1
|
Wang Y, Wang Y, Zhong H, Xiong L, Song J, Zhang X, He T, Zhou X, Li L, Zhen D. Recent progress of UCNPs-MoS 2 nanocomposites as a platform for biological applications. J Mater Chem B 2024; 12:5024-5038. [PMID: 38712810 DOI: 10.1039/d3tb02958a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Composite materials can take advantages of the functional benefits of multiple pure nanomaterials to a greater degree than single nanomaterials alone. The UCNPs-MoS2 composite is a nano-application platform that combines upconversion luminescence and photothermal properties. Upconversion nanoparticles (UCNPs) are inorganic nanomaterials with long-wavelength excitation and short-wavelength tunable emission capabilities, and are able to effectively convert near-infrared (NIR) light into visible light for increased photostability. However, UCNPs have a low capacity for absorbing visible light, whereas MoS2 shows better absorption in the ultraviolet and visible regions. By integrating the benefits of UCNPs and MoS2, UCNPs-MoS2 nanocomposites can convert NIR light with a higher depth of detection into visible light for application with MoS2 through fluorescence resonance energy transfer (FRET), which compensates for the issues of MoS2's low tissue penetration light-absorbing wavelengths and expands its potential biological applications. Therefore, starting from the construction of UCNPs-MoS2 nanoplatforms, herein, we review the research progress in biological applications, including biosensing, phototherapy, bioimaging, and targeted drug delivery. Additionally, the current challenges and future development trends of UCNPs-MoS2 nanocomposites for biological applications are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yiru Wang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Huimei Zhong
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Lihao Xiong
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Jiayi Song
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xinyu Zhang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Ting He
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xiayu Zhou
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Le Li
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Deshuai Zhen
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Bahari HR, Mousavi Khaneghah A, Eş I. Upconversion nanoparticles-modified aptasensors for highly sensitive mycotoxin detection for food quality and safety. Compr Rev Food Sci Food Saf 2024; 23:e13369. [PMID: 38767851 DOI: 10.1111/1541-4337.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Mycotoxins, highly toxic and carcinogenic secondary metabolites produced by certain fungi, pose significant health risks as they contaminate food and feed products globally. Current mycotoxin detection methods have limitations in real-time detection capabilities. Aptasensors, incorporating aptamers as specific recognition elements, are crucial for mycotoxin detection due to their remarkable sensitivity and selectivity in identifying target mycotoxins. The sensitivity of aptasensors can be improved by using upconversion nanoparticles (UCNPs). UCNPs consist of lanthanide ions in ceramic host, and their ladder-like energy levels at f-orbitals have unique photophysical properties, including converting low-energy photons to high-energy emissions by a series of complex processes and offering sharp, low-noise, and sensitive near-infrared to visible detection strategy to enhance the efficacy of aptasensors for novel mycotoxin detection. This article aims to review recent reports on the scope of the potential of UCNPs in mycotoxin detection, focusing on their integration with aptasensors to give readers clear insight. We briefly describe the upconversion photoluminescence (UCPL) mechanism and relevant energy transfer processes influencing UCNP design and optimization. Furthermore, recent studies and advancements in UCNP-based aptasensors will be reviewed. We then discuss the potential impact of UCNP-modified aptasensors on food safety and present an outlook on future directions and challenges in this field. This review article comprehensively explains the current state-of-the-art UCNP-based aptasensors for mycotoxin detection. It provides insights into potential applications by addressing technical and practical challenges for practical implementation.
