1
|
Zhuang L, Gong J, Zhang D, Zhang P, Zhao Y, Yang J, Sun L, Zhang Y, Shen Q. Metal and metal oxide nanoparticle-assisted molecular assays for the detection of Salmonella. DISCOVER NANO 2025; 20:65. [PMID: 40172753 PMCID: PMC11965082 DOI: 10.1186/s11671-025-04237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
This paper provides a comprehensive overview of the diverse applications and innovations of nanoparticles in the detection of Salmonella. It encompasses a comprehensive range of novel methods, including efficient enrichment, nucleic acid extraction, immunoassays, nucleic acid tests, biosensors, and emerging strategies with the potential for future applications. The surface modification of specific antibodies or ligands enables nanoparticles to achieve highly selective capture of Salmonella, while optimizing the nucleic acid extraction process and improving detection efficiency. The employment of nanoparticles in immunological and nucleic acid tests markedly enhances the specificity and sensitivity of the reaction, thereby optimizing the determination of detection results. Moreover, the distinctive physicochemical properties of nanoparticles enhance the sensitivity, selectivity, and stability of biosensors, thereby facilitating the rapid advancement of bio-detection technologies. It is particularly noteworthy that there has been significant advancement in the application and innovative research of nanozymes in molecular assays. This progress has not only resulted in enhanced detection efficiency but has also facilitated innovation and improvement in detection technologies. As nanotechnologies continue to advance, the use of metal and metal oxide nanoparticles in Salmonella detection is likely to become a more promising and reliable strategy for ensuring food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
2
|
Kumar D, Singh H, Makkar S, Singhal N, Deep A, Soni S. Fluorescent aptasensor for detection of Salmonella typhimurium using boric acid-functionalized terbium metal-organic framework and magnetic nanoparticles. Mikrochim Acta 2025; 192:213. [PMID: 40053147 DOI: 10.1007/s00604-025-07073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/26/2025] [Indexed: 03/18/2025]
Abstract
A fluorescent detection platform was designed using boric acid-functionalized terbium metal-organic framework (BA-Tb-MOF) and carboxyl-modified magnetic nanoparticles (MNPs) to identify Salmonella typhimurium (S. typhimurium) bacteria. Firstly, carboxyl-modified Fe3O4MNPs were coated with specific aptamer (Apt-MNPs) as the capture probe for S. typhimurium. Then, the Apt-MNPs were added to the bacterial suspension to facilitate the targeted binding. Subsequently, the fluorescent probe (BA-Tb-MOF) was introduced into this solution. The BA-Tb-MOF was strongly attached to the bacterial surface through interactions between BA and glycolipids on the bacterial cell walls, forming a stable complex. As the bacterial concentration increased, the fluorescence intensity of the solution progressively decreased due to the binding and removal of bacteria-Apt-MNPs/BA-Tb-MOF complexes through magnetic separation. Under optimum conditions, the concentration of S. typhimurium and the fluorescence intensity showed an inverse linear relationship within the range of 101-109 CFU/mL, and the detection limit was 4 CFU/mL. The developed sensor showed high specificity against several other pathogenic bacteria such as E. coli, S. aureus, and P. aeruginosa. The developed fluorescence platform also successfully detected the S. typhimurium in drinking water and egg samples with satisfactory recoveries (83-98%). This strategy can be investigated further for the detection of S. typhimurium and other pathogens in food and clinical samples.
Collapse
Affiliation(s)
- Dinesh Kumar
- Biomedical Applications, CSIR-Central Scientific Instruments Organization, Sector 30-C, Chandigarh, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, 201002, India
| | - Harpreet Singh
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Simran Makkar
- National Agri-Food Biomanufacturing Institute, SahibzadaAjit Singh Nagar, Sector 81, Mohali, Punjab, India
| | - Nitin Singhal
- National Agri-Food Biomanufacturing Institute, SahibzadaAjit Singh Nagar, Sector 81, Mohali, Punjab, India
| | - Akash Deep
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, 201002, India.
- Energy & Environment Unit, Institute of Nanoscience and Technology (INST), Sahibzada Ajit Singh Nagar, Mohali, Punjab, India.
| | - Sanjeev Soni
- Biomedical Applications, CSIR-Central Scientific Instruments Organization, Sector 30-C, Chandigarh, India.
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Song S, Han L, Chen M, Pan L, Tu K. Recent Progress in Nanomaterial-Based Fluorescence Assays for the Detection of Food-Borne Pathogens. SENSORS (BASEL, SWITZERLAND) 2024; 24:7715. [PMID: 39686252 DOI: 10.3390/s24237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
Food safety is of great concern, and food-borne bacterial infections and diseases are a major crisis for health. Therefore, it is necessary to develop rapid detection techniques for the prevention and recognition of food safety hazards caused by food-borne pathogens. In recent years, the fluorescence assay has become a widely utilized detection method due to its good signal amplification effect, high detection sensitivity, high stability, and short detection time. In this review, the different kinds of fluorescence materials were concentrated, including quantum dots (QDs), carbon dots (CDs), metal-organic frameworks (MOFs), and upconversion nanoparticles (UCNPs). The optical properties and applications of different kinds of fluorescent materials were analyzed and compared. Furthermore, according to the biosensing components, different fluorescence biosensors are reviewed, including label-free based fluorescence probes, aptamer-based biosensors, and antibody-based biosensors. Finally, we focused our attention on the discussion of fluorescent detection techniques combined with other techniques and their applications. The review presents future trends in fluorescence sensors, providing new sights for the detection of food-borne pathogens.
Collapse
Affiliation(s)
- Shiyu Song
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Kumari S, Nehra M, Jain S, Kumar A, Dilbaghi N, Marrazza G, Chaudhary GR, Kumar S. Carbon dots for pathogen detection and imaging: recent breakthroughs and future trends. Mikrochim Acta 2024; 191:684. [PMID: 39432033 DOI: 10.1007/s00604-024-06762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
As a class of carbon-based nanomaterials, carbon dots (CDs) have gained a lot of interest for a variety of applications. They offer distinctive optical, chemical, and structural characteristics along with favourable attributes such as low cost, availability of abundant functional groups, remarkable chemical inertness, high stability, exceptional biocompatibility, and ecofriendliness. This review discusses synthesis methods, structural characteristics, and surface modifications of CDs, specific for pathogen detection. Furthermore, it delves into the mechanisms that govern the interaction between pathogens and CDs. In addition, the study explores the use of CDs in a number of detection modalities, such as optical, electrochemical, and electrochemiluminescence, emphasising real-time pathogen monitoring. Moreover, both the challenges and opportunities related to the application of CDs-based detection and imaging methods are highlighted in field and clinical contexts.
Collapse
Affiliation(s)
- Sonam Kumari
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, Chandigarh, 160014, India
| | - Monika Nehra
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Shikha Jain
- Department of Bio-Nanotechnology, College of Biotechnology, CCS Haryana Agricultural University (CCSHAU), Hisar, Haryana, 125004, India
| | - Aman Kumar
- Department of Physics, Punjab Engineering College (Deemed to Be University), Chandigarh, 160012, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Giovanna Marrazza
- Department of Chemistry" Ugo Schiff", University of Florence, Via Della Lastruccia 3, Florence, Sesto Fiorentino, 50019, Italy
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, Chandigarh, 160014, India
| | - Sandeep Kumar
- Department of Physics, Punjab Engineering College (Deemed to Be University), Chandigarh, 160012, India.
| |
Collapse
|
5
|
Ma G, Li X, Cai J, Wang X. Carbon dots-based fluorescent probe for detection of foodborne pathogens and its potential with microfluidics. Food Chem 2024; 451:139385. [PMID: 38663242 DOI: 10.1016/j.foodchem.2024.139385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/26/2024]
Abstract
Concern about food safety triggers demand on rapid, accurate and on-site detection of foodborne pathogens. Among various fluorescent probes for detection, carbon dots (CDs) prepared by carbonization of carbon-rich raw materials show extraordinary performance for their excellent and tailorable photoluminescence property, as well as their facilely gained specificity by surface customization and modification. CDs-based fluorescent probes play a crucial role in many pathogenic bacteria sensing systems. In addition, microfluidic technology with characteristics of portability and functional integration is expected to combine with CDs-based fluorescent probes for point-of-care testing (POCT), which can further enhance the detection property of CDs-based fluorescent probes. Here, this paper reviews CDs-based bacterial detection methods and systems, including the structural modulation of fluorescent probes and pathogenic bacteria detection mechanisms, and describes the potential of combining CDs with microfluidic technology, providing reference for the development of novel rapid detection technology for pathogenic bacteria in food.
Collapse
Affiliation(s)
- Guozhi Ma
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoyun Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Jihai Cai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
6
|
Dou X, Zhang Z, Li C, Du Y, Tian F. A novel nanoparticle-based fluorescent sandwich immunoassay for specific detection of Salmonella Typhimurium. Int J Food Microbiol 2024; 413:110593. [PMID: 38308876 DOI: 10.1016/j.ijfoodmicro.2024.110593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
The diseases caused by foodborne pathogens have a serious impact on human health and social stability. Conventional detection methods can involve long assay times and complex pretreatment steps, making them unsuitable for rapid, large-scale analysis of food samples. We constructed a novel nano-fluorescence sandwich immunosorbent immunoassay (nano-FSIA) to rapidly detect Salmonella Typhimurium in food, based on strong covalent binding between streptavidin and biotin. We used antibodies coupled to large particle-size fluorescent microspheres as fluorescent probes for direct quantitative analysis of S. typhimurium in milk. The optimized parameters were determined, and specificity and sensitivity were validated in phosphate-buffered saline (PBS) and milk. The results demonstrated a wide dynamic detection range for S. typhimurium (103-108 colony forming units [CFU]/mL), with the limit of detection in PBS and milk at 234 and 346 CFU/mL, respectively. The results of nano-FSIA were consistent with those of plate counts and enzyme-linked immunosorbent assays, providing an effective and promising single-bacterium counting method for the rapid detection of Salmonella.
Collapse
Affiliation(s)
- Xuechen Dou
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 30161, China
| | - Zhiwei Zhang
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 30161, China
| | - Chao Li
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 30161, China; National Bio-Protection Engineering Center, Tianjin 300161, China
| | - Yaohua Du
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 30161, China; National Bio-Protection Engineering Center, Tianjin 300161, China.
| | - Feng Tian
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 30161, China.
| |
Collapse
|
7
|
Sharma C, Verma M, Abidi SMS, Shukla AK, Acharya A. Functional fluorescent nanomaterials for the detection, diagnosis and control of bacterial infection and biofilm formation: Insight towards mechanistic aspects and advanced applications. Colloids Surf B Biointerfaces 2023; 232:113583. [PMID: 37844474 DOI: 10.1016/j.colsurfb.2023.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Infectious diseases resulting from the high pathogenic potential of several bacteria possesses a major threat to human health and safety. Traditional methods used for screening of these microorganisms face major issues with respect to detection time, selectivity and specificity which may delay treatment for critically ill patients past the optimal time. Thus, a convincing and essential need exists to upgrade the existing methodologies for the fast detection of bacteria. In this context, increasing number of newly emerging nanomaterials (NMs) have been discovered for their effective use and applications in the area of diagnosis in bacterial infections. Recently, functional fluorescent nanomaterials (FNMs) are extensively explored in the field of biomedical research, particularly in developing new diagnostic tools, nanosensors, specific imaging modalities and targeted drug delivery systems for bacterial infection. It is interesting to note that organic fluorophores and fluorescent proteins have played vital role for imaging and sensing technologies for long, however, off lately fluorescent nanomaterials are increasingly replacing these due to the latter's unprecedented fluorescence brightness, stability in the biological environment, high quantum yield along with high sensitivity due to enhanced surface property etc. Again, taking advantage of their photo-excitation property, these can also be used for either photothermal and photodynamic therapy to eradicate bacterial infection and biofilm formation. Here, in this review, we have paid particular attention on summarizing literature reports on FNMs which includes studies detailing fluorescence-based bacterial detection methodologies, antibacterial and antibiofilm applications of the same. It is expected that the present review will attract the attention of the researchers working in this field to develop new engineered FNMs for the comprehensive diagnosis and treatment of bacterial infection and biofilm formation.
Collapse
Affiliation(s)
- Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Guliy OI, Karavaeva OA, Smirnov AV, Eremin SA, Bunin VD. Optical Sensors for Bacterial Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:9391. [PMID: 38067765 PMCID: PMC10708710 DOI: 10.3390/s23239391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Analytical devices for bacterial detection are an integral part of modern laboratory medicine, as they permit the early diagnosis of diseases and their timely treatment. Therefore, special attention is directed to the development of and improvements in monitoring and diagnostic methods, including biosensor-based ones. A promising direction in the development of bacterial detection methods is optical sensor systems based on colorimetric and fluorescence techniques, the surface plasmon resonance, and the measurement of orientational effects. This review shows the detecting capabilities of these systems and the promise of electro-optical analysis for bacterial detection. It also discusses the advantages and disadvantages of optical sensor systems and the prospects for their further improvement.
Collapse
Affiliation(s)
- Olga I. Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Olga A. Karavaeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Andrey V. Smirnov
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;
| | - Sergei A. Eremin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia;
| | | |
Collapse
|
9
|
Zheng L, Jin W, Xiong K, Zhen H, Li M, Hu Y. Nanomaterial-based biosensors for the detection of foodborne bacteria: a review. Analyst 2023; 148:5790-5804. [PMID: 37855707 DOI: 10.1039/d3an01554h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Ensuring food safety is a critical concern for the development and well-being of humanity, as foodborne illnesses caused by foodborne bacteria have increasingly become a major public health concern worldwide. Traditional food safety monitoring systems are expensive and time-consuming, relying heavily on specialized equipment and operations. Therefore, there is an urgent need to develop low-cost, user-friendly and highly sensitive biosensors for detecting foodborne bacteria. In recent years, the combination of nanomaterials with optical biosensors has provided a prospective future platform for the detection of foodborne bacteria. By harnessing the unique properties of nanomaterials, such as their high surface area-to-volume ratio and exceptional sensitivity, in tandem with the precision of optical biosensing techniques, a new prospect has opened up for the rapid and accurate identification of potential bacterial contaminants in food. This review focuses on recent advances and new trends of nanomaterial-based biosensors for the detection of foodborne pathogens, which mainly include noble metal nanoparticles (NMPs), metal organic frameworks (MOFs), graphene nanomaterials, quantum dot (QD) nanomaterials, upconversion fluorescent nanomaterials (UCNPs) and carbon dots (CDs). Additionally, we summarized the research progress of color indicators, nanozymes, natural enzyme vectors and fluorescent dye biosensors, focusing on the advantages and disadvantages of nanomaterial-based biosensors and their development prospects. This review provides an outlook on future technological directions and potential applications to help identify the most promising areas of development in this field.
Collapse
Affiliation(s)
- Lingyan Zheng
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Wen Jin
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Ke Xiong
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Hongmin Zhen
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Mengmeng Li
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Yumeng Hu
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
10
|
Lin L, Fang M, Liu W, Zheng M, Lin R. Recent advances and perspectives of functionalized carbon dots in bacteria sensing. Mikrochim Acta 2023; 190:363. [PMID: 37610450 DOI: 10.1007/s00604-023-05938-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Abstract
Bacterial infectious diseases are severe threats to human health and increase substantial financial burdens. Nanomaterials have shown great potential in timely and accurate bacterial identification, detection, and monitoring to improve the cure rate and reduce mortality. Recently, carbon dots have been evidenced to be ideal candidates for bacterial identification and detection due to their superior physicochemical properties and biocompatibility. This review outlines the detailed recognition elements and recognition strategies with functionalized carbon dots (FCDs) for bacterial identification and detection. The advantages and limitations of different kinds of FCDs-based sensors will be critically discussed. Meanwhile, the ongoing challenges and perspectives of FCDs-based sensors for bacteria sensing are put forward.
Collapse
Affiliation(s)
- Liping Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Meng Fang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Liu
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meixia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Rongguang Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
11
|
Zhang J, Zhou M, Li X, Fan Y, Li J, Lu K, Wen H, Ren J. Recent advances of fluorescent sensors for bacteria detection-A review. Talanta 2023; 254:124133. [PMID: 36459871 DOI: 10.1016/j.talanta.2022.124133] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Bacterial infections have become a global public health problem. Rapid and sensitive bacterial detection is of great importance for human health. Among various sensor systems, fluorescence sensor is rapid, portable, multiplexed, and cost-efficient. Herein, we reviewed the current trends of fluorescent sensors for bacterial detection from three aspects (response materials, target and recognition way). The fluorescent materials have the advantages of high fluorescent strength, high stability, and good biocompatibility. They provide a new path for bacterial detection. Several recent fluorescent nanomaterials for bacterial detection, including semiconductor quantum dots (QDs), carbon dots (CDs), up-conversion nanoparticles (UCNPs) and metal organic frameworks (MOFs), were introduced. Their optical properties and detection mechanisms were analyzed and compared. For different response targets in the detection process, we studied the fluorescence strategy using DNA, bacteria, and metabolites as the response target. In addition, we classified the recognition way between nanomaterial and target, including specific recognition methods based on aptamers, antibodies, bacteriophages, and non-specific recognition methods based on biological functional materials. The characteristics of different recognition methods were summarized. Finally, the weaknesses and future development of bacterial fluorescence sensor were discussed. This review provides new insights into the application of fluorescent sensing systems as an important tool for bacterial detection.
Collapse
Affiliation(s)
- Jialin Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Ming Zhou
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Xin Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Yaqi Fan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jinhui Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Kangqiang Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Herui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, PR China.
| |
Collapse
|
12
|
Application of Protein in Extrusion-Based 3D Food Printing: Current Status and Prospectus. Foods 2022; 11:foods11131902. [PMID: 35804718 PMCID: PMC9265415 DOI: 10.3390/foods11131902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Extrusion-based 3D food printing is one of the most common ways to manufacture complex shapes and personalized food. A wide variety of food raw materials have been documented in the last two decades for the fabrication of personalized food for various groups of people. This review aims to highlight the most relevant and current information on the use of protein raw materials as functional 3D food printing ink. The functional properties of protein raw materials, influencing factors, and application of different types of protein in 3D food printing were also discussed. This article also clarified that the effective and reasonable utilization of protein is a vital part of the future 3D food printing ink development process. The challenges of achieving comprehensive nutrition and customization, enhancing printing precision and accuracy, and paying attention to product appearance, texture, and shelf life remain significant.
Collapse
|
13
|
Xiong J, Zhang H, Qin L, Zhang S, Cao J, Jiang H. Magnetic Fluorescent Quantum Dots Nanocomposites in Food Contaminants Analysis: Current Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms23084088. [PMID: 35456904 PMCID: PMC9028821 DOI: 10.3390/ijms23084088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
The presence of food contaminants can cause foodborne illnesses, posing a severe threat to human health. Therefore, a rapid, sensitive, and convenient method for monitoring food contaminants is eagerly needed. The complex matrix interferences of food samples and poor performance of existing sensing probes bring significant challenges to improving detection performances. Nanocomposites with multifunctional features provide a solution to these problems. The combination of the superior characteristics of magnetic nanoparticles (MNPs) and quantum dots (QDs) to fabricate magnetic fluorescent quantum dots (MNPs@QDs) nanocomposites are regarded as an ideal multifunctional probe for food contaminants analysis. The high-efficiency pretreatment and rapid fluorescence detection are concurrently integrated into one sensing platform using MNPs@QDs nanocomposites. In this review, the contemporary synthetic strategies to fabricate MNPs@QDs, including hetero-crystalline growth, template embedding, layer-by-layer assembly, microemulsion technique, and one-pot method, are described in detail, and their advantages and limitations are discussed. The recent advances of MNPs@QDs nanocomposites in detecting metal ions, foodborne pathogens, toxins, pesticides, antibiotics, and illegal additives are comprehensively introduced from the perspectives of modes and detection performances. The review ends with current challenges and opportunities in practical applications and prospects in food contaminants analysis, aiming to promote the enthusiasm for multifunctional sensing platform research.
Collapse
Affiliation(s)
- Jincheng Xiong
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Huixia Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Linqian Qin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Shuai Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
- Correspondence: ; Tel.: +86-010-6273-4478; Fax: +86-010-6273-1032
| |
Collapse
|
14
|
Guo Z, Huang X, Li Z, Shi J, Zhai X, Hu X, Zou X. Employing CuInS 2 quantum dots modified with vancomycin for detecting Staphylococcus aureus and iron(iii). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1517-1526. [PMID: 33710200 DOI: 10.1039/d0ay02253e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper describes a near-infrared quantum dot (CuInS2 QD)/antibiotic (vancomycin) nanoparticle-based assay for the Staphylococcus aureus and iron(iii) detection. CuInS2 QDs with good biological tissue permeability and biocompatibility are combined with vancomycin through covalent interaction to form a detection system for two harmful factors. The detection principle of Staphylococcus aureus is mainly the fluorescence quenching caused by the accumulation of CuInS2@Van QDs on the surface of Staphylococcus aureus. The detection principles of the iron(iii) ion are mainly ascribed to the aggregation of quantum dots and the transfer of charges, which cause the fluorescence signal to change. The linear range of S. aureus and the Fe3+ ion is 103 to 108 CFU mL-1 and 10-90 μM, respectively. Their detection limits are 665 CFU mL-1 and 3.5 μM, respectively. The procedure was validated by the quantitation of Staphylococcus aureus and iron(iii) in spiked samples, and was found to demonstrate the feasibility of this method.
Collapse
Affiliation(s)
- Ziang Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | | | | | | | | | | |
Collapse
|