1
|
Zhang J, Bai D, Xie G, Xie Y, Lin Y, Hou Y, Yu Y, Zhang Y, Zhao R, Wang Z, Wang L, Chen H. A novel entropy-driven dual-output mode integrated with DNAzyme for enhanced microRNA detection. Talanta 2024; 275:126123. [PMID: 38663065 DOI: 10.1016/j.talanta.2024.126123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Accurate microRNA (miRNA) detection is pivotal in the diagnosis and monitoring of cancer. Entropy-driven catalysis (EDC) has attracted widespread attention as an enzyme-free, isothermal technique for miRNA detection owing to its inherent simplicity and reliability. However, conventional EDC is a single-output mode, limiting the efficiency of signal amplification. In this study, a novel EDC dual-output mode was employed in conjunction with DNAzyme, resulting in the development of an EDC dual-end DNAzyme (EDC-DED) approach for highly sensitive miRNA detection. In this system, miRNA-21 initiated the EDC reaction, producing a large amount of catalytically active dual-end Mg2+-dependent DNAzyme. The DNAzyme further cleaved the reporter cyclically, generating a notably amplified fluorescence signal. The proposed method achieved a low detection limit of 2 pM. Compared with the traditional EDC single-end DNAzyme (EDC-SED) strategy, the present method exhibited superior amplification efficiency, enhancing detection sensitivity by approximately 46.5-fold. Furthermore, this platform demonstrated ideal specificity, satisfactory reproducibility and acceptable detection capabilities in clinical serum samples. Therefore, the straightforward and convenient strategy is a potential tool for miRNA analysis, which may provide a new perspective for biological analysis and clinical application.
Collapse
Affiliation(s)
- Jianhong Zhang
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Dan Bai
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yaxing Xie
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yu Lin
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Yulei Hou
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Ying Yu
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Yaoyi Zhang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Rong Zhao
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhongzhong Wang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Luojia Wang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hui Chen
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
2
|
Yang H, Dong Q, Xu D, Feng X, He P, Song W, Zhou H. An "off-on-off" type electrochemical biosensor for detecting multiple biomarkers with DNAzyme-mediated entropy-driven catalytic and DSN enzyme-assisted recycling amplification. Anal Chim Acta 2023; 1283:341978. [PMID: 37977795 DOI: 10.1016/j.aca.2023.341978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In this work, an intelligent and versatile electrochemical biosensor was constructed to detect two types of biomarkers by utilizing "off-on-off" switching. Firstly, human apurinic/apyrimidinic endonuclease1(APE1) mediated specific cleavage of the AP site, initiating activation DNAzyme and entropy-driven catalytic (EDC) reaction. Subsequently, large amounts of ferrocene labeled single-stranded DNA was released and captured with a remarkable electrochemical signal, achieving "off-on" state. In the presence of microRNA 21(miRNA-21), the DNA/RNA heteroduplexes were formed and cleaved by duplex-specific nuclease (DSN) with recovery the target miRNA-21, causing the current suppression in an "on-off" state. This sensor achieved highly sensitive detection of APE1 and miRNA-21 with a detection limit of 2.5 mU·mL-1 and 1.33 × 10-20 M, respectively, and also exhibited good selectivity, reproducibility and stability. Moreover, this proposed biosensor made it possible to realize analysis of multiple types of biomarkers on a single sensor, which improved utilization and analysis efficiency compared to traditional sensors. This study might open a new avenue to design multifunctional sensing platform for biological research and early disease diagnosis.
Collapse
Affiliation(s)
- Huan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qi Dong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dandan Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xinmiao Feng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Peng He
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Weiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China; Shandong Key Laboratory of Biochemical Analysis, PR China; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
3
|
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Li T, Wang Y, Zhang Y, Zhou G, Li L. An entropy-driven signal-off DNA circuit for label-free, visual detection of small molecules with enhanced accuracy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1140-1147. [PMID: 35224592 DOI: 10.1039/d1ay01939b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An entropy-driven DNA circuit offers an efficient means of sensitive analyte detection with signal amplification. In this article, we rationally engineered an aptamer-based entropy-driven signal-off DNA circuit for colorimetric detection of small molecules. The proposed signal-off DNA circuit is activated by target small molecule binding to drive the collapse of G-quadruplex DNAzyme, accompanied by the colour change of the detection solution from dark blue to light blue. Entropy-driven recycling hybridization significantly magnified the input signal of the target small molecule. Such an assay enables naked-eye detection of adenosine triphosphate and oxytetracycline at concentrations as low as 0.5 μM and 1 μM respectively. Moreover, when compared with the signal-on DNA circuit, the entropy-driven signal-off DNA circuit for colorimetric detection has two advantages. Firstly, unlike in the signal-on DNA circuit, the unavoidable formation of waste complexes in the absence of a target in the signal-off DNA circuit has no influence on target detection performance as its background signal is only determined by the substrate complex. Secondly, the signal-on DNA circuit cannot distinguish false-positive signals generated by invasive catalysts (e.g., HRP, serum, Fe3O4), while the signal-off DNA circuit can distinguish those signals as undesired signals. Overall, the signal-off DNA circuit affords a novel strategy for sensitive and accurate detection of small molecules.