Collapse
Affiliation(s)
- Hamid-Reza Bahari
- Center of Innovation for Green and High Technologies, Tehran, Iran
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Ankara, Turkey
| | | | - Ismail Eş
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Yuan Y, Di Y, Chen Y, Yu H, Li R, Yu S, Li F, Li Z, Yin Y. A fluorescent aptasensor for highly sensitive and selective detection of carcinoembryonic antigen based on upconversion nanoparticles and WS 2 nanosheets. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1225-1231. [PMID: 38314827 DOI: 10.1039/d3ay02175k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A highly sensitive fluorescent aptasensor for carcinoembryonic antigen (CEA) was developed by employing upconversion nanoparticles (UCNPs) as an energy donor and WS2 nanosheets as an energy acceptor, respectively. Polyacrylic acid (PAA) modified NaYF4:Yb/Er UCNPs and an amine modified CEA aptamer were linked together by a covalent bond. Owing to the physical adsorption between WS2 nanosheets and the CEA aptamer, the UCNPs-aptamer was close to WS2 nanosheets, resulting in upconversion fluorescence energy transfer from UCNPs to WS2 nanosheets, and the UCNP fluorescence was quenched. With the introduction of CEA into the UCNPs-aptamer complex system, the aptamer preferentially bound to CEA resulting in a change in spatial conformation which caused UCNPs to depart from WS2 nanosheets. As a result, the energy transfer was inhibited and the fluorescence of UCNPs was observed again, and the degree of fluorescence recovery was linearly related to the concentration of CEA in a range of 0.05-10 ng mL-1 with a limit of detection of 0.008 ng mL-1. Furthermore, the aptasensor based on UCNPs and WS2 nanosheets could be competent for detecting CEA in human serum, which suggests the great application potential of the proposed aptasensor in clinical diagnosis.
Collapse
Affiliation(s)
- Yunxia Yuan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Yi Di
- National Beverage and Grain and Oil Products Quality Inspection and Testing Center, Wuhan Product Quality Supervision & Testing Institute, Wuhan 430048, China
| | - Yuan Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Huichun Yu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Ruhuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Songwei Yu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Fang Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Zhaozhou Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Yong Yin
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
- International Joint Laboratory of Green Food Processing, Quality and Safety Control of Henan Province, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
4
|
Ghosh S, Yang CJ, Lai JY. Optically active two-dimensional MoS 2-based nanohybrids for various biosensing applications: A comprehensive review. Biosens Bioelectron 2024; 246:115861. [PMID: 38029711 DOI: 10.1016/j.bios.2023.115861] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Following the discovery of graphene, there has been a surge in exploring other two-dimensional (2D) nanocrystals, including MoS2. Over the past few decades, MoS2-based nanocrystals have shown great potential applications in biosensing, owing to their excellent physico-chemical properties. Unlike graphene, MoS2 shows layer-dependent finite band gaps (∼1.8 eV for a single layer and ∼1.2 for bulk) and relatively strong interaction with the electromagnetic spectrum. The tunability of the size, shape, and intrinsic properties, such as high optical absorption, electron mobility, mechanical strength and large surface area, of MoS2 nanocrystals, make them excellent alternative probe materials for preparing optical, photothermal, and electrical bio/immunosensors. In this review, we will provide insights into the rapid evolutions in bio/immunosensing applications based on MoS2 and its nanohybrids. We emphasized the various synthesis, characterization, and functionalization routes of 2D MoS2 nanosheets/nanoflakes. Finally, we discussed various fabrication techniques and the critical parameters, including the limit of detection (LOD), linear detection range, and sensitivity of the biosensors. In addition, the role of MoS2 in enhancing the performance of biosensors, the limitations associated with current biosensing technologies, future challenges, and clinical implications are addressed. The advantages/disadvantages of each biosensor technique are also summarized. Collectively, we believe that this review will encourage resolute researchers to follow up further with the state-of-the-art MoS2-based biosensing technology.
