, and DFT calculations. A simple test strip-based portable detecting device and a molecular INHIBIT logic circuit were established for improving its practical applicability. Furthermore, the desirable sensing performance of HT for Ga3+ was successfully reconfirmed in MCF-7 cells and zebrafish.
Collapse
Affiliation(s)
- Lijuan Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Mingxin Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yunyun Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yan Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shutang Ruan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
14
|
Chao J, Wang Z, Zhang Y, Huo F, Yin C. A near-infrared fluorescent probe targeting mitochondria for sulfite detection and its application in food and biology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3535-3542. [PMID: 34280954 DOI: 10.1039/d1ay00918d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sulfur dioxide (SO2) is the main air pollutant in the environment, causing great harm to human health. Abnormal SO2 levels are usually associated with some respiratory diseases, cardiovascular diseases, and neurological disorders (even brain cancer). Therefore, monitoring SO2 levels is helpful to better understand its special physiological and pathological role. Although many fluorescent probes for SO2 have been reported, many of them were not ideal for in vivo imaging due to the short emission wavelength. In this work, a near-infrared fluorescent probe NIR-BN with emission wavelength of 680 nm was constructed by conjugating the benzopyrylium moiety and 6-hydroxy-2-naphthaldehyde. NIR-BN had high selectivity and rapidity for SO2 detection. In addition, the detection limit of NIR-BN was relatively low, which can be used for the determination of sulfite in different sugar samples with high accuracy. Of course, due to the excellent spectral and structural properties of NIR-BN, we have applied NIR-BN to the detection of SO2 in biological systems.
Collapse
Affiliation(s)
- Jianbin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China.
| | - Zhuo Wang
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China. and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
15
|
Simple aggregation-induced ratiometric emission active benzo[h]chromene derivative for detection of bisulfite in living cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|