Collapse
Affiliation(s)
- Tuqiang Li
- School of Petrochemical Engineering, Changzhou University, Changzhou 213016, China.
| | - Yulan Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yanan Zhang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Guobao Zhou
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
5
|
Huang Z, Wang X, Wu Z, Jiang JH. Recent Advances on DNAzyme-Based Sensing. Chem Asian J 2022; 17:e202101414. [PMID: 35156764 DOI: 10.1002/asia.202101414] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/09/2022] [Indexed: 11/08/2022]
Abstract
DNAzymes are functional nucleic acid with catalytic activity. Owing to the high sensitivity, excellent programmability, and flexible obtainment through in vitro selection, RNA-cleaving DNAzymes have attracted increasing interest in developing DNAzyme-based sensors. In this review, we summarize the recent advances on DNAzyme-based sensing applications. We initially conclude two general strategies to expand the library of DNAzymes, in vitro selection to discover new DNAzymes towards different targets of interest and chemical modifications to endue the existing DNAzymes with new function or properties. We then discuss the recent applications of DNAzyme-based sensors for the detection of a variety of important biomolecules both in vitro and in vivo . Finally, perspectives on the challenges and future directions in the development of DNAzyme-based sensors are provided.
Collapse
Affiliation(s)
- Zhimei Huang
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| | - Xiangnan Wang
- Hunan University of Technology and Business, College of Science, CHINA
| | - Zhenkun Wu
- Hunan University, State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics and College of Chemistry and Chemical Engineering, South of Lushan Road, 410082, Changsha, CHINA
| | - Jian-Hui Jiang
- Hunan University, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics; College of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
6
|
Gong ZH, Wei ZN, Liu YZ, Xiao LF. [ARTICLE WITHDRAWN] Semiconducting Polymer Dot-Based Ratiometric Fluorescence Nanoprobe for DNA Detection. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5776-5783. [PMID: 33980392 DOI: 10.1166/jnn.2021.19496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
THIS ARTICLE WAS WITHDRAWN BY THE PUBLISHER IN MAY 2021
Collapse
Affiliation(s)
- Zhen-Hu Gong
- School of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239000, PR China
| | - Zong-Nan Wei
- Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Yi-Zhang Liu
- School of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239000, PR China
| | - Lu-Fei Xiao
- School of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239000, PR China
| |
Collapse
|
7
|
Tang Y, Huang X, Wang X, Wang C, Tao H, Wu Y. G-quadruplex DNAzyme as peroxidase mimetic in a colorimetric biosensor for ultrasensitive and selective detection of trace tetracyclines in foods. Food Chem 2021; 366:130560. [PMID: 34284183 DOI: 10.1016/j.foodchem.2021.130560] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
The colorimetric method can determine the initial results even by the naked eyes, but its main challenge for antibiotics detection in food at present is the relatively low sensitivity. Herein, an ultrasensitive colorimetric biosensor based on G-quadruplex DNAzyme was firstly proposed for the rapid detection of trace tetracycline antibiotics like tetracycline, oxytetracycline, chlortetracycline and doxycycline. DNAzyme composed of hemin and G-quadruplex has peroxidase-like activity, and tetracyclines can combine with hemin to form a stable complex and reduce catalytic activity, making the color of solution changes from yellow to green. The limits of detection (LOD) of the proposed colorimetric biosensor for tetracyclines is determined as low as 3.1 nM, which is lower than most of the other colorimetric methods for antibiotics detection. Moreover, the average recovery range of tetracyclines in actual samples is from 89% to 99%, indicating that such strategy may has bright application prospects for tetracyclines detection in foods.
Collapse
Affiliation(s)
- Yue Tang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiaohuan Huang
- Comprehensive Technology Center of Guiyang Customs District, Qianlingshan Road 268, Guanshanhu District, Guiyang 550081, China
| | - Xueli Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chunxiao Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Han Tao
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China..
| |
Collapse
|
8
|
Xiong Y, Dai J, Zhang Y, Zhou C, Yuan H, Xiao D. A label-free fluorescent biosensor based on a catalyzed hairpin assembly for HIV DNA and lead detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2391-2395. [PMID: 33972958 DOI: 10.1039/d1ay00410g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a label-free fluorescent signal amplification system based on a catalyzed hairpin assembly (CHA) is reported. In this system, two hairpin probes, H1 and H2, were well-designed in which G-quadruplex sequences were integrated into H2. The CHA reaction was triggered by target/trigger DNA and G-quadruplex sequences were released, which can bind the fluorescent amyloid dye thioflavin T (ThT) to provide fluorescence signals. At the same time, target/trigger DNA was released from the product of the CHA reaction (H1-H2), which continued to initiate the next CHA cycle, and the signal was eventually amplified. This signal amplification approach has been successfully used to develop a label-free fluorescent sensing platform for sensitive detection of human immunodeficiency virus (HIV) DNA and Pb2+.
Collapse
Affiliation(s)
- Yu Xiong
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | |
Collapse
|
9
|
Borum RM, Jokerst JV. Hybridizing clinical translatability with enzyme-free DNA signal amplifiers: recent advances in nucleic acid detection and imaging. Biomater Sci 2021; 9:347-366. [PMID: 32734995 PMCID: PMC7855509 DOI: 10.1039/d0bm00931h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nucleic acids have become viable prognostic and diagnostic biomarkers for a diverse class of diseases, particularly cancer. However, the low femtomolar to attomolar concentration of nucleic acids in human samples require sensors with excellent detection capabilities; many past and current platforms fall short or are economically difficult. Strand-mediated signal amplifiers such as hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA) are superior methods for detecting trace amounts of biomolecules because one target molecule triggers the continuous production of synthetic double-helical DNA. This cascade event is highly discriminatory to the target via sequence specificity, and it can be coupled with fluorescence, electrochemistry, magnetic moment, and electrochemiluminescence for signal reporting. Here, we review recent advances in enhancing the sensing abilities in HCR and CHA for improved live-cell imaging efficiency, lowered limit of detection, and optimized multiplexity. We further outline the potential for clinical translatability of HCR and CHA by summarizing progress in employing these two tools for in vivo imaging, human sample testing, and sensing-treating dualities. We finally discuss their future prospects and suggest clinically-relevant experiments to supplement further related research.
Collapse
Affiliation(s)
- Raina M Borum
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | | |
Collapse
|
10
|
Li Y, Luo Z, Zhang C, Sun R, Zhou C, Sun C. Entropy driven circuit as an emerging molecular tool for biological sensing: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Xing C, Chen Z, Zhang C, Wang J, Lu C. Target-directed enzyme-free dual-amplification DNA circuit for rapid signal amplification. J Mater Chem B 2020; 8:10770-10775. [PMID: 33185637 DOI: 10.1039/d0tb02114h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic DNA circuits have shown promising potential for amplified biosensing and bioengineering applications at the molecular level. Here, an enzyme-free, single-step and rapid signal amplification DNA circuit was developed by integrating target-directed entropy-driven catalysis (EDC) and hybridization chain reaction (HCR) for analysis of nucleic acids and small molecules. The target catalyzes the self-assembly of the EDC premade substrate complex and fuel strands to release the hidden amplicon trigger (T), which was encoded with trigger sequences for the downstream HCR circuit. The released T could motivate the successive cross-opening of HCR hairpins yielding long DNA nanowires and generated tremendously amplified fluorescence signals. Notably, this EDC-HCR circuit was driven by entropy without the requirement of any enzymes, thus greatly reducing the cost. The design of the hidden amplicon trigger (T) avoided the production of waste by-products and improved the reaction rate. Furthermore, as a modular circuit, we also demonstrated that our EDC-HCR cascade sensing system could be used as a versatile sensing platform for the highly sensitive and selective detection of other analysts, e.g. ATP in serum samples, through simply programming the reorganization sequences of the initiator. Therefore, the flexible and versatile EDC-HCR platform holds great potential in the fields of clinical diagnosis and biochemical analysis.
Collapse
Affiliation(s)
- Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, Minjiang University, Fuzhou 350108, P. R. China.
| | | | | | | | | |
Collapse
|
12
|
Lin X, Li S, Zhang B, Yang H, Zhang K, Huang H. An enzyme-free fluorescent biosensor for highly sensitive detection of carcinoembryonic antigen based on aptamer-induced entropy-driven circuit. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5496-5502. [PMID: 33150889 DOI: 10.1039/d0ay01326a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carcinoembryonic antigen (CEA) is a disease biomarker, which can reflect the existence of tumors. The accurate detection of CEA in clinical samples is highly valuable for diagnosis of tumors. Herein, we developed an enzyme-free fluorescent biosensor for highly sensitive detection of CEA based on an aptamer-induced entropy-driven circuit. The aptamer hairpin specifically bound to CEA to expose the locked domain. Then, the exposed domain could trigger disassembly of multiple fluorophore strands from the three-strand complexes with the aid of fuel strands, leading to the production of remarkable amplified fluorescent signals. The one-step and homogeneous method exhibited high specificity and a wide linear range from 10 pg mL-1 to 500 ng mL-1 with a low limit of detection of 4.2 pg mL-1. What's more, the whole detection process could be performed within 45 min and did not involve the use of any protein enzymes and antibodies. The developed strategy could also be applied to detect CEA in clinical samples with satisfactory results. Therefore, the strategy is an alternative sensing method for the detection of CEA.
Collapse
Affiliation(s)
- Xiaojuan Lin
- Department of Clinical Laboratory, The Third Hospital of Xingtai, Xingtai, Hebei 054100, China.
| | | | | | | | | | | |
Collapse
|