Collapse
Affiliation(s)
- Sandip Ghosh
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chia-Jung Yang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| |
Collapse
|
5
|
Che D, Cao X, Chen C, Yan H. A point-of-care aptasensor based on the upconversion nanoparticles/MoS 2 FRET system for the detection of Pseudomonas aeruginosa infection. Mikrochim Acta 2023; 191:61. [PMID: 38157041 DOI: 10.1007/s00604-023-06155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
The rapid detection of Pseudomonas aeruginosa (P. aeruginosa) is of great significance for the diagnosis of medical infection. In view of the above, a novel aptasensor based on fluorescence resonance energy transfer (FRET) was developed. It contained aptamer-coupled upconversion nanoparticles (UCNPs-apt) as a donor (excitation 980 nm) and molybdenum disulfide (MoS2) nanosheets as an acceptor. The upconversion fluorescence aptamer system was investigated to obtain the optimal parameters of MoS2 concentration, the incubation time of UCNPs-apt/MoS2 and P. aeruginosa, and pH. Based on the optimal parameters, a linear calibration equation (emission 654 nm) with a wide detection range 8.7 × 10 ~ 8.7 × 107 cfu/mL, a high coefficient of determination R2 0.9941, and a low limit of determination (LOD) 15.5 cfu/mL were established. The method was validated with P. aeruginosa infected foci of mouse wound. The advantage of this aptasensor is that analysis results can be obtained within 1.5 h, which was much faster than that of the standard method (18-24 h). Furthermore, combined with a portable instrument, it can be used as a point-of-care testing for the early detection of P. aeruginosa infection, which is useful for selecting the correct antibiotics to achieve good therapeutic effects. Additionally, it also has a broad application prospect in food and environmental areas.
Collapse
Affiliation(s)
- Dou Che
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Xitao Cao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Chong Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Hui Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| |
Collapse
|
6
|
Nourizad A, Golmohammadi S, Aghanejad A, Tohidkia MR. Recent trends in aptamer-based nanobiosensors for detection of vascular endothelial growth factors (VEGFs) biomarker: A review. ENVIRONMENTAL RESEARCH 2023; 236:116726. [PMID: 37495062 DOI: 10.1016/j.envres.2023.116726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a remarkable cytokine that plays an important role in regulating vascular formation during the angiogenesis process. Therefore, real-time detection and quantification of VEGF is essential for clinical diagnosis and treatment due to its overexpression in various tumors. Among various sensing strategies, the aptamer-based sensors in combination with biological molecules improve the detection ability VEGFs. Aptamers are suitable biological recognition agents for the preparation of sensitive and reproducible aptasensors (Apt-sensors) due to their low immunogenicity, simple and straightforward chemical modification, and high resistance to denaturation. Here, a summary of the strategies for immobilization of aptamers (e.g., direct or self-assembled monolayer (SAM) attachment, etc.) on different types of electrodes was provided. Moreover, we discussed nanoparticle deposition techniques and surface modification methods used for signal amplification in the detection of VEGF. Furthermore, we are investigating various types of optical and electrochemical Apt-sensors used to improve sensor characterization in the detection of VEGF biomarkers.
Collapse
Affiliation(s)
- Abolfazl Nourizad
- Research Center for Pharmaceutical Nanotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Electronics, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Saeed Golmohammadi
- Department of Electronics, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Dong JM, Wang RQ, Yuan NN, Guo JH, Yu XY, Peng AH, Cai JY, Xue L, Zhou ZL, Sun YH, Chen YY. Recent advances in optical aptasensors for biomarkers in early diagnosis and prognosis monitoring of hepatocellular carcinoma. Front Cell Dev Biol 2023; 11:1160544. [PMID: 37143897 PMCID: PMC10152369 DOI: 10.3389/fcell.2023.1160544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 90% of all primary liver cancers and is one of the main malignant tumor types globally. It is essential to develop rapid, ultrasensitive, and accurate strategies for the diagnosis and surveillance of HCC. In recent years, aptasensors have attracted particular attention owing to their high sensitivity, excellent selectivity, and low production costs. Optical analysis, as a potential analytical tool, offers the advantages of a wide range of targets, rapid response, and simple instrumentation. In this review, recent progress in several types of optical aptasensors for biomarkers in early diagnosis and prognosis monitoring of HCC is summarized. Furthermore, we evaluate the strengths and limitations of these sensors and discuss the challenges and future perspectives for their use in HCC diagnosis and surveillance.
Collapse
Affiliation(s)
- Jia-Mei Dong
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Ning-Ning Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Hao Guo
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin-Yang Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Ang-Hui Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Jia-Yi Cai
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lei Xue
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Yi-Hao Sun
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Ying-Yin Chen
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| |
Collapse
|
8
|
Sun X, Fang F, Na J, Yan R, Huang Y, Zhou Z, Zhao Y, Li G. Fluorescent "turn-on" aptamer sensor for sensitive and reliable detection of Golgi glycoprotein 73 based on nitrogen-doped graphene quantum dots and molybdenum disulfide nanosheets. J Pharm Biomed Anal 2023; 225:115215. [PMID: 36586381 DOI: 10.1016/j.jpba.2022.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The sensitivity and specificity of Golgi glycoprotein 73 (GP73) are very important for early diagnosis of hepatocellular carcinoma. Herein, we constructed a new-fashioned fluorescent aptamer sensor for GP73 determination based on nitrogen-doped graphene quantum dots (N-GQDS) and molybdenum disulfide (MoS2) nanosheets. N-GQDs with high fluorescence intensity and good stability were screened out, and GP73 aptamer (GP73Apt) is labeled with N-GQDs to form the N-GQDs-GP73Apt fluorescence probe. MoS2 nanosheets can quench the fluorescence of N-GQDs-GP73Apt owing to fluorescence resonance energy transfer mechanisms. After introducing GP73 into the biosensing system, the N-GQDs-GP73Apt specifically bound with GP73 to form the deployable structures, making N-GQDs-GP73Apt far away from MoS2, blocking the fluorescence energy transfer process, and restoring the fluorescence of N-GQDs-GP73Apt. When the GP73 concentration was in the extent of 2.5 ng/mL∼100 ng/mL, the relative fluorescence recovery is linearly relevant to the concentration of GP73, and the limit of detection (LOD) was 1.29 ng/mL (S/N = 3). Moreover in the application of actual serum sample detection, the recovery was range 98.85∼100.55 %. The fluorescent aptamer sensor can rapidly detect and analyze the serum marker GP73 with the characteristics of low-cost, high sensitivity, good specificity and recovery.
Collapse
Affiliation(s)
- Xinjun Sun
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Fengyan Fang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Jintong Na
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Runjie Yan
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Guiyin Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China; College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, China.
| |
Collapse
|
9
|
Duan N, Li C, Song M, Ren K, Wang Z, Wu S. Deoxynivalenol fluorescence aptasensor based on AuCu bimetallic nanoclusters and MoS 2. Mikrochim Acta 2022; 189:296. [PMID: 35900604 DOI: 10.1007/s00604-022-05385-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/19/2022] [Indexed: 01/12/2023]
Abstract
Aptamers against deoxynivalenol (DON) were selected through capture-systematic evolution of ligands by exponential enrichment. Through isothermal titration calorimetry and fluorimetric assay, aptamer candidate DN-2 demonstrated good affinity to DON with Kd value of 40.36 ± 6.32 nM. Accordingly, a Forster resonance energy transfer aptasensor was fabricated by using the aptamer DN-2 combined with AuCu bimetallic nanoclusters as energy donor and MoS2 nanosheets as energy acceptor. Under the optimal conditions, the fluorescence response was utilized for DON quantitative determination ranging from 5 to 100 ng/mL with a detection limit of 1.87 ng/mL. The practical application of this method was verified in maize flour samples and demonstrated a satisfied recovery of 94.6 ~ 103.1%. The obtained aptamers and their application in DON determination provide a new tool for DON monitoring in various foodstuff.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mingqian Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Kexin Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
10
|
Sousa DA, Carneiro M, Ferreira D, Moreira FTC, Sales MGFV, Rodrigues LR. Recent advances in the selection of cancer-specific aptamers for the development of biosensors. Curr Med Chem 2022; 29:5850-5880. [PMID: 35209816 DOI: 10.2174/0929867329666220224155037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
An early diagnosis has the potential to greatly decrease cancer mortality. For that purpose, specific cancer biomarkers have been molecularly targeted by aptamer sequences to enable an accurate and rapid detection. Aptamer-based biosensors for cancer diagnostics are a promising alternative to those using antibodies, due to their high affinity and specificity to the target molecules and advantageous production. Synthetic nucleic acid aptamers are generated by in vitro Systematic Evolution of Ligands by Exponential enrichment (SELEX) methodologies that have been improved over the years to enhance the efficacy and to shorten the selection process. Aptamers have been successfully applied in electrochemical, optical, photoelectrochemical and piezoelectrical-based detection strategies. These aptasensors comprise a sensitive, accurate and inexpensive option for cancer detection being used as point-of-care devices. This review highlights the recent advances in cancer biomarkers, achievements and optimizations made in aptamer selection, as well as the different aptasensors developed for the detection of several cancer biomarkers.
Collapse
Affiliation(s)
- Diana A Sousa
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
| | - Mariana Carneiro
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Débora Ferreira
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
| | - Felismina T C Moreira
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Maria Goreti F V Sales
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Lígia R Rodrigues
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
11
|
Liu YQ, Qin LY, Li HJ, Wang YX, Zhang R, Shi JM, Wu JH, Dong GX, Zhou P. Application of lanthanide-doped upconversion nanoparticles for cancer treatment: a review. Nanomedicine (Lond) 2021; 16:2207-2242. [PMID: 34533048 DOI: 10.2217/nnm-2021-0214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the excellent ability to transform near-infrared light to localized visible or UV light, thereby achieving deep tissue penetration, lanthanide ion-doped upconversion nanoparticles (UCNP) have emerged as one of the most striking nanoscale materials for more effective and safer cancer treatment. Up to now, UCNPs combined with photosensitive components have been widely used in the delivery of chemotherapy drugs, photodynamic therapy and photothermal therapy. Applications in these directions are reviewed in this article. We also highlight microenvironmental tumor monitoring and precise targeted therapies. Then we briefly summarize some new trends and the existing challenges for UCNPs. We hope this review can provide new ideas for future cancer treatment based on UCNPs.
Collapse
Affiliation(s)
- Yu-Qi Liu
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Ying Qin
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong-Jiao Li
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yi-Xi Wang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Rui Zhang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Min Shi
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin-Hua Wu
- Department of Materials Science, School of Physical Science & Technology, Key Laboratory of Special Function Materials & Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, PR China
| | - Gen-Xi Dong
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Zhou
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
12
|
Alexaki K, Giust D, Kyriazi ME, El-Sagheer AH, Brown T, Muskens OL, Kanaras AG. A DNA sensor based on upconversion nanoparticles and two-dimensional dichalcogenide materials. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-2023-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractWe demonstrate the fabrication of a new DNA sensor that is based on the optical interactions occurring between oligonucleotide-coated NaYF4:Yb3+;Er3+ upconversion nanoparticles and the two-dimensional dichalcogenide materials, MoS2 and WS2. Monodisperse upconversion nanoparticles were functionalized with single-stranded DNA endowing the nanoparticles with the ability to interact with the surface of the two-dimensional materials via van der Waals interactions leading to subsequent quenching of the upconversion fluorescence. By contrast, in the presence of a complementary oligonucleotide target and the formation of double-stranded DNA, the upconversion nanoparticles could not interact with MoS2 and WS2, thus retaining their inherent fluorescence properties. Utilizing this sensor we were able to detect target oligonucleotides with high sensitivity and specificity whilst reaching a concentration detection limit as low as 5 mol·L−1, within minutes.
Collapse
|