1
|
Xiao Q, Guo D, He J, Zhang M, He S, Huang S. Preparation and chromatographic evaluation of 9-oxa-10-phosphophenanthrene 10-oxide bonded phenyl stationary phase and investigation of its retention mechanism through nuclear magnetic resonance spectroscopy. Anal Chim Acta 2024; 1311:342735. [PMID: 38816164 DOI: 10.1016/j.aca.2024.342735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND In reversed-phase liquid chromatography, the C18 alkyl bonded phase, as the primary stationary phase, is widely used in pharmaceutical and food analysis. The phenyl bonded phase often serves as a complementary choice to the C18 phase to enhance the separation performance of specific categories of compounds. However, both C18 and the currently available phenyl bonded phase chromatography columns show room for further optimization in improving the separation efficiency of specific compound classes, such as dihydroflavonoids. Additionally, the potential role and impact of introducing phosphorus groups into chromatographic stationary phases have not been fully explored, indicating a promising direction for research. RESULTS In the present work, we prepared a novel phenyl stationary phase by bonding 9-oxa-10-phosphaphenanthrene 10-oxide onto silica gel. The obtained material was characterized by scanning electron microscopy, fourier transforms infrared spectroscopy, and elemental analysis. The results show that 9-oxa-10-phosphaphenanthrene 10-oxide was successfully bonded on the silica surface with a load of 3.90 %. Further chromatographic characterization in high-performance liquid chromatography exhibited high column efficiency (40,792 plates m-1 for the determination of biphenyl) and good stability (RSD of 0.28 %∼5.38 %). Moreover, we made a detailed study of the column separation mechanism by nuclear magnetic resonance spectroscopy titration experiment. Comparing to commercial phenyl column, the proposed stationary phase showed shorter retention time and higher throughput. In addition, the stationary phase has a strong ability to separate multiple types of compounds, which provides a new strategy for the separation of complex samples, such as active ingredients in traditional Chinese medicine. SIGNIFICANCE We have developed a novel phenyl column and conducted a comprehensive examination of its chromatographic performance, demonstrating excellent separation capabilities and high efficiency for both nonpolar and moderately polar aromatic compounds. Additionally, we explored the impact of phosphorus-containing groups on the separation performance of chromatographic stationary phases.
Collapse
Affiliation(s)
- Qi Xiao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 3152111, China
| | - Dandan Guo
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Jing He
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Min Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo, 3152111, China
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Liu YM, Wang S, Dickenson A, Mao J, Bai X, Liao X. An on-line SPE-LC-MS/MS method for quantification of nucleobases and nucleosides present in biological fluids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2505-2512. [PMID: 38584507 PMCID: PMC11151739 DOI: 10.1039/d4ay00100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Solid phase extraction (SPE) and liquid chromatographic (LC) separation of nucleobases and nucleosides are challenging due to the high hydrophilicity of these compounds. Herein we report a novel on-line SPE-LC-MS/MS method for their quantification after pre-column derivatization with chloroacetaldehyde (CAA). The method proposed is selective and sensitive with limits of detection at the nano-molar level. Analysis of urine and saliva samples by using this method is demonstrated. Adenine, guanine, cytosine, adenosine, guanosine, and cytidine were found in the range from 0.19 (guanosine) to 1.83 μM (cytidine) in urine and from 0.015 (guanosine) to 0.79 μM (adenine) in saliva. Interestingly, methylation of cytidine was found to be significantly different in urine from that in saliva. While 5-hydroxymethylcytidine was detected at a very low level (<0.05 μM) in saliva, it was found to be the most prominent methylated cytidine in urine at a high level of 3.33 μM. Since on-line SPE is deployed, the proposed LC-MS/MS quantitative assay is convenient to carry out and offers good assay accuracy and repeatability.
Collapse
Affiliation(s)
- Yi-Ming Liu
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
| | - Shuguan Wang
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
| | - Amani Dickenson
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
| | - Jinghe Mao
- Department of Biology, Tougaloo College, Tougaloo, MS 39174, USA
| | - Xiaolin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
3
|
Shaposhnikov LA, Chikurova NY, Chernobrovkina AV, Tishkov VI, Pometun AA. Development of an approach to determining enzymatic activity of ribonucleoside hydrolase c using hydrophilic interaction liquid chromatography. J Chromatogr A 2024; 1715:464561. [PMID: 38154259 DOI: 10.1016/j.chroma.2023.464561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Ribonucleoside hydrolase C (RihC, EC 3.2.2.1-3.2.2.3, 3.2.2.7, 3.2.2.8) belongs to the family of ribonucleoside hydrolases that catalyze the cleavage of both purine and pyrimidine ribonucleosides to nitrogenous bases and ribose. Its most efficient reaction is the cleavage of uridine with the highest reaction rate. The reaction cannot be detected by a simple spectrophotometric method because of the same absorption maximum for the substrate and reaction product or requires time- and labor-consuming sample preparation for ribose. Reversed-phase HPLC is currently used to register enzymatic activity, where the time of one chromatographic run takes about 10 min. Since a large number of analyses is required to measure the kinetics of an enzymatic reaction, the total time is significant. In this work, we obtained new recombinant RihC from Limosilactobacillus reuteri by gene cloning and expression in E.coli cells. We proposed a new approach for determining the enzymatic activity of the new RihC using hydrophilic interaction liquid chromatography (HILIC). The novel column was developed for this procedure providing the determination of uracil and uridine with high efficiency and retention times of 0.9 and 1.7 min, respectively. Kinetic parameters for RihC uridine cleavage were determined. The proposed approach provided significant rapidity for measurement of the enzyme kinetics being 5 times faster as compared to reversed-phase HPLC.
Collapse
Affiliation(s)
- L A Shaposhnikov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Avenue, 33-22, Moscow 119071, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - N Yu Chikurova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Avenue, 33-22, Moscow 119071, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - A V Chernobrovkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - V I Tishkov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Avenue, 33-22, Moscow 119071, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - A A Pometun
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Avenue, 33-22, Moscow 119071, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia; Institute of Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba, Miklukho-Maklaya, 8, Moscow, 117198, Russia.
| |
Collapse
|
4
|
Li Y, Tang X, Li Y, Zhao W, Guo S, Bo C. Preparation and chromatographic evaluation of a mixed polymer brush-silica stationary phase with temperature-sensitive property. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6571-6582. [PMID: 38009320 DOI: 10.1039/d3ay01173a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
In this study, a developed chromatographic stationary phase combines the high selectivity of mixed-mode retention with a temperature-responsive property to boost separation efficiency. Copolymer brushes were grafted onto silica gels through surface initiated-atom transfer radical polymerization by polymerizing two types of monomer, temperature-responsive vinylcaprolactam (VCl) and quinine (Qun) containing benzopyridine, a tertiary ammonium positive center, and hydroxyl groups. The obtained silica@poly(Qun-co-VCl) stationary phases were packed as a chromatographic column, and the retention behavior of hydrophobic polycyclic aromatics, highly polar nucleosides, charged organic acids and β-agonists was studied for this column under different separation modes. The ability to separate different types of analyte shows that the silica@poly(Qun-co-VCl) column provides multiple hydrophobic, hydrophilic and electrostatic interactions toward analytes, achieving the separation of various compounds in one column. In addition, temperature-dependent resolution of polycyclic aromatics, nucleosides, organic acids and β-agonists was investigated using modulation of the column temperature, and the column exhibited adjustable separation selectivity by simply changing the column temperature. These results demonstrate that the grafting of copolymer brushes on a silica surface, consisting of temperature-responsive poly-VCl and multifunctional groups of poly-Qun, is useful as a mixed-mode chromatographic stationary phase for thermally-modulated multiple interactions. Additionally, this column was also used for the quantitative detection of uridine and inosine from cordyceps.
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China.
| | - Xiaofan Tang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China.
| | - Yinhai Li
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China.
| | - Weilong Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China.
| | - Shengwei Guo
- College of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
5
|
Preparation and evaluation of a bacitracin-bonded silica stationary phase for hydrophilic interaction liquid chromatography. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Methoxy terminated poly dimethylsiloxane bonded stationary phase for reversed-phase liquid chromatography. J Chromatogr A 2021; 1652:462348. [PMID: 34174717 DOI: 10.1016/j.chroma.2021.462348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
In this work, a methoxy terminated poly dimethylsiloxane modified silica gel material was proposed as a novel stationary phase for reversed-phase liquid chromatography. With 5 μm silica gel as matrix, methoxy terminated poly dimethylsiloxane polymer was grafted by one step chemical bonding reaction. The obtained stationary phase was characterized by scanning electron microscopy, fourier transform infrared spectroscopy and element analysis. To our knowledge, this is the novel methoxy terminated poly dimethylsiloxane bonded stationary phase with good separation efficiency (42107-46988 plates/m for benzene homologues) and high stability (RSD is 0.08-5.09%). Comparing to other traditional columns of the same type, the proposed stationary phase has a wider polarity separation scale and shorter analysis time. In addition to the rapid separation of hydrophobic compound, such column also exhibited great potential in the separation of hydrophilic analytes.
Collapse